PMath 441/641 - Homework 2
Due on Crowdmark at 11:59pm on Wednesday, May 22

1. Let $p \in \mathbb{Z}$ be a prime number with $p \equiv 3(\bmod 4)$. Prove that $\mathbb{Z}[i] /(p)$ is a field.
2. Let $K=\mathbb{Q}(\sqrt{33})$. Compute the trace and norm of the following elements of K :

- $\sqrt{33}$
- 1
- $6+\sqrt{33}$

3. Let α be a root of the polynomial $f(x)=9 x^{3}+2 x+7$. Find an integer n such that $n \alpha$ is an algebraic integer.
4. Let α be an algebraic number such that $N(\alpha)$ and $\operatorname{Tr}(\alpha)$ are both integers in \mathbb{Z}. Must α be an algebraic integer? Either prove it, or give a counterexample.
5. Consider the ring $A=\mathbb{Z}\left[\frac{1}{2}\right]$. Is A integrally closed?

6 . Let α be a root of the polynomial $x^{3}+3 x+3$. The ring of integers in the field $\mathbb{Q}(\alpha)$ is $\mathbb{Z}[\alpha]$. (You don't have to prove that.)

Find a basis, over \mathbb{Z}, of the ideal $I=(3, \alpha)$. That is, we know that I is isomorphic to \mathbb{Z}^{3} as an additive group. Your job is to find three elements of I that are a basis for I as an additive group.

