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1 What is an algebraic integer?

What is an algebraic integer?

That’s the motivating question for this course. I mean, we
will define an algebraic integer pretty early in the course, but
you don’t learn who your friend is just by learning their name.

So. We know what an algebraic number is: it’s a complex
number that is the root of a polynomial with integer coefficients.
Which of these should we call “integers”?

It’s tempting to say something about denominators here. But
the problem is, say α is the root of the following polynomial:

x17 − 4x+ 13

So ... what’s the denominator of α? Tough to say, really. All
we really know about α is that when you raise it to the power
seventeen, you get the same thing as if you multiplied it by four
and subtracted thirteen.

1



In fact, the minimal polynomial is really the only thing we
ever know about an algebraic number, most of the time. So our
definition of algebraic integer probably should relate to that.

The one place where we are really confident that we know
what all the algebraic integers are is Q, the field of rational
numbers. Every rational number can be written uniquely as
a/b, where a and b are (*gulp*) integers – rational integers, if
you like – satisfying b > 0 and gcd(a, b) = 1. The integers are
just the ones where b = 1.

So what’s the monic minimal polynomial of a/b? Silly ques-
tion, but it still has an answer: it’s x− a/b. So – and I’m aware
of how silly this sounds – we can say that a/b is an integer if
and only if its monic minimal polynomial has coefficients in Z.

That is so lame. But it’s the only thing we’ve got, so we
define:

Definition 1.1. Let α be an algebraic number. Then α is an al-
gebraic integer if and only if it is the root of a monic polynomial
p(x) ∈ Z[x] with coefficients in Z.

In fact, it will be helpful to make a slightly more general
definition.

Definition 1.2. Let A be a domain, and let T be a domain
containing A. Let α ∈ T be any element. Then α is integral over
A if and only if it is the root of a monic polynomial p(x) ∈ A[x]
with coefficients in A.

Notice that I sneakily got rid of the “minimal” in “monic
minimal polynomial”. That’s because it doesn’t really matter,
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and often gets in the way. Like your irritating little brother. (Or
like all of your irritating little brothers, if you don’t have any.)

So the algebraic integers are just the elements of C that are
integral over Z. (If α is not algebraic over K, then we say that
it is not integral over A.)

Let’s do some examples. We’ve already seen that the alge-
braic integers in Q are just the rational integers Z. Notice that
i – the square root of −1 – is an algebraic integer, because it’s
a root of its monic minimal polynomial x2 + 1, which has coef-
ficients in Z.

More examples. The cube root of unity, w = e2πi/3, is an
algebraic integer, because it’s a root of x2 + x + 1. Notice a
curious feature here, though. We often write

w =
1−
√
−3

2

which has a denominator. I mean, it blatantly does. And yet, w
is still an integer because of that monic polynomial thing. This
doesn’t mean we’ve got the wrong definition of algebraic integer
– as if! – but it does mean that there’s something subtle going
on here. We’ll come back to this later.

Just to show that not everything is an algebraic integer, no-
tice that w/2 = 1−

√
−3

4 is not an algebraic integer, because its
monic minimal polynomial is m(x) = x2 +(1/2)x+(1/4), which
doesn’t have integer coefficients. And if p(x) is any other monic
polynomial with integer coefficients and p(w/2) = 0, then it has
m(x) as a factor, which is impossible by Gauss’ Lemma.

In fact, we have the following general and useful result.

Theorem 1.3. Let α ∈ Q be an algebraic number that is the
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root of a monic polynomial with integer coefficients. Then the
monic minimal polynomial of α has integer coefficients.

Proof: Say f(α) = 0, where f(x) ∈ Z[x] is monic, and let
m(x) ∈ Q[x] be the monic minimal polynomial of α over Q.
Then f(x) = m(x)q(x) for some polynomial q(x) ∈ Q[x]. Pulling
out a least common denominator d from the coefficients of m(x)
and q(x), we get df(x) = M(x)Q(x), where M(x) and Q(x)
have integer coefficients. Moreover, we can ensure that the coef-
ficients of M(x) have no common factor, and similarly for Q(x).
In other words, we can ensure that M(x) and Q(x) are primitive
polynomials.

By Gauss’ Lemma, this means that the polynomialM(x)Q(x)
is also primitive. But it equals df(x) ... so d = 1, and m(x) had
integer coefficients all along. ♣

Let’s do an example. What are the algebraic integers in
Q(
√

2)?

Well, any element of Q(
√

2) is of the form a + b
√

2. The
monic minimal polynomial for a+ b

√
2 is

(x− a− b
√

2)(x− a+ b
√

2) = x2 − 2ax+ a2 − 2b2

So if a and b are integers, this polynomial has integer coefficients,
and therefore a+ b

√
2 is an algebraic integer.

Conversely, if this polynomial has integer coefficients, then
2a is an integer (as in, 2a ∈ Z) and so is a2 − 2b2. If a = n/2
and b = `/k, then

a2 − 2b2 = n2/4− 2`2/k2

Since this is an integer, we deduce that we can take k2 = 4, or
k = 2. This means that n2 − 2`2 is a multiple of 4, and a quick
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check of the possibilities shows that this means that n and ` are
both even. So a and b are actually both integers.

Putting all this together, we see that a + b
√

2 ∈ Q(
√

2) is
an algebraic integer if and only if a and b are both integers. In
other words, the set of algebraic integers in Q(

√
2) is the ring

Z[
√

2].

It’s a ring. Hmm. I wonder if that’s an accident.

2 Algebraic integers form a ring

Now that we know what algebraic integers are, we’d like to be
able to add and subtract and multiply them, just like we can
with kindergarten-style integers. To do this, we need to take a
little digression, and talk about modules. If you already know
what a module is, you can skip that section. Otherwise, take a
few moments to go to the module section and read up on them.
We’ll wait for ya.

OK, nice to have you back. Or maybe you never left, which
is also cool. You do you. Let’s get with the subtraction and
stuff.

The reason we need the module stuff is to give a slightly
different definition of integral over A. Which is to say, we need
to prove a theorem.

Theorem 2.1. Let T be a domain containing a domain A, and
let α ∈ T . Then α is integral over A if and only if the ring
A[α] ⊂ T is a finitely generated A-module.

Proof: Let K be the fraction field of A.
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First, assume that α is integral over A. Then in particular it
is algebraic over K, and so it has a monic minimal polynomial
p(x) with coefficients in K. Since α is integral over A, those
coefficients actually lie in A, so we have:

αd = ad−1α
d−1 + . . .+ a0

where ai ∈ A are the (negatives of) the coefficients of the min-
imal polynomial p(x). But this equation makes clear that αd

is in the A-module M generated by {1, α, α2, . . . , αd−1}. And
multiplying that equation by α makes it clear that αd+1 is in
the A-module generated by {α, . . . , αd} ... which is just M !

Continuing in this way, we find that every power of α is con-
tained in M . So all of A[α] = M , and is therefore finitely
generated.

To go the other way, assume that A[α] is a finitely generated
A-module. Then there is a finite set of generators for A[α]. Call
them p1(α), . . . , pn(α), where the pi are polynomials. Pick a
positive integer d that is larger than the degree of any of the
pi(x), and write αd as an A-linear combination of the pi(α):

αd = a1p1(α) + . . .+ anpn(α)

Because d is greater than the degree of any of the pi(x), this
equality means that α is the root of a monic polynomial of degree
d – namely, q(x) = xd− a1p1(x)− . . .− anpn(x). So α is integral
over A. ♣

This, surprisingly, allows us to prove that the ring of integers
in a number field is a ring.

Theorem 2.2. Let K be a number field, and let A be the set of
algebraic integers in K. Then A is a ring.

6



Proof: Certainly 0 and 1 are in A, so we just have to check that
A is closed under addition, subtraction, and multiplication.

Let α and β be any elements of K. If {1, α, α2, . . . , αa} gen-
erate Z[α] over Z, and if {1, β, β2, . . . , βb} generate Z[β] over Z,
then certainly {αiβj | 0 ≤ i ≤ a, 0 ≤ b ≤ b} generate Z[α, β]
over Z. So Z[α, β] is finitely generated.

