PMath 441/641 - Homework 2 Solutions

1. Let $p \in \mathbb{Z}$ be a prime number with $p \equiv 3(\bmod 4)$. Prove that $\mathbb{Z}[i] /(p)$ is a field.

Solution: We have $\mathbb{Z}[i] /(p) \cong \mathbb{Z}[x] /\left(x^{2}+1, p\right) \cong(\mathbb{Z} / p \mathbb{Z})[x] /\left(x^{2}+1\right)$, which is a field if and only if $x^{2}+1$ is irreducible modulo p. A quadratic polynomial is irreducible if and only if its roots do not lie in its coefficient field. The roots of $x^{2}+1$ are the two elements of order 4 in the multiplicative group of the field $\mathbb{F}_{p^{2}}$ with p^{2} elements. The multiplicative group of $\mathbb{Z} / p \mathbb{Z}$ is cyclic of order $p-1$, so it contains elements of order exactly 4 if and only if $p-1$ is a multiple of 4 , which is precisely the same as saying $p \equiv 1(\bmod 4)$. Thus, if $p \equiv 3(\bmod 4)$, then $\mathbb{Z} / p \mathbb{Z}$ does not contain any elements of order 4 , so $x^{2}+1$ is irreducible modulo p, so $\mathbb{Z}[i] /(p)$ is a field.
2. Let $K=\mathbb{Q}(\sqrt{33})$. Compute the trace and norm of the following elements of K :

- $\sqrt{33}$
- 1
- $6+\sqrt{33}$

Solution: The calculations are straightforward from the definitions. The answers are given in the following table.

α	$N(\alpha)$	$\operatorname{Tr}(\alpha)$
$\sqrt{33}$	-33	0
1	1	2
$6+\sqrt{33}$	3	12

3. Let α be a root of the polynomial $f(x)=9 x^{3}+2 x+7$. Find an integer n such that $n \alpha$ is an algebraic integer.

Solution: The trick to this is to figure out the minimal polynomial for $n \alpha$. It's the polynomial you get when you substitute y / n for x in $f(x)$:

$$
9\left(\frac{y}{n}\right)^{3}+2\left(\frac{y}{n}\right)+7=\frac{9}{n^{3}} y^{3}+\frac{2}{n} y+7
$$

If we divide by the leading coefficient to make it monic, we get

$$
y^{3}+\frac{2 n^{2}}{9} y+\frac{7 n^{3}}{9}
$$

We want to choose an integer n so that this polynomial has integer coefficients. There are obviously lots of choices, but the smallest one is $n=3$:

$$
y^{3}+2 y+21
$$

But really, any integer that's divisible by 3 will work. And all the others won't. a
4. Let α be an algebraic number such that $N(\alpha)$ and $\operatorname{Tr}(\alpha)$ are both integers in \mathbb{Z}. Must α be an algebraic integer? Either prove it, or give a counterexample.

Solution: No, α might not be an algebraic integer.
The trick to this is to realise that $N(\alpha)$ and $\operatorname{Tr}(\alpha)$ are (up to sign) two of the coefficients of the monic minimal polynomial of α over \mathbb{Q}. If there are more than two coefficients, then some of the others might not be integers, and so α won't be an algebraic integer.

For example, let α be a root of the polynomial

$$
f(x)=x^{3}+x^{2}+\frac{1}{2} x+3
$$

Then the norm of α is -3 , and the trace of α is -1 , but since the monic minimal polynomial of α over \mathbb{Q} doesn't have integer coefficients, α is not an algebraic integer. *
5. Consider the ring $A=\mathbb{Z}\left[\frac{1}{2}\right]$. Is A integrally closed?

Solution: Yes, it is integrally closed.
To prove that A is integrally closed, we need to show that if α is an element of the fraction field of A (which is \mathbb{Q}), and if α is integral over A, then in fact $\alpha \in A$.

So assume that $\alpha \in \mathbb{Q}$ is integral over A. Then α is the root of a monic polynomial $f(x)$ with coefficients in A. In other words, we have $f(\alpha)=0$, where:

$$
f(x)=x^{n}+\frac{a_{n-1}}{2^{r}} x^{n-1}+\ldots+\frac{a_{0}}{2^{r}}
$$

for integers a_{i}. (Remember that A is just the ring of dyadic rationals: all rational numbers whose denominators are powers of 2 . And the reason I can have the same 2^{r} in all the coefficients' denominators is that if any of the denominators is smaller than the biggest denominator, I can just multiply its top and bottom by a suitable power of 2 to make it 2^{r}.)

Plugging in $x=\alpha$ to $f(x)=0$ and multiplying both sides by 2^{r} gives:

$$
2^{r} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{0}=0
$$

where all the a_{i} are integers. But now α is a rational root of a polynomial with integer coefficients! We know a theorem about that: the Rational Root Theorem. It says that the denominator of α divides evenly into the leading coefficient ... which is 2^{r} !

So α is a rational number whose denominator is a power of 2 . So it's in A. Mission accomplished.
6. Let α be a root of the polynomial $x^{3}+3 x+3$. The ring of integers in the field $\mathbb{Q}(\alpha)$ is $\mathbb{Z}[\alpha]$. (You don't have to prove that.)

Find a basis, over \mathbb{Z}, of the ideal $I=(3, \alpha)$. That is, we know that I is isomorphic to \mathbb{Z}^{3} as an additive group. Your job is to find three elements of I that are a basis for I as an additive group.

Solution: There are lots of bases that work. But the easiest one is $\left\{\alpha^{2}, \alpha, 3\right\}$.
Later in the course, we will develop systematic ways of answering this question. But for now, we have to resort to a trick. Observe that since $\alpha^{3}+3 \alpha+3=0$, we have:

$$
3=\alpha\left(-\alpha^{2}-3\right) \in(\alpha)
$$

In particular, I is really just the ideal (α). So a basis for I can be obtained by taking a basis of $\mathbb{Z}[\alpha]$ and multiplying it by α.

A basis for $\mathbb{Z}[\alpha]$ over \mathbb{Z} is $\left\{1, \alpha, \alpha^{2}\right\}$. Multiplying this by α gives $\left\{\alpha, \alpha^{2}, \alpha^{3}\right\}$. Now, I suppose I could leave it at that, but I'd rather rewrite it in terms of the original basis of $\mathbb{Z}[\alpha]$, which requires dealing with that α^{3} :

$$
\alpha^{3}=-3 \alpha-3
$$

So $\left\{\alpha, \alpha^{2},-3 \alpha-3\right\}$ is a basis, making $\left\{\alpha^{2}, \alpha, 3\right\}$ also a basis.

