PMath 441/741 - Homework 7
Due on Crowdmark at 11:59pm on Wednesday, June 26

1. Factor the ideals (2) and (3) in the ring of integers \mathcal{O}_{K} of the field $K=$ $\mathbb{Q}(\alpha)$, where α is a root of $x^{3}+16 x+24$. It may be useful to know that the ring of integers of \mathcal{O}_{K} is equal to $\mathbb{Z}[\alpha, \beta]$, where β is a root of $x^{3}+36 x+81$.
[You don't have to prove that $\mathcal{O}_{K}=\mathbb{Z}[\alpha, \beta]$ - you can take that for granted.]
2. Let L be a number field. Let $Q \subset \mathcal{O}_{L}$ be a prime ideal, and let $(p)=Q \cap \mathbb{Z}$. Show that p is a generator for the ideal $Q^{e(Q)}\left(\mathcal{O}_{L}\right)_{Q}$ of the local ring $\left(\mathcal{O}_{L}\right)_{Q}$.
3. Let $I=\left(1, \frac{1+\sqrt{6}}{5}\right)$ be the fractional ideal of $D=\mathbb{Z}[\sqrt{6}]$ generated by 1 and $\frac{1+\sqrt{6}}{5}$. Let P be the ideal of D generated by 7 . (You may assume that P is a prime ideal.) Find an element $\alpha \in \mathbb{Q}(\sqrt{6})$ such that $I D_{P}=\alpha D_{P}$.
4. Let K be the number field $\mathbb{Q}(\alpha)$, where α is a root of the polynomial $x^{3}+9 x+3$. Find an element $a \in K$ such that $\mathcal{O}_{K}=\mathbb{Z}[a]$.

5 . Let $p \in \mathbb{Z}$ be a prime number, α be the root of a p-Eisenstein polynomial - that is, a polynomial $f(x)=x^{n}+a_{n-1} x^{n-1}+\ldots+a_{0}$, where $a_{i} \in \mathbb{Z}, p \mid a_{i}$ for all i, and $p^{2} \nmid a_{0}$. Let R be the ring $\mathbb{Z}[\alpha]$. Prove that there is exactly one prime ideal P of R that contains p, prove that R_{P} is a DVR, and prove that α is a uniformizer for R_{P}.
6. Let D be the ring $\mathbb{Z}[\sqrt{5}]$, and let $P=(2,1+\sqrt{5})$ be the ideal generated by 2 and $1+\sqrt{5}$. Prove that D_{P} is not a DVR.