But Z[α ± β] and Z[αβ] are contained in Z[α, β], and Z is
noetherian. So they are submodules of a finitely generated Z-
module for noetherian Z, and we can deduce that α ± β and
αβ are integral over Z too. We triumphantly conclude, with a
flourish, that A is a ring, as desired. ♣

3 The ring of integers is just Zn with a fancy

multiplication

Think about Z. It’s isomorphic to Z1, as a ring. (Hey. I’ve got
a PhD.) It’s the ring of integers in the number field Q, which
has degree 1 over Q.

Think about Z[i]. It’s the ring of integers in the number field
Q(i), which has degree 2 over Q. And Z[i] is isomorphic to Z2

as an additive group, although the multiplication is different.

This pattern holds in general. If K is a number field of degree
d over Q, then the ring of integers in K (which is usually denoted
OK) is isomorphic to Zd as an additive group.

We need a tiny bit of new technology to prove this properly.
Here it is.

Definition 3.1. Let K be a field, and let L be a finite-dimensional
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K-vector space that is also a ring. Define two functions TrL/K : L→
K and NL/K : L → K, called the trace and the norm, respec-
tively, by

Tr(α) = Tr(Tα) and N(α) = det(Tα)

where Tα : L→ L is the linear transformation

Tα(x) = αx

Note that if L is a field, then the roots of the characteristic
polynomial for Tα are the same as the roots of the minimal
polynomial for α over K. So we have

Tr(α) = α1 + . . .+ αd

and
N(α) = α1 . . . αd

where d = [L : K] and α1 . . . , αd are the roots (counted mul-
tiple times maybe) of the minimal polynomial of α, including
α. If L and K are number fields, then these are just the Galois
conjugates of α. Notice that some of the αi might not lie in L!

Now, the characteristic polynomial of Tα is degree [L : K],
but the minimal polynomial m(x) of α over K is degree [K(α) :
K], which might be smaller. Since the roots are the same
and both polynomials have coefficients in K, this means that
the characteristic polynomial of Tα is m(x)r, where r = [L :
K]/[K(α) : K] = [L : K(α)].

So we can calculate as follows. Write the minimal polynomial
for α over K as

m(x) = xn + an−1x
n−1 + . . .+ a0
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Then we get

m(x)r = xrn + ran−1x
rn−1 + . . .+ ar0

But an−1 = −α1 − . . .− αd, and a0 = α1 . . . αd. So we deduce:

TrL/K(α) = −rad−1

and
NL/K(α) = (−1)drar0

which is the general formula for the trace and norm in the case
that L is a field.

So, for example, let M = Q(
√

2,
√

3), L = Q(
√

2). Then

TrL/Q(1 +
√

2) = (1 +
√

2) + (1−
√

2) = 2

but

TrM/Q(1 +
√

2) = (1 +
√

2) + (1 +
√

2) + (1−
√

2) + (1−
√

2) = 4

because there are four elements of the Galois group of M/Q,
and they move 1 +

√
2 to two different places twice each.

The reason we’ve done all this, is that the trace TrL/K allows
us to define a pairing on L.

Definition 3.2. Let K be a field, L a finite-dimensional K-
vector space that is also a ring. Define a pairing on L by 〈α, β〉 =
TrL/K(αβ).

It’s easy to check that this is a symmetric, K-bilinear pairing
on L. If L is a field, then it’s also easy to see that it is non-
degenerate, by which I mean the following:
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Theorem 3.3. Let L/K be a finite extension of fields of char-
acteristic zero. For every x ∈ L, there is some y ∈ L such that
Tr(xy) 6= 0, unless x = 0.

The proof of this is easy: set y = 1/x. (For a proof of the
corresponding result for finite fields, see the finite rings section.)
But it enables the following theorem:

Theorem 3.4. Let A be the ring of integers in a number field
K with [K : Q] = d. Then A is isomorphic to Zd as an additive
group.

Proof: First, we prove the following lemmas:

Lemma 3.5. For every element α ∈ K, there is an integer
N ∈ Z satisfying Nα ∈ OK. In particular, the fraction field of
OK is K.

Proof of lemma: Let p(x) be the monic minimal polynomial for
α over Q. There is some large integer N ∈ Z such that Np(x)
has integer coefficients. The monic minimal polynomial for Nα
is just N rp(x/N), where r is the degree of p. This has integer
coefficients, so Nα is integral, as desired. ♣

Lemma 3.6. Let L/K be a finite extension of number fields,
and let α ∈ L be an algebraic integer. Then Tr(α) and N(α)
are also algebraic integers.

Proof: The trace of α is the sum of its conjugates and the
norm is the product of its conjugates. The conjugates of α are
all integers (they have the same monic minimal polynomial!), so
their sum and product is also an algebraic integer. ♣

10



Now for the proof of the theorem. Choose a basis {x1, . . . , xd}
for K as a Q-vector space. After multiplying the xi by a big
integer, we can assume that the xi all lie in OK .

Define a Q-linear transformation φ : K → Qd by

φ(α) = (TrK/Q(x1α), . . . ,TrK/Q(xdα))

It’s easy to check that this is a K-linear transformation. And if
α ∈ K is in the kernel of φ, then we must have TrK/Q(xiα) =
0 for all i, and therefore TrK/Q(xα) for all x ∈ K! This is
impossible by the nondegeneracy of the trace (Theorem 3.3),
and so φ is injective.

But that means that, by the First Isomorphism Theorem,
A = OK is isomorphic to a submodule of Qd. Better yet, by
Lemma 3.6, it’s isomorphic to a submodule of Zd! Since A con-
tains d Q-linearly independent elements (namely {x1, . . . , xd},
we see that it must be isomorphic to Zd, as desired. ♣

This has all sorts of fun consequences.

Corollary 3.7. Let I be a nonzero ideal in the ring of integers
OK of a number field K with [K : Q] = d. Then I is isomorphic
to Zd as an additive group.

Proof: Let a ∈ I be any nonzero element, and let {x1, . . . , xd}
be a basis for OK as a Z-module. Since I is an additive subgroup
of OK ∼= Zd, it must be a free abelian group of rank at most d.
And {ax1, . . . , axd} is a linearly independent set with d elements
sitting inside I, so the rank of I is also at least d. ♣

Corollary 3.8. Let K be a number field with ring of integers
A = OK, I a nonzero ideal of A. Then A/I is a finite ring. If
I = (α) is a principal ideal, then A/I has

∣∣NK/Q(α)
∣∣ elements.
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Proof: Clearly A/I is a ring, so we just need to show that
it’s finite. We also know that A/I is finitely generated as an
additive group – because A is – and so as additive groups, we
get A/I ∼= Zr × T for some finite abelian group T . All we need
to do is show that r = 0.

But if r ≥ 1, then A/I would have an element x of infinite or-
der, that is the image of some element x ∈ A. If {x1, . . . , xd} is a
linearly independent subset of I (which exists by Corollary 3.7),
then {x, x1, . . . , xd} would also be linearly independent. To see
this, notice that any linear relation

ax+ a1x1 + . . .+ adxd = 0

either has a = 0 (which would imply ai = 0 for all i by the inde-
pendence of the {xi}), or else would reduce to ax ≡ 0 (mod I),
which is a contradiction. So r = 0 and A/I is finite.

For the last sentence of the theorem, assume I = (α) is princi-
pal. Then generators for I as a Z-module are just {αa1, . . . , αad},
where {a1, . . . , ad} are generators for A as a Z-module. In other
words, I is the image of OK under the linear transformation
L(x) = αx.

The determinant of L is NL/K(α). But the absolute value
of the determinant of L is also the volume of the image of the
unit hypercube under L, which in turn is the cardinality of the
quotient Zd/L(Zd) = OK/I. ♣

Corollary 3.9. Let K be a number field with ring of integers
OK. Then every nonzero prime ideal of OK is maximal.

Proof: Let P be a nonzero prime ideal of OK . Then OK/P is
a domain. But it’s also finite, so it must be a field. ♣
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[If you haven’t seen the proof that a finite commutative do-
main is a field, go find it. It is awesome. And in the algebra
section.]

Corollary 3.10. Let K be a number field with ring of integers
OK. Any subring A of OK is a noetherian ring. In particular,
OK is noetherian.

