PMath 441/741 - Homework 3
Due on Crowdmark at 11:59pm on Wednesday, May 29

1. Let $K=\mathbb{Q}(\sqrt{-2})$, with ring of integers $\mathcal{O}_{K}=\mathbb{Z}[\sqrt{-2}]$. Let $\Psi: K \rightarrow \mathbb{C}^{2}$ be the Minkowski map $\Psi=\left(\Psi_{1}, \Psi_{2}\right)$, where Ψ_{1} and Ψ_{2} are the embeddings of K in \mathbb{C}. List all the elements $a \in \mathcal{O}_{K}$ such that the length of $\Psi(a)$ is at most $3(\|\Psi(a)\| \leq 3)$.
2. Let K be a number field with ring of integers \mathcal{O}_{K}, and let $\Psi: K \rightarrow V_{K}$ be the Minkowski map:

$$
\Psi(\alpha)=\left(\Psi_{1}(\alpha), \ldots, \Psi_{n}(\alpha)\right)
$$

where $\Psi_{1}, \ldots, \Psi_{n}$ are the $n=[K: \mathbb{Q}]$ embeddings of K into the complex numbers.

Show that if $\alpha \in \mathcal{O}_{K}$ is an algebraic integer, then the length of $\Psi(\alpha)$ is an algebraic integer.
3. Let d be a squarefree integer, and let $K=\mathbb{Q}(\sqrt{d})$. Assume that the ring of integers of K is $\mathcal{O}_{K}=\mathbb{Z}[\sqrt{d}]$. (This is the same as assuming that d is not congruent to 1 modulo 4.) Let $\Psi: K \rightarrow V_{K}$ be the Minkowski map.

Prove that the image $\Psi\left(\mathcal{O}_{K}\right)$ is a rectangular lattice. That is, show that there is a basis $\{\alpha, \beta\}$ of $\Psi\left(\mathcal{O}_{K}\right)$ such that $\langle\alpha, \beta\rangle=0$.
4. Let d be a squarefree integer, and let $K=\mathbb{Q}(\sqrt{d})$. Assume that the ring of integers of K is $\mathcal{O}_{K}=\mathbb{Z}[\gamma]$, where $\gamma=\frac{1+\sqrt{d}}{2}$. (This is the same as assuming that $d \equiv 1(\bmod 4)$.) Let $\Psi: K \rightarrow V_{K}$ be the Minkowski map.

Prove that if $\{\alpha, \beta\}$ is a basis for \mathcal{O}_{K} as a \mathbb{Z}-module, then the area of the parallelogram spanned by $\Psi(\alpha)$ and $\Psi(\beta)$ (that is, the parallelogram with vertices $0, \Psi(\alpha), \Psi(\beta)$, and $\Psi(\alpha+\beta))$ is equal to $\sqrt{|d|}$.
[Hint: Show first that the area of this parallelogram doesn't depend on the choice of basis.]
5. Let d be a squarefree integer congruent to 1 modulo 4 , and let $K=\mathbb{Q}(\sqrt{d})$. Let $\Psi: K \rightarrow V_{K}$ be the Minkowski map.

Show that $\Psi\left(\mathcal{O}_{K}\right)$ is not a rectangular lattice. That is, show that there is no basis $\{\alpha, \beta\}$ of $\Psi\left(\mathcal{O}_{K}\right)$ as a \mathbb{Z}-module such that $\langle\alpha, \beta\rangle=0$.
6. Let $K=\mathbb{Q}(\sqrt{10})$. Let $\Psi: K \rightarrow \mathbb{R}^{2}$ be the Minkowski map; that is, let $\Psi(r+s \sqrt{10})=(r+s \sqrt{10}, r-s \sqrt{10})$. Find positive real numbers c and C
such that for all $a \in \mathbb{Q}(\sqrt{10})$, we have:

$$
c \leq \frac{|a|}{\|\Psi(a)\|} \leq C
$$

or prove that no such c and C exist. (The notation $|\cdot|$ means the usual absolute value in \mathbb{R}, and $\|\cdot\|$ means the usual length in \mathbb{R}^{2}.)

