PMath 441/741 - Homework 4
Due on Crowdmark at 11:59pm on Wednesday, June 5

1. Let d and e be different squarefree integers greater than 1. Find the discriminant of the ring $\mathbb{Z}[\sqrt{d}, \sqrt{e}]$.
2. Compute the discriminant of the ideal $I=(5, \sqrt{10})$ in $\mathbb{Z}[\sqrt{10}]$.
3. Let $K=\mathbb{Q}(\alpha)$, where α is a root of the polynomial $x^{3}+x+1$. Prove that the ring of integers of K is $\mathcal{O}_{K}=\mathbb{Z}[\alpha]$.
4. Let α be a root of the polynomial $x^{3}+2 x+5$. (You may assume that this polynomial is irreducible.) How many elements does the ring $\mathbb{Z}[\alpha] /\left(\alpha^{2}+1\right)$ have?
5. Let $K=\mathbb{Q}(\alpha)$, where α is a root of the polynomial $x^{3}-x-1$.

Let $L=\mathbb{Q}(\beta)$, where β is a root of the polynomial $x^{3}+2 x-1$.
Let $M=\mathbb{Q}(\gamma)$, where γ is a root of the polynomial $x^{3}-3 x+25$.
Two of these fields are secretly identical. (You may assume that for the purposes of solving this question.) Which two?
[Bonus points if you can prove that the two identical fields are actually identical!]
6. Let α be a root of $x^{3}-4 x+2$, and let $K=\mathbb{Q}(\alpha)$. Prove that $\mathcal{O}_{K}=\mathbb{Z}[\alpha]$. [Hint: First prove that either $\mathcal{O}_{K}=\mathbb{Z}[\alpha]$, or else $\mathbb{Z}[\alpha]$ has index 2 in \mathcal{O}_{K}. Then let $T=2 \mathcal{O}_{K}$, so that $T \subset \mathbb{Z}[\alpha]$ (because it has index dividing 2), and show that T has index at least 5 in $\mathbb{Z}[\alpha]$.