Proof: Let I be an ideal of A. We want to show that I is finitely
generated as an A-module. But I is an additive subgroup of OK ,
which is isomorphic to Zd as an additive group, so in particular, I
is a finitely generated Z-module. Since A contains Z (it contains
1 and is closed under ±), this means a fortiori that I is a finitely
generated A-module too. ♣

We end with some definitions that are handy for describing
rings of integers.

Definition 3.11. Let A be a domain, T a domain containing
A. Then T is integral over A if and only if every element of T
is integral over A.

Definition 3.12. Let A be a domain, T a domain containing
A. The integral closure of A in T is the set of elements of T
that are integral over A.

Definition 3.13. A domain T is integrally closed if and only if
the integral closure of T in its fraction field K is just T .

This enables us to prove a few more useful results.

Theorem 3.14. Let A be a domain, and let T be a domain
containing A. Let U be a domain containing T , and let α ∈ U .
If α is integral over T and T is integral over A, then α is integral
over A.
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Proof: Let m(x) be the monic minimal polynomial for α over
the fraction field of T . Then the coefficients m1, . . . ,mr of m(x)
lie in T , and α is integral over A[m1, . . . ,mr].

But each of the mi is integral over A, so the ring D =
A[m1, . . . ,mr] is a finitely generated A-module. Since α is in-
tegral over D, the ring D[α] is a finitely generated D-module,
generated by d1, . . . , dn. But then D[α] is generated as an A-
module by the finite set {midj}, so α is integral over A, as
desired. ♣

Corollary 3.15. Let A be a domain, K a field containing A.
The integral closure T of A in K is integrally closed.

Proof: Say that t ∈ K is integral over T . Then since T is
integral over A, we deduce from Theorem 3.14 that t is integral
over A, and therefore an element of T . ♣

We can now make the following definition:

Definition 3.16. A Dedekind domain is an integrally closed
commutative domain such that every nonzero prime ideal is max-
imal.

In particular, the ring of integers OK in a number field K is a
Dedekind domain. There are many other examples of Dedekind
domains, but these will do for now.

4 Geometry of Numbers

So we know that OK is isomorphic to Zd as an additive group.
The natural question is: what’s the multiplication like?
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We’re not really going to answer that question, because it’s
very complicated. So we’ll answer a different question.

Is there a geometric way to view the ring OK?

That might seem a bit dumb. I mean, we’re doing number
theory here, not geometry. But it turns out that the geometric
angle is extremely useful in number theory, and not just because
it pays my rent. Let’s elaborate.

The ring Z is this nice, orderly, one-dimensional lattice in R1.
Cool. And Z[i] (the ring of integers in Q(i)) is a nice, orderly,
two-dimensional lattice in C. Which is cool.

But ... Z[
√

2] is isomorphic to Z2 just like Z[i] is. (As additive
groups! They are very different rings!) And yet, Z[

√
2] is all

scrunched up inside R1, instead of respectfully spread out over
R2. Something ain’t right.

The purpose of this section is to explain how you can view
OK ∼= Zd as a nice, respectable lattice in Rd, if you just look at
it the right way.

To start with, we make a definition. I mean, because of
course.

Definition 4.1. A lattice in Rd is an additive subgroup that is
isomorphic to Zd and spans Rd.

In particular, notice that if Λ is a lattice in Rd, then a basis
for Λ is a basis for Rd, and the elements of Λ are just the linear
combinations of that basis, with integer coefficients.

So, let’s say that K is a number field of degree d over Q.
Then there are exactly d homomorphisms φ1, . . . , φd from K to
C. For some of them, the image of φj is contained in R – we’ll

15



call those real embeddings, and rearrange the φj so that the real
embeddings are φ1, . . . , φr. (Recall that a homomorphism from
a field to any other ring is injective.)

The rest of the φj – called complex embeddings – are ho-
momorphisms from K to C whose image is not contained in
R. That means that φj and its complex conjugate (namely, the
homomorphism you get by composing φj with complex conju-
gation) are different homomorphisms, and so the conjugate φj
must be somewhere else in the list of φj. Let’s pair those up, so
that each embedding φj for j > r is either right before or right
after its complex conjugate.

By stringing together all these homomorphisms into one big
vector, we get an embedding of K into Cd.

Definition 4.2. Let K be a number field of degree d over Q, and
let φ1, . . . , φr be its real embeddings and φr+1, . . . , φd its complex
embeddings. The Minkowski map of K is the embedding

ΦK(x) = (φ1(x), . . . , φr(x), φr+1(x), . . . , φd(x))

of K into Cd.

But ... we wanted an embedding of K into Rd, not Cd. Luck-
ily, there is a nifty way around this.

For φ1. . . . , φr, the fix is easy: those embeddings are to R
anyway, so we can just forget about the rest of C.

For φr+1, . . . , φd, we know that they’re paired up by complex
conjugates. So if x = (x1, . . . , xr, xr+1, . . . , xd) is a point in the
image of ΦK , we know that, for example, xr+1 = xr+2. This is
two real linear relations between the coordinates of x for each
pair of complex embeddings.
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So, to sum up, we have just realised that the image of ΦK is
contained in the following real linear subspace of Cd:

Im(x1) = 0, . . . , Im(xr) = 0

Re(xr+1) = Re(xr+2), . . . ,Re(xd−1) = Re(xd)

Im(xr+1) = −Im(xr+2), . . . , Im(xd−1) = −Im(xd)

That’s d real linear relations on our vector space of 2d real
dimensions. We have just successfully embedded K into a d-
dimensional real vector space, namely, the one described by
those equations above. This space is called Minkowski space,
and we’ll call it VK . Just to warn you, though, there are other
people out there who define Minkowski space slightly differently
(or completely differently, if they’re talking about the Minkowski
space in differential geometry). We will ignore such people, but
I figured I’d warn you about them in case any of them asks you
for money.

The most important next step is to prove that the image
ΦK(OK) of OK is a lattice in VK .

The next step is to figure out the image of OK under ΦK ,
and prove that it’s a lattice.

Theorem 4.3. The image ΦK(OK) of OK under the Minkowski
map ΦK is a lattice in VK.

Proof: Let {x1, . . . , xd} be a basis of OK over Z. All we need
to do is show that {ΦK(x1), . . . ,ΦK(xd)} is a basis of VK over
R.

To do that, all we need to do is show that {ΦK(x1), . . . ,ΦK(xd)}
is linearly independent over C. You all remember first year lin-
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ear algebra – let’s make a matrix!

B =

 φ1(x1) . . . φ1(xd)
...

...
φd(x1) . . . φd(xd)


The columns of the matrix B are exactly the vectors ΦK(xi).

So, assume that there was some linear dependence relation
between the rows of B. Then there would be complex numbers
a1, . . . , ad such that for each i, we have

a1φ1(xi) + . . .+ adφd(xi) = 0

If α = b1x1 + . . .+ bdxd is any element of K, then we must also
have

a1φ1(α) + . . .+ adφd(α) = 0

by the linearity of the φi. This means that the functions φ1, . . . , φd
are linearly dependent, as homomorphisms from K to C.

This turns out to be famously impossible, by a theorem of
Dirichlet:

Theorem 4.4. Let f1, . . . , fn be distinct homomorphisms from
an abelian group G to the multiplicative group F ∗ of a field F .
Then f1, . . . , fn are linearly independent over F .

For the proof of this theorem, see the algebra section.

But if the vectors ΦK(xi) are linearly independent over C,
then they are certainly linearly independent over R. ♣

Let’s look at an example of this. In the case of Q, Minkowski
space is just the real line, and Z is a beautiful one-dimensional
lattice there.
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For an imaginary quadratic extension like Q(i), Minkowski
space is just C, and the ring of integers Z[i] is a beautiful two-
dimensional lattice, just like we want. Except ... not quite.
In fact, Q(i) embeds in a slightly weird two-dimensional real
subspace of C2, namely x1 = x2. This matters almost not at
all, except that the basis vectors 1 and i for Z[i] over Z map to
(1, 1) and (i,−i), which have lengths

√
2 (instead of 1, as you

would expect). This turns out to be really important later. But
for now, don’t worry about it too much.

More interesting is the case of a real quadratic extension, like
Q(
√

2). Its ring of integers is Z[
√

2], as we saw in the section
defining algebraic integer in the first place.

