
PMath 441/641 – Homework 2 Solutions

1. Let p ∈ Z be a prime number with p ≡ 3 (mod 4). Prove that Z[i]/(p) is
a field.

Solution: We have Z[i]/(p) ∼= Z[x]/(x2 + 1, p) ∼= (Z/pZ)[x]/(x2 + 1), which
is a field if and only if x2+1 is irreducible modulo p. A quadratic polynomial
is irreducible if and only if its roots do not lie in its coefficient field. The
roots of x2 + 1 are the two elements of order 4 in the multiplicative group of
the field Fp2 with p2 elements. The multiplicative group of Z/pZ is cyclic of
order p− 1, so it contains elements of order exactly 4 if and only if p− 1 is
a multiple of 4, which is precisely the same as saying p ≡ 1 (mod 4). Thus,
if p ≡ 3 (mod 4), then Z/pZ does not contain any elements of order 4, so
x2 + 1 is irreducible modulo p, so Z[i]/(p) is a field. ♣

2. Let K = Q(
√
33). Compute the trace and norm of the following elements

of K:
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Solution: The calculations are straightforward from the definitions. The
answers are given in the following table.

α N(α) Tr(α)√
33 −33 0
1 1 2

6 +
√
33 3 12

3. Let α be a root of the polynomial f(x) = 9x3 +2x+7. Find an integer n
such that nα is an algebraic integer.

Solution: The trick to this is to figure out the minimal polynomial for nα.
It’s the polynomial you get when you substitute y/n for x in f(x):
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If we divide by the leading coefficient to make it monic, we get
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9
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We want to choose an integer n so that this polynomial has integer coeffi-
cients. There are obviously lots of choices, but the smallest one is n = 3:

y3 + 2y + 21

But really, any integer that’s divisible by 3 will work. And all the others
won’t. ♣

4. Let α be an algebraic number such that N(α) and Tr(α) are both in-
tegers in Z. Must α be an algebraic integer? Either prove it, or give a
counterexample.

Solution: No, α might not be an algebraic integer.
The trick to this is to realise that N(α) and Tr(α) are (up to sign) two

of the coefficients of the monic minimal polynomial of α over Q. If there are
more than two coefficients, then some of the others might not be integers,
and so α won’t be an algebraic integer.

For example, let α be a root of the polynomial

f(x) = x3 + x2 +
1

2
x+ 3

Then the norm of α is −3, and the trace of α is −1, but since the monic
minimal polynomial of α over Q doesn’t have integer coefficients, α is not an
algebraic integer. ♣

5. Consider the ring A = Z
[
1
2

]
. Is A integrally closed?

Solution: Yes, it is integrally closed.
To prove that A is integrally closed, we need to show that if α is an

element of the fraction field of A (which is Q), and if α is integral over A,
then in fact α ∈ A.

So assume that α ∈ Q is integral over A. Then α is the root of a monic
polynomial f(x) with coefficients in A. In other words, we have f(α) = 0,
where:

f(x) = xn +
an−1

2r
xn−1 + . . .+

a0
2r



for integers ai. (Remember that A is just the ring of dyadic rationals: all
rational numbers whose denominators are powers of 2. And the reason I can
have the same 2r in all the coefficients’ denominators is that if any of the
denominators is smaller than the biggest denominator, I can just multiply
its top and bottom by a suitable power of 2 to make it 2r.)

Plugging in x = α to f(x) = 0 and multiplying both sides by 2r gives:

2rxn + an−1x
n−1 + . . .+ a0 = 0

where all the ai are integers. But now α is a rational root of a polynomial
with integer coefficients! We know a theorem about that: the Rational Root
Theorem. It says that the denominator of α divides evenly into the leading
coefficient ... which is 2r!

So α is a rational number whose denominator is a power of 2. So it’s in
A. Mission accomplished. ♣

6. Let α be a root of the polynomial x3 +3x+3. The ring of integers in the
field Q(α) is Z[α]. (You don’t have to prove that.)

Find a basis, over Z, of the ideal I = (3, α). That is, we know that I is
isomorphic to Z3 as an additive group. Your job is to find three elements of
I that are a basis for I as an additive group.

Solution: There are lots of bases that work. But the easiest one is {α2, α, 3}.
Later in the course, we will develop systematic ways of answering this

question. But for now, we have to resort to a trick. Observe that since
α3 + 3α + 3 = 0, we have:

3 = α(−α2 − 3) ∈ (α)

In particular, I is really just the ideal (α). So a basis for I can be obtained
by taking a basis of Z[α] and multiplying it by α.

A basis for Z[α] over Z is {1, α, α2}. Multiplying this by α gives {α, α2, α3}.
Now, I suppose I could leave it at that, but I’d rather rewrite it in terms of
the original basis of Z[α], which requires dealing with that α3:

α3 = −3α− 3

So {α, α2,−3α− 3} is a basis, making {α2, α, 3} also a basis. ♣


