PMath 441/741 - Homework 8
Due on Crowdmark at 11:59pm on Wednesday, July 3

1. Let $\mathbb{Q} \subset L \subset M$ be number fields, with rings of integers $\mathbb{Z}, \mathcal{O}_{L}$, and \mathcal{O}_{M}, respectively. Let p be a prime number, P a prime factor of the ideal $p \mathcal{O}_{L}$, and Q a prime factor of the ideal $P \mathcal{O}_{M}$.

Prove that $f(P) \mid f(Q)$.
2. Let $\mathbb{Q} \subset L \subset M$ be number fields, with rings of integers $\mathbb{Z}, \mathcal{O}_{L}$, and \mathcal{O}_{M}, respectively. Let p be a prime number, P a prime factor of the ideal $p \mathcal{O}_{L}$, and Q a prime factor of the ideal $P \mathcal{O}_{M}$.

Prove that $e(P) \mid e(Q)$.
3. Let $K \subset L$ be number fields with rings of integers \mathcal{O}_{K} and \mathcal{O}_{L}, respectively, and let $I \subsetneq \mathcal{O}_{K}$ be a proper ideal of \mathcal{O}_{K}. Prove that $I \mathcal{O}_{L} \neq \mathcal{O}_{L}$ is not the unit ideal of \mathcal{O}_{L}.
4. Let $\mathbb{Q} \subset L \subset M$ be number fields, with rings of integers $\mathbb{Z}, \mathcal{O}_{L}$, and \mathcal{O}_{M}, respectively. A prime number p is said to be totally split in L if and only if the ideal $p \mathcal{O}_{L}$ factors into a product of $[L: \mathbb{Q}]$ different prime ideals.

Prove that if p is totally split in M, then it is totally split in L.
5. Let A be a domain, K its fraction field. Prove that $A=\cap_{P} A_{P}$, where P ranges over all prime ideals of A.
6. Let K be a number field with ring of integers \mathcal{O}_{K}. Let D be a domain satisfying $\mathcal{O}_{K} \subset D \subset K$. Prove that there is a set S of prime ideals of \mathcal{O}_{K} such that

$$
D=\bigcap_{Q \in S}\left(\mathcal{O}_{K}\right)_{Q}
$$