How does Z[
√

2] embed in Minkowski space VK ∼= R2? The
two embeddings of Q(

√
2) in R are φ1(a + b

√
2) = a + b

√
2,

and φ2(a + b
√

2) = a − b
√

2. So we have the following picture
(t =

√
2):
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So Z[
√

2] becomes a rectangular lattice in Minkowski space,
tilted at an angle of 45◦ with respect to the coordinate axes, and
side lengths

√
2 and 2.

5 Discriminants

This section delves a little deeper into the geometry of Minkowski
space. Why, for example, is Z[i] a weird lattice with squares of
side length

√
2, instead of a perfectly simple lattice with unit
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squares?

Definition 5.1. Let {v1, . . . , vn} be a subset of a complex inner
product space V . Define the matrix A whose columns are the
coordinate vectors of {v1, . . . , vn} with respect to some unitary
basis of V . The discriminant of {v1, . . . , vn} is defined to be the
square of the determinant of A:

disc(v1, . . . , vn) = (det(A))2

If this matrix is not square, then the discriminant of {v1, . . . , vn}
is defined to be zero.

Definition 5.2. The discriminant of a lattice Λ in Minkowski
space VK is defined to be the discriminant of any basis of Λ over
Z. In particular, the discriminant of the ring of integers of a
number field K is the discriminant of a basis {x1, . . . , xd} for OK
over Z, considered as a subset of Minkowski space VK ⊂ Cd. The
discriminant of a number field is defined to be the discriminant
of its ring of integers.

It looks like this depends on the choice of unitary basis of
OK that you choose there, but it really doesn’t. If you pick
a different unitary basis, then you change the discriminant by
multiplying the determinant of A by the determinant of the
change of basis matrix between the two unitary bases. But that
matrix is unitary with integer entries, and so its determinant is
±1. Specifically:

Theorem 5.3. Let K be a number field, and let {x1, . . . , xd}
and {y1, . . . , yd} be bases for the same lattice Λ ⊂ VK over Z.
Then

disc(x1, . . . , xd) = disc(y1, . . . , yd)
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Proof: The two discriminants differ by multiplication by the
square of the determinant of the linear transformation T satis-
fying T (xi) = yi. Since the xi are a Z-basis for OK , each yi is
a Z-linear combination of the xi, so the linear transformation T
has coefficients in Z, and its determinant is also in Z. Similarly,
the inverse of T also has a determinant in Z. Thus, the deter-
minant of T must be a unit in Z – namely, ±1 – so its square is
1, and the two discriminants are equal. ♣

Notice, by the way, that despite that squaring thing, the dis-
criminant of a number field can still be negative! This is because
complex numbers can get involved. Take Q(i), for example. Its
discriminant is computed as follows, using the basis {1, i} for
Z[i] over Z:

disc(Q(i)) =

(
det

(
1 i
1 −i

))2

= −4

(The unitary basis we chose for C2 was the basis {(1, 0), (0, 1)}.)

Whenever you see a new definition in mathematics, the first
question you should ask is “Why would you define that?” And
because you are all responsible mathematicians, I will presume
that you have just asked this question, and so I should answer
it.

The discriminant is an isomorphism invariant of the number
field. That is, if two number fields are isomorphic, then they
must have the same discriminant, because they’ll have isomor-
phic rings of integers, which will have identical discriminants.
(Any isomorphism of number fields must fix Q pointwise, and
so will fix Z. The isomorphism will therefore restrict to an iso-
morphism of the rings of integers, and thus will map a basis of
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one to a basis of the other. The discriminants will therefore be
the same.)

In other words, the discriminant “discriminates” between num-
ber fields. (See? Those old-timers in the nineteenth century did
a few things right, turns out.)

For example, how would you show that Q(
√

3) is not isomor-
phic to Q(

√
5)? You can do this with elementary techniques,

but it’s kind of annoying. But the discriminant of Q(
√

3) is 12,
and the discriminant of Q(

√
5) is 5, so they can’t be isomorphic.

Boom.

This brings up the question of how to compute the discrim-
inant of a number field? I mean, that mysterious unitary basis
thing sounds a little scary. Luckily, there’s a shortcut.

Theorem 5.4. Let K be a number field, and let {v1, . . . , vn} be
a subset of K. Then the discriminant of {v1, . . . , vn} is given by
the following determinant:

det

 TrK/Q(v21) TrK/Q(v1v2) . . . TrK/Q(v1vd)
...

...
...

TrK/Q(vdv1) TrK/Q(vdv2) . . . TrK/Q(v2d)


where the determinant is understood to be zero if the matrix is
not square.

Proof: Once you realise that 〈x, y〉 = TrK/Q(xy) is a nondegen-
erate symmetric bilinear pairing on MK , this is just a standard
fact from linear algebra. You can find the proof in the algebra
section. ♣

There’s a nice relationship between the discriminant of a lat-
tice and the discriminant of a finite index sublattice.
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Theorem 5.5. Let K be a number field, and let Λ be a lattice
in VK. If Γ ⊂ Λ is a sublattice of finite index n, then

disc(Γ) = n2disc(Λ)

Proof: The proof is almost disappointingly easy. Let T : VK →
VK be the linear transformation that takes a basis of Λ to a basis
of Γ. Since the index of Γ in Λ is T , it immediately follows that

det(Γ)2 = det(T )2 det(Λ)2

where by det(lattice), I mean the determinant of some basis of
that lattice. (The squares eliminate the indeterminacy of which
basis you pick.)

But we know that | det(T )| = n, so the desired result follows.
(If you don’t know this yet, check out the geometry section.) ♣

You may be wondering when you will see the explanation for
that silly-looking

√
2 when we embed Z[i] in Minkowski space.

Worry not – the answer is coming. Just, y’know, not yet.

Discriminants also let us define the norm of an ideal in OK .

Definition 5.6. Let K be a number field with ring of integers
OK, and let I = v1Z+ . . .+ vnZ be a lattice in Minkowski space
VK. (A nonzero ideal of OK is such a lattice.) We define

NK/Q(I) =

(
disc(v1, . . . , vn)

disc(K)

)1/2

=

∣∣∣∣ det(v1| . . . |vn)
det(x1| . . . |xn)

∣∣∣∣
where {x1, . . . , xn} is (the image in VK of) a basis of OK over
Z.
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The notation suggests that there might be some more general
norm, for a general extension L/K. There is. But I’m not going
to tell you what it is right now. And in fact, I’m mostly going
to write just N(I), without the subscript. So there.

Theorem 5.7. Let K be a number field, OK its ring of integers.
Let I be a lattice in VK, and let a ∈ K be nonzero. Then

N(aI) = |N(a)|N(I)

Proof: Let {v1, . . . , vn} be a Z-basis of I. Then N(aI) is the ab-
solute value of the determinant of the basis {av1, . . . , avn}, which
is the image of the basis {v1, . . . , vn} under the linear transfor-
mation v 7→ av. The new basis therefore has determinant with
absolute value N(a)N(I). ♣

Corollary 5.8. Let K be a number field, OK its ring of in-
tegers. Let a ∈ K, a 6= 0, I = aOK = ax1Z + . . . + axnZ,
where {x1, . . . , xn} is a basis of OK over Z. (This is called the
fractional ideal of K generated by a.) Then

|N(a)| = N(aOK)

Proof: Both |N(a)| and N(I) are the absolute value of the
determinant of the linear transformation T (v) = av from K to
K as a Q-vector space. ♣

Theorem 5.9. Let K be a number field with ring of integers
OK. Let I be nonzero integral ideal of OK. Then OK/I has
N(I) elements.

Proof: We already know that OK is isomorphic to Zd, and that
I is a subgroup also isomorphic to Zd. The norm N(I) is the
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absolute value of the determinant of the linear transformation
mapping the lattice OK to the lattice I. That means that the
quotient OK/I has N(I) elements, as desired. (For a proof of
that last step, see the geometry section.) ♣

But discriminants can do much more. For example, if you
have a number field K, and you want to compute the ring of
integers, how would you do it?

Well, quite often, you find an algebraic integer in K, adjoin it
to Z, and cross your fingers that you’ve found all of OK . Which,
y’know, sometimes works. But not always.

