
PMath 441/641 – Homework 1 Solutions

1. Let M = Z3 and N = Z2, both Z-modules. Let φ : M → N be the
Z-module homomorphism φ(a, b, c) = (2a + b, 3b + 2c). Find generators for
the Z-module kerφ.

Solution: One possible set of generators is {(1,−2, 3)}. (The only other
possible set is {(−1, 2,−3)}.)

If (a, b, c) ∈ kerφ, then 2a + b = 3b + 2c = 0, which means in particular
that b = −2a, and so 2c = −3b = −6a, giving c = 3a. Thus, the only
possible elements of the kernel are elements of the form (a,−2a, 3a). It is
easy to check that every such element is actually in the kernel:

φ(a,−2a,−3a) = (2a+ (−2a), 3(−2a) + 2(3a)) = (0, 0)

and so we obtain:
kerφ = {(a,−2a, 3a) | a ∈ Z}

which is clearly generated by the single element (1,−2, 3). ♣

2. Prove that 1
3
(1 + 101/3 + 102/3) is an algebraic integer.

Solution: The easiest way to check this is to compute its minimal polyno-
mial. In general, this can be pretty tricky, but in this case it’s not too bad.
We know that the minimal polynomial of an algebraic number α looks like:

p(x) = (x− α)(x− α1) . . . (x− αn)

where α, . . . , αn are the Galois conjugates of α. If we set α = 1
3
(1 + 101/3 +

102/3), then n = 2 and:

α1 =
1

3
(1 + γ101/3 + γ2102/3)

α2 =
1

3
(1 + γ2101/3 + γ102/3)

where γ = e2πi/3 is a primitive cube root of unity. Multiplying out the
minimal polynomial p(x) then gives:

p(x) = x3 − x2 − 3x− 3

which is monic with integer coefficients, so we’re done. ♣



3. Prove that a = 1+
√
−5

2
is not integral over Z.

Solution: To show that a is not integral over Z, we just need to show that its
monic minimal polynomial does not have integer coefficients. The relevant
polynomial is x2 − x+ 3

2
, which obviously does not have integer coefficients.

♣

4. Let α ∈ C be a root of x3 − x + 1. Compute the cardinality of the ring
Z[α]/(α + 2). Is the ideal (α + 2) prime?

Solution: The cardinality is 5, and the ideal is prime.
The ring Z[α]/(α + 2) is isomorphic to the ring Z[x]/(x3 − x+ 1, x+ 2).

This, in turn, is isomorphic to the ring [Z[x]/(x+ 2)]/(x3 − x+ 1). The ring
inside the brackets is clearly just Z, with the isomorphism taking x to −2.
Therefore, we get:

Z[α]/(α + 2) ∼= Z/((−2)3 − (−2) + 1) = Z/5Z

Since Z/5Z is a domain, the ideal (α + 2) is prime. ♣

5. Let K be a number field of degree d over Q, and let P be a nonzero prime
ideal of the ring of integers OK of K. Prove that P contains a prime integer
p (that is, p ∈ Z ∩ P ), and that OK/P contains at most pd elements.

Solution: First note that since P is a nonzero ideal, it contains a nonzero el-
ement α ∈ P . The monic minimal polynomial for α over Q gives an equation
like this:

αr + ar−1α
r−1 + . . .+ a1α = −a0

where ai ∈ Q and r is a positive integer. (Note that a0 ̸= 0 because the
minimal polynomial is irreducible.) This means that a0 is a nonzero integer
lying in the ideal P . Since P is prime, it contains at least one prime factor
p of a0.

To compute the number of elements of OK/P , the idea is that elements of
OK that are linearly dependent over Z reduce mod P to elements of OK/P
that are linearly dependent over Z/pZ. Since you can’t have more than
d independent elements in OK , you can’t have more than d independent
elements of OK/P , so the dimension is at most d and you’ve got at most pd

elements.
Thus, let V1, . . . , Vm be any set of vectors in OK/P , considered as a

(Z/pZ)-vector space, and let vi ∈ OK be an element that reduces to Vi



modulo P . Suppose the elements {v1, . . . , vm} are linearly dependent over
Q:

a1v1 + . . . anvn = 0

for ai ∈ Q not all zero. Then by judicious clearing of denominators, we can
ensure that ai ∈ Z for all i, and not all ai are divisible by p. If we reduce this
modulo P , we get a (Z/pZ)-linear dependence relation between the Vi. Since
any set of m > d vectors in OK is linearly dependent over Q, this shows that
any set of m > d elements of OK/P are linearly independent over Z/pZ. The
dimension of OK/P as a vector space over Z/pZ is therefore at most d, so
the number of elements is at most pd, as desired.

Note: Why is OK/P a vector space over Z/pZ? Well, you can add and
subtract the elements of OK/P , it’s nonempty, and you can multiply them by
elements of Z/pZ because p ∈ P : (a+pZ)(m+P ) = am+aP+mpZ+pPZ ≡
am (mod P ) because p ∈ P . ♣

6. Prove that the ring of integers of Q(
√
33) is Z

[
1+

√
33

2

]
. This is a special

case of the general fact that the ring of integers of Q(
√
d) is (assuming d is

squarefree):

Z
[
1+

√
d

2

]
if d ≡ 1 (mod 4)

Z[
√
d] otherwise

You don’t have to do the general case. Just d = 33.
In fact, do not do the general case. I will take off marks if you do.

Proof: Let’s define α = 1+
√
33

2
, just so we don’t have to keep writing out

that stuff all the time. Then the monic minimal polynomial for α over Q is

x2 − x− 8

(If you don’t see how to do this right away, just compute the Galois conjugate
β of α, and multiply out (x− α)(x− β).)

In particular, that polynomial has integer coefficients, so Z[α] is at least
contained in the ring of integers.

For the reverse inclusion, let γ = u+ v
√
33 be an algebraic integer. Then

the minimal polynomial for γ over Q is

x2 + 2ux+ (u2 − 33v2)

Since γ is an algebraic integer, it follows that 2u ∈ Z, so we can write u = a/2
for some a ∈ Z.



But then a2/4− 33v2 ∈ Z too, meaning that 33v2 = b/4 for some integer
b. If we write v = c/d for integers c and d, then d2 must be a divisor of
4 (and b must be a multiple of 33). By multiplying c and d both by ±2 if
necessary, we can assume that d = 2.

Therefore, a2 − 33c2 ∈ 4Z. Reducing modulo 2 gives a2 ≡ c2, or a ≡ c
(modulo 2!). So we can write a = c+ 2k for some integer k, and compute:

γ =
a+ c

√
33

2

=
c+ 2k + c

√
33

2
= k + cα

which is an element of Z[α]! ♣