But if you did make a guess that some ring A was the ring of
integers of K, how would you check? Well, we know that

disc(A) = n2disc(OK)

so if disc(A) is squarefree, then it must be equal to disc(OK),
and so A = OK . That’s often not enough, so we will develop
more tricks later.

There’s a useful shortcut for computing the discriminant of
the ring Z[α], if α is an algebraic integer.

Theorem 5.10. Let K be a number field with ring of integers
OK, and let α ∈ OK. Let m(x) be the monic minimal polynomial
of α over Q. Then

disc(Z[α]) = disc(m(x))

At this point, it might be useful to know that the discriminant
of a polynomial m(x) is equal to

disc(m(x)) =
∏
i<j

(ri − rj)2
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where r1, . . . , rn are the roots of m(x), with multiplicity. So, in
particular, the discriminant of a polynomial is zero if and only
if it has repeated roots.

Proof: A nice basis for Z[α] over Z is the set {1, α, . . . , αd−1}.
Let’s use this to compute the discriminant:

disc(Z[α]) = det


1 . . . 1

σ1(α) . . . σn(α)
...

...
σ1(α)d−1 . . . σn(α)d−1


2

where σ1, . . . , σn are the embeddings of K in C. (This includes
the real embeddings, by the way – a real embedding of K is still
an embedding of K in C. It’s just not a complex embedding.)

This is a very famous determinant, named after the famous
French person Alexandre-Théophile Vandermonde.

OK, fine. The French person is no longer famous. But his
determinant is, and its square equals:

disc(Z[α]) =
∏
i<j

(σi(α)− σj(α))2

But this is exactly the discriminant of m(x), because the σi(α)
are exactly the roots of m(x). ♣

Computing the discriminant of a polynomial looks yucky, be-
cause it looks like it involves computing the roots. But the dis-
criminant is a symmetric function of the roots, so it’s actually
a function of the coefficients of the polynomial, which is much
nicer.

Well. Somewhat nicer. The function of the coefficients is
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no picnic. There are some general formulas which enable one
to compute the discriminant of a polynomial, but we’ll stick to
small degrees. Degree 0 and 1 polynomials have silly discrimi-
nants that you could calculate from scratch if you ever needed
to. Here are some formulas in degrees 2 and 3:

disc(x2 + ax+ b) = a2 − 4b

disc(x3 + ax+ b) = −4a3 − 27b2

You might be lamenting the absence of a quadratic term in that
second formula there. Well, despair not: a simple change of
variables converts any cubic into that form. Let x = X − (a/3).
Then:

x3 + ax2 + b+ c = (X − a/3)3 + a(X − a/3)2 + b(X − a/3) + c

= X3 +

(
b− a2

3

)
X +

(
2a3

27
− ab

3
+ c

)
So if you have a cubic polynomial with a quadratic term in it,
and you want to figure out its discriminant, make that substitu-
tion, compute the discriminant, and then undo the substitution.

Anyway. Let’s do an example of computing the ring of inte-
gers. Let K = Q(α), where α is a root of x3 + x+ 1.

We’re going to guess that OK = Z[α]. The discriminant of
Z[α] is equal to the discriminant of x3 +x+1, which is −4(1)3−
27(a)2 = −31. This is a squarefree integer, so our guess was
right! We have OK = Z[α].

But what happens if our guess is wrong? Or if it’s right, but
the discriminant isn’t squarefree?

I’ll tell you when you’re older.
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6 Ideals

Now we know what the ring of integers looks like as an additive
group, and have a geometric picture of what that looks like. The
next question is: what are the ideals of it like?

Let A = OK be the ring of integers in a number field K, and
let I be a nonzero ideal. (I think we all know what the zero
ideal looks like.) We already know that A/I is a finite ring. So
what are finite rings like?

Turns out there’s a whole section devoted to that very ques-
tion. Go check it out.

Now that you’ve read the finite rings section, you know that
A/I is isomorphic to A/Pm1

1 × . . . × A/Pmr
r , where the Pi are

the prime ideals of A that contain I.

This suggests that we should start by figuring out the prime
ideals of A. The Chinese Remainder Theorem will then take us
to the case of a general ideal.

So what are the prime ideals of A = OK? Let’s pick one, call
it P , and see what it looks like. It’s easy to check that P ∩Z is
a prime ideal of Z. (In fact, Z/(P ∩ Z) embeds naturally in the
domain A/P .)

But we know what the prime ideals of Z are – they’re the
ideals generated by prime numbers! In particular, we see that
our prime ideal P of A contains a prime number p ∈ Z. In this
case, we say that P lies over the ideal (p) of Z.

We can also see that A/P is a module over Z/pZ. And it’s a
field, because P is a maximal ideal. So A/P is a finite field of
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characteristic p ... and we know what those fields look like! (If
you don’t, check out the section on finite fields.)

But which finite field is it? Well, it’s hard to say, because
it depends. We do know, at least, that A/P is a finite field of
degree at most [K : Q] over Z/pZ, because generators for A as a
Z-module will still be generators for A/P as a Z/(P∩Z)-module.
Let’s do an example and see what it looks like.

We already know that Z[
√

2] is the ring of integers in the field
Q(
√

2). We know that every prime integer p ∈ Z is a non-unit
in Z[

√
2], because 1/p is not an algebraic integer, no matter how

much you extend the base field. Let’s pick p = 5, because I like
5. What are the prime ideals of Z[

√
2] that contain 5? They

correspond to the prime ideals of the quotient ring Z[
√

2]/(5),
so let’s compute with that:

Z[
√

2]/(5) = ∼=
(
Z[x]/(x2 − 2)

)
/(5)

∼= Z[x]/(x2 − 2, 5)
∼= (Z[x]/(5)) /(x2 − 2)
∼= F5[x]/(x2 − 2)

[If the preceding set of deductions freaks you out, let me set
your mind at ease. The first isomorphism is clear, I hope. Then
next one is the Third Isomorphism Theorem for rings. So is the
next one. And the last one is, again, clear.

I mean, really, this is all the Universal Property of Quotients
at work. The isomorphisms above are all pretty easy to guess,
and you just check that they work. On homework assignments,
feel free to be as glib as I just was with deductions like these.]

The polynomial x2 − 2 is irreducible modulo 5. (It has no
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roots, for example.) So Z[
√

2]/(5) is a domain! A field, in fact
– it’s F25! In particular, the ideal (5) is prime in Z[

√
2], and it

is, naturally, the only (proper) ideal of Z[
√

2] that contains 5.

Let’s do p = 7 next. We compute similarly:

Z[
√

2]/(7) = ∼=
(
Z[x]/(x2 − 2)

)
/(7)

∼= Z[x]/(x2 − 2, 7)
∼= (Z[x]/(7)) /(x2 − 2)
∼= F7[x]/(x2 − 2)
∼= (F7[x]/(x− 3))× (F7[x]/(x+ 3))
∼= F7 × F7

This calculation is exactly the same as the previous one, except
with 7 instead of 5 ... until step 5, where there is more work
to do, because x2 − 2 is reducible modulo 7. This factorisation
induces an isomorphism from the Chinese Remainder Theorem,
which then simplifies as above.

In particular, there are two prime ideals of Z[
√

7] that contain
the element 7. They are the ideals (

√
2− 3, 7) and (

√
2 + 3, 7).

How did I figure out that those were the two ideals? Well,
the prime ideals of Z[

√
2] containing 7 correspond to the prime

ideals of the ring F7 × F7, by the string of isomorphisms on the
previous page. The ring F7 × F7 has exactly two prime ideals:
the one generated by (1, 0), and the one generated by (0, 1).
Let’s follow those ideals back through the isomorphisms.

We get

((1, 0)) 7→ (1 (mod x− 3), 0 (mod x+ 3))

On the left side, we have the ideal of F7 × F7 generated by
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the ordered pair (1, 0). On the right, we have the ideal of
(F7[x]/(x− 3))× (F7[x]/(x+ 3)) generated by, again, (1, 0).

Next up:
7→ (x+ 3) (mod x2 − 2)

This step is the trickiest. We need an ideal that is the unit ideal
modulo (x − 3), but the zero ideal modulo (x + 3). The two
ideals are coprime (otherwise the Chinese Remainder Theorem
wouldn’t apply!), so the ideal (x+ 3) must do the trick.

Then our ideal turns into:

7→ ((x+ 3) (mod 7)) (mod x2 − 2)

which is the ideal of Z[x] generated by (x+ 3), reduced mod (7)
and then mod (x2 − 2).

Another step back:

7→ (x+ 3) (mod x2 − 2, 7)

Same ideal, except now we’re taking the quotient by (7) and
(x2 − 2) at the same time.

Next:

7→
(
(x+ 3) (mod x2 − 2)

)
(mod 7)

Which is the same ideal again, except we take the quotient by
(x2 − 2) first, then the quotient by (7).

Finally:
7→ (
√

2 + 3) (mod 7)

because the first isomorphism maps
√

2 to x.
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So the ideal corresponding to (1, 0) is just the ideal (
√

2+3, 7),
as advertised. There is a very similar calculation for the other
ideal, which I will leave to you.

Notice that in this case, we have

(7) = (
√

2− 3, 7) ∩ (
√

2 + 3, 7) = (
√

2− 3, 7)(
√

2 + 3, 7)

In other words, we have “factored” the ideal (7) into a product
of prime ideals. This is what literary types call foreshadowing.

One last example. What about p = 2? Seems like that might
be special and weird ... and it is. Let’s do it.

Z[
√

2]/(2) = ∼=
(
Z[x]/(x2 − 2)

)
/(2)

∼= Z[x]/(x2 − 2, 2)
∼= (Z[x]/(2)) /(x2 − 2)
∼= F2[x]/(x2 − 2)
∼= F2[x]/(x2)

Yup, special and weird. The polynomial x2 is not irreducible
modulo 2, but the Chinese Remainder Theorem – for all its
cleverness – cannot help us with it, because its roots are rudely
not distinct. Nevertheless, we are stuck with the task of deter-
mining the prime ideals of this ring, so we must work harder.

The ring F2[x]/(x2) has four elements, because it’s a two-
dimensional vector space over F2. These elements are repre-
sented by 0, 1, x, and x+1. Let P be a prime ideal of F2[x]/(x2).
Then P certainly contains 0, and certainly does not contain 1.

P must contain something more than just 0, though, because
F2[x]/(x2) is not a domain. (To see this, notice that x 6= 0,
but x2 = 0.) If P contains x + 1, then P must also contain
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(x+ 1)2 = x2 + 2x+ 1 = 1, which is bad. So P must be the set
{0, x}, better known as the ideal (x).

[In real life, when the numbers are larger than 2, you use
the fact that prime ideals of F [x]/(g(x)) are exactly the ideals
(q(x)), where q(x) is an irreducible factor of g(x) in F [x]. This
theorem is proven in the algebra module.]

So what are the prime ideals of Z[
√

2] that contain 2? They
correspond to the prime ideals of F2[x]/(x2), which is to say that
there is only one ideal of Z[

√
2] containing 2, and it is the ideal

(
√

2). In this case, we again have a factorisation (2) = (
√

2)2 of
the ideal (2) into a product of prime ideals.

It’s not too hard to parlay these techniques into a general
theorem.

Theorem 6.1. Let K be a number field, and let α ∈ OK. Let
m(x) be the monic minimal polynomial of α over Q, and let
p ∈ Z be prime. Then the prime ideals of Z[α] containing p are
exactly the ideals (q(α), p), where q(x) is an irreducible factor of
m(x) modulo p.

Moreover, if f(x) = q1(x)a1 . . . qr(x)ar is a factorisation of
f(x) modulo p into irreducible factors, then there is a corre-
sponding ideal factorisation (p) = (q1(α), p)a1 . . . (qr(α), p)ar.

Proof: First, we compute:

Z[α]/(p) = ∼= (Z[x]/(m(x))) /(p)
∼= Z[x]/(m(x), p)
∼= (Z[x]/(p)) /(m(x))
∼= Fp[x]/(m(x))
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This makes it plain that the prime ideals of Z[α] that contain
p correspond exactly to the prime ideals of Fp[x]/(m(x)), which
are the ideals generated by the irreducible factors of m(x) mod-
ulo p. Tracing back these ideals through the chain of isomor-
phisms gives the desired result.

The factorisation of ideals follows immediately:

(p) = (q1(α))a1 ∩ . . . ∩ (qr(α))ar = (q1(α))a1 . . . (qr(α))ar

because the ideals are pairwise coprime. ♣

But the next question is: what happens if the ring of integers
is not of the form Z[α]? Stay tuned.

7 Factorisation of algebraic integers

Back in the good old days, when integers were real integers, you
could take an integer and factor it into primes. Well. Unless it
was zero. Can we still do that now, with our modern notion of
algebraic integers?

No.

Before I explain why not, though, let’s pause a moment to
answer the question “Why would you even want to factor an
integer into primes?” And please don’t say “so I can eavesdrop
on my roommate’s cell phone conversations”.

For a pure mathematician – a number theorist – factorisation
allows the simplification of multiplicative problems. Want to
work modulo n, but n is big? Just factor n into primes n =
pa11 . . . p

ar
r , and then the Chinese Remainder Theorem lets you
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calculate modulo each paii separately, which is much easier for a
variety of reasons.

There are other benefits of the factorisation, but most of them
– yes, even the eavesdropping thing which you should never do –
boil down to being able to use the Chinese Remainder Theorem
to reduce a calculation modulo n to a calculation modulo the
power of a prime.

As you can see from the general Chinese Remainder Theorem
in the algebra section, it’s really a theorem about ideals, not
numbers. But it really does depend on the ideals being coprime.
So what we really want to do is to factor n into a product of
prime ideals.

In Z, a prime ideal is the same thing as an ideal generated
by a prime number. This is not always the same in OK .

For example, consider the ideal P = (2,
√

10) of Z[
√

10].
The quotient Z[

√
10]/P has two elements, which means it’s

isomorphic to the field F2, so P is a prime ideal. But it’s
not principal, because if it were, there would be some element
a+ b

√
10 ∈ Z[

√
10] of norm ±2. But N(a+ b

√
10) = a2 − 10b2.

Since ±2 are not squares modulo 5, the equations a2−10b2 = ±2
have no solutions modulo 5, and therefore no solutions in inte-
gers.

But as we were saying, we don’t really care if we can factor
algebraic integers into a product of prime algebraic integers. We
care if we can factor algebraic integers into a product of prime
ideals. And that we can do.

Here’s the general idea. Back in the good old days, if we
wanted to factor an integer n, we’d find a prime factor p, com-
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pute n/p, and start over with n/p. Since n/p is simpler than
n, this process eventually stops, and we’re left with a prime
factorisation of n.

So now, we’ll start with an ideal I of OK . (Hey, if we’re
factoring algebraic integers into products of ideals, we can factor
the ideals too.) We’ll find a prime ideal P that’s a factor of I
(never mind what that means for now), then divide I by P
(again, suspend your disbelief for the moment), and start over
with IP−1. Since IP−1 is simpler than I (patience!), this process
eventually stops, and we’re left with a prime factorisation of I.

There are lots of murky steps in that plan. Let’s elucidate
them, starting with the “divide by an ideal” thing. In order to
divide ideals, we need to be a bit broad-minded about what the
answer might have to be, in the same way that when we started
dividing integers back in the day, we needed to be broad-minded
about allowing fractions as answers.

Definition 7.1. Let K be a number field, OK its ring of in-
tegers. A fractional ideal of K is a nonzero, finitely generated
OK-submodule of K.

A fractional ideal is designed to be the analogue of rational
numbers, except for ideals. The idea is that, someday, a frac-
tional ideal will just be a quotient of nonzero ideals of OK . We’ll
get there soon.

The following definition is sometimes useful to avoid confu-
sion.

Definition 7.2. Let K be a number field with ring of integers
OK. An integral ideal of OK is a fractional ideal of OK that is
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contained in OK. In other words, an integral ideal of OK is just
an ideal of OK, in the traditional sense.

Some examples are in order first, though. For starters, let
α ∈ K be any nonzero element. Then αOK is called the principal
fractional ideal generated by α, and it’s just the integer multiples
of α. So, for example, the fractional ideal (1/2) of Z is the set
of integers and half-integers: {0,±(1/2),±1,±(3/2), . . .}.

In general, a finitely generated OK-module is just a module of
the form a1OK+ . . .+arOK . (Note that there might be relations
amongst the ai!) A fractional ideal is just one of those, except
that the ai are all in K. (And at least one of them isn’t zero.)

So, for example, any (nonzero) ideal of OK is also a fractional
ideal ofOK , becauseOK is noetherian, meaning that all its ideals
are finitely generated.

But there are lots more fractional ideals than that. For ex-
ample, if K = Q(

√
10), then the set I = (1/2)OK + (

√
10/4)OK

is also a fractional ideal of OK . This is not, in any sense, a “two-
dimensional module”, because 1/2 and

√
10/4 are “linearly de-

pendent over OK”: (2
√

10)(1/2) + (−4)
√

10 = 0. But it’s also
not a “one-dimensional module” (except it secretly sort of is),
because there is no single element of I that generates the entire
module as an OK-module. (This is because the fractional ideal
4I is just the ideal (2,

√
10) of OK , which we already showed

was not principal. If I were principal – generated by a single
element – then we could multiply its generator by 4 and get a
generator for (2,

√
10).)

Ok. Now that we have defined the things that can be the
outcome of division by ideals, let’s define the division.
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Definition 7.3. Let K be a number field with ring of integers
OK, and let I and J be two fractional ideals of OK. We define
the quotient of I by J to be the set

(I : J) = {a ∈ K | aJ ⊂ I}

The idea here is to mimic division of plain old integers from
kindergarten. What’s (6) divided by (3)? It’s all the numbers n
with the property that n(3) ⊂ (6). (Remember that (n) ⊂ (m) if
and only if m | n. Big ideals go with small generators: there are
way more multiples of 2 than multiples of 68.) If you start with
a multiple of 3 and multiply it by 2, you always get a multiple
of 6. And if n(3k) is always a multiple of 6, no matter what k
is, then n must surely be a multiple of 2.

Or, to put it more succinctly: (n : m) = (n/m).

In general, it’s useful to note that if α ∈ K is any nonzero
element, then (OK : αOK) is generated as an OK-module by
1/α. In other words, (OK : αOK) = (1/α)OK .

Theorem 7.4. Let K be a number field with ring of integers
OK. Let α ∈ K be any nonzero element. Then (OK : αOK) =
(1/α)OK.

Proof: Firstly, ((1/α)OK) (αOK) = OK , so (1/α)OK ⊂ (OK :
αOK). And conversely, if x ∈ (OK : αOK), then in particular
xα(1) ∈ OK , and so x ∈ (1/α)OK . ♣

It’s also useful to note that fractional ideals have denomina-
tors, in the following sense.

Theorem 7.5. Let K be a number field with ring of integers
OK. Let I be a fractional ideal of OK. Then there is some
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nonzero α ∈ OK such that αI ⊂ OK – in other words, αI is
an integral ideal of OK. In other other words, I = 1

αJ for some
integral ideal J of OK.

Proof: Write I = a1OK + . . . + anOK for ai ∈ K. For each
i, we can write ai = xi/yi for xi and yi in OK . But then if we
define y = y1 . . . yn, we see that yI ⊂ OK , because the product
y clears all the denominators of the ai. ♣

This means, by the way, that fractional ideals are all isomor-
phic to Zn as additive groups, just like integral ideals. Nonzero
integral ideals, I mean. Because the function f(x) = ax is an
isomorphism of Z-modules (abelian groups!) from I to aI. If
I is isomorphic to Zd as an additive group, then so is aI. In
particular, we have:

Theorem 7.6. Let K be a number field with ring of integers OK.
Every fractional ideal of OK is a lattice in Minkowski space VK.

But there’s a basic issue we haven’t addressed yet: what if
(I : J) isn’t a fractional ideal at all?

Never gonna happen.

Theorem 7.7. Let K be a number field with ring of integers
OK, and let I and J be fractional ideals of OK. Then (I : J) is
a fractional ideal of OK.

Proof: First, notice that if a and b are elements of (I : J),
then certainly a ± b are also elements of (I : J), just from the
definition. And if r ∈ OK and a ∈ (I : J), then ra ∈ (I : J),
because rJ ⊂ J . So (I : J) is an OK-module.

All that’s left to show is that (I : J) is finitely generated. But
Theorem 7.5 promises us a nonzero a ∈ OK such that aI ⊂ OK ,

40



and a nonzero b such that bJ ⊂ OK . (This is good, because we
know that integral ideals are finitely generated because OK is
noetherian.)

It’s not hard to check that (abI : abJ) = (I : J), and (abI :
abJ) ⊂ (OK : abJ) because abI ⊂ OK .

But now we can pick any nonzero α ∈ J , so that abαOK ⊂
abJ , giving us (I : J) = (abI : abJ) ⊂ (OK : abJ) ⊂ (OK :
abαOK). That last fractional ideal is generated by 1/(abα) (by
Theorem 7.4) – it’s finitely generated! Since OK is a noethe-
rian ring, this means that the OK-submodule (I : J) of (OK :
abαOK) is also finitely generated. So we’re done. ♣

All looks good! But there is a snake in the garden.

Let I be the ideal (2, 1 +
√

5) of A = Z[
√

5]. Let’s compute
(1 : I), where by “1” I mean the unit ideal.

The property aI ⊂ A is the same as the property a(2) ∈ A
and a(1 +

√
5) ∈ A. If we write a = x+ y

√
5, this is the same as

x = n/2

y = m/2

x+ 5y ∈ Z
x+ y ∈ Z

for regular old integers m and n in Z. This, in turn, is the same
as m ≡ n (mod 2). So we get:

(1 : I) =

{
n+m

√
5

2
| n ≡ m (mod 2)

}

=

{
n

(
1 +
√

5

2

)
+ k
√

5

}
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where k = (m− n)/2 ∈ Z. So, in summary

(1 : I) =

(
1 +
√

5

2

)
Z +
√

5Z =

(
1 +
√

5

2

)
OK +

√
5OK

where this last equality is because (A : I) is an OK-module, so
it’s closed under multiplication by OK .

So far, things seem all right. But wait:

I(1 : I) =
(

2OK + (1 +
√

5)OK
)(1 +

√
5

2
OK +

√
5OK

)
= (1 +

√
5)OK + 2

√
5OK + (3 +

√
5)OK + (5 +

√
5)OK

= I

This last equality may not be obvious, but certainly each of the
generators in the second-last line lie in I – which proves one
inclusion – and each of 2 and 1+

√
5 can be obtained by integer-

linear combinations of 1 +
√

5 and 2
√

5 and 3 +
√

5 – which
proves the other inclusion.

So. I divided by I equals I. That’s not the way division is
supposed to work. Worse, it’s a huge problem for our plan: if I
divided by I isn’t simpler than I, then our procedure to factor
I might never end.

But the keen-eyed amongst you will have noticed that Z[
√

5]
is not the ring of integers of Q(

√
5)! Which is, when it comes

down to it, the whole problem.

Theorem 7.8. Let K be a number field with ring of integers OK.
Then for every prime ideal P of OK, we have P (OK : P ) = OK.

Proof: First, notice that P (OK : P ) is a fractional ideal of OK
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that is contained in OK . It also contains P , because 1 ∈ (OK :
P ). So it must either be P or OK .

If P (OK : P ) = OK , then we’re done. So let’s assume that
P (OK : P ) = P . Then we have P (OK : P )(OK : P ) = P (OK :
P ) = P ⊂ (OK : P ). In particular, (OK : P ) is closed under
multiplication! Since it’s also closed under addition and sub-
traction, and contains 0 and 1, it’s a ring! Weird!!

[WARNING: In real life, (OK : P ) is never actually a ring,
because in real life, our assumption P (OK : P ) = P never ac-
tually happens. We are all Alice in Wonderland right now, and
strange and marvelous things are happening.]

So R = (OK : P ) is a ring. And R contains OK , because P
is an ideal. And R is a finitely generated OK-module, because
it’s a fractional ideal of OK . So R is integral over OK .

But OK is integrally closed! Which means that R = (OK :
P ) = OK . Which is a problem, because:

Lemma 7.9. Let K be a number field with ring of integers OK.
Let A be a subring of OK with fraction field K, and let I be a
nonzero ideal of A. Then (A : I) 6= A.

Proof: Let P be a maximal ideal of A containing I. Then
(A : P ) ⊂ (A : I), so if we prove the lemma for P , it will
immediately follow for I. In other words, we can safely assume
that I = P is prime.

Choose any nonzero x ∈ P . Since A is a finitely generated
Z-module (it’s a Z-submodule of the finitely generated OK), it’s
a noetherian ring. (Every ideal of A is a finitely generated Z-
module, so a fortiori it’s a finitely generated A-module.) So
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by the last theorem in the algebra section, we know that the
principal ideal (x) contains a finite product of prime ideals of A.
Let’s choose the finite product with the fewest prime ideals in
it, and write P1 . . . Pn ⊂ (x) ⊂ P .

Now, P is a prime ideal, so if a product of ideals is a subset
of P , one of the factors must also be a subset of P . (If none of
them were contained in P , then we could pick from each Pi an
element not in P ... but their product would be in P .) So let’s
say P1 ⊂ P . But P1 is a maximal ideal (the quotient A/P is a
finite domain!), so we have P = P1.

Let J = P2 . . . Pn. (If n = 1 then I = A.) By the minimality
of n, we know that J 6⊂ (x), so we can choose some y ∈ J −
(x). Then we have yP ⊂ (x), but y 6∈ (x), so we deduce that
(y/x)P ⊂ A but y/x 6∈ A. In other words, y/x ∈ (A : P ) − A,
as advertised. ♣

This is a big old contradiction, so our original assumption
that P (OK : P ) = P must be wrong. That only leaves P (OK :
P ) = OK as a possibility. And we’re done. ♣

Theorem 7.8 motivates the following definition.

Definition 7.10. Let A be a domain, I a fractional ideal of A.
Then I is said to be invertible if there is a fractional ideal J of
A with IJ = A. The ideal J is said to be the inverse of I, and
is written I−1.

(Note that the ideal J , if it exists, is unique: if IJ = IJ ′ = A,
then J = JA = JIJ ′ = AJ ′ = J ′.)

So Theorem 7.8 can be rephrased as “prime ideals of OK
are invertible.” In fact, all nonzero ideals of OK are invertible,
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because they’re all products of prime ideals. But we haven’t
proven that yet.

In any case, we’re now ready to execute our plan.

Theorem 7.11. Let K be a number field with ring of integers
OK. Then every nonzero ideal of OK is the product of finitely
many prime ideals. Moreover, this factorisation is unique up to
reordering the factors.

Proof: Let I be an ideal of the ring of integers OK of a num-
ber field K. We want to write I = P1 . . . Pr for prime ideals
P1, . . . , Pr. (Those prime ideals might not all be different – we’re
modern, broad-minded people here.)

First off, I is contained in some nonzero prime ideal P . Con-
sider the fractional ideal IP−1. Since OK ⊂ P−1 = (OK : P ), we
have I ⊂ IP−1, and since I ⊂ P , we have IP−1 ⊂ PP−1 = OK .
So IP−1 is an integral ideal of OK , and not just a fractional one.

If IP−1 = OK , then we’re done: I = P ! Otherwise, we can
restart this whole process with I1 = IP−1, and end up with
the integral ideal I2 = IP−11 P−12 . And so on, and so on ...
Ik+1 = IkP

−1
k+1 = IP−11 . . . P−1k+1 for each k.

If at any point we have Ik = OK , then we’re done, and I =
P1 . . . Pk. If we don’t ...

... well, if we don’t, then consider the ideal J =
⋃∞
k=1 Ik. The

set J is an ideal, because for any a and b in J , there are Ik and I`
such that a ∈ Ik and b ∈ I`. Picking the bigger of k and ` (and
calling it k), this means that a and b are both in Ik. So their
sum and difference are also in Ik, and therefore in J . Similarly,
if r ∈ OK , then ra ∈ J . So J is an ideal of OK .
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ButOK is noetherian, so J is finitely generated, by a1, . . . , an.
For each ai, there is some Iki that contains it. If m is the biggest
of all the ki, then all the ai are contained in Im. But then J is
contained in Im, so since Im ⊂ J , we get J = Im, and so, for
example, Im+1 = Im.

Think about what that means, though. We have Im = Im+1 =
ImPm+1, which contradicts Nakayama’s Lemma. (See the alge-
bra section for a proof of that.) So the sequence of Ik does even-
tually stop, and so I = P1 . . . Pn is a product of prime ideals, as
desired.

The uniqueness is easy: if P1 . . . Pn = Q1 . . . Qm, then P1 . . . Pn ⊂
Qm, and so since Qm is prime, we get Pi ⊂ Qm for some i. This
means Pi = Qm, so we can divide both sides by Qm (multiply
both sides by Q−1m ) to get a simpler equation. Keep going until
you pair up all the Pi and Qj. (There can’t be any left over at
the end because you’d have a nonempty product of prime ideals
equal to the whole ring, which is manifestly impossible.) ♣

Incidentally, this means that every nonzero ideal of OK is
invertible, because a product of invertible ideals is invertible.
Which is nice.

We saw a bunch of examples of this factorisation thing in the
previous section, on ideals. Remember the cheesy “foreshadow-
ing”, in which we factored (7) into a product of prime ideals?
This section is what that was foreshadowing!

This is what literary types call careful plotting.
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8 Local rings: The ideal norm is multiplica-

tive

Yes, Virginia, it’s true that N(IJ) = N(I)N(J). But it’s sur-
prisingly difficult and interesting to prove it, so we’re devoting
a whole section to it.

Let’s write I = P a1
1 . . . P ar

r and J = Qb1
1 . . . Q

as
s as products of

prime ideals. If none of the Pi and Qj are the same, then the
ideals are coprime, and the Chinese Remainder Theorem rides
to our rescue:

N(IJ) = #(OK/IJ) = #(OK/I) ·#(OK/J) = N(I)N(J)

Sadly, this falls down a bit if I and J are not coprime. But
the Chinese Remainder Theorem can still help. Let’s rewrite
I = P a1

1 . . . P an
n , and J = P b1

1 . . . P bn
n , where we allow the ai and

bi to be zero if some Pi doesn’t happen to turn up in the prime
factorisation of one of I or J . Then we have:

N(I) = #(OK/I) = #(OK/P a1
1 ) . . .#(OK/P an

n )

N(J) = #(OK/J) = #(OK/P b1
1 ) . . .#(OK/P bn

n )

N(IJ) = #(OK/IJ) = #(OK/P a1+b1
1 ) . . .#(OK/P an+bn

n )

So all we need to do is show that for any nonzero prime ideal
P , we have

#(OK/P a+b) = #(OK/P a) ·#(OK/P b)

If P = (π) were a principal ideal, we’d have a path to vic-
tory. Namely, we’d be able to define f : OK/P n → OK/P n+1

by f(x) = πx. (This isn’t a ring homomorphism – just a ho-
momorphism of additive groups.) It’s injective, and its image
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is P/P n+1, so we can count the elements of OK/P n+1 using
OK/P ∼= (OK/P n+1)/(P/P n+1), so thatN(P ) = N(P n+1)/N(P n).
A simple induction, and we’re home and dry!

But sadly, as we have seen, P need not be principal. So
instead, we’re going to embed OK into a bigger ring in which
P generates a principal ideal. Then the idea outlined in the
previous paragraph will be a winner.

At this point, you should go read the section on local rings.
Unless, of course, you already know all about local rings, in
which case you should just forge ahead. If it turns out that you
didn’t know everything you thought about local rings, well, the
local rings section will still be there for you.

So the good news is, it will turn out that the localisation
(OK)P of OK at the prime ideal P is always a DVR. And we
can make our earlier optimistic idea into a reality, using the
localisations.

Theorem 8.1. Let P be an invertible prime ideal of a domain
A. Then the local ring AP is a DVR.

Proof: The local rings section takes care of one part of the
definition of a DVR: AP is noetherian! And localisation takes
care of the “local ring” part. All that’s left is to show that the
maximal ideal PP of AP is principal.

Well, we know that P is an invertible ideal of A, so we have
P−1P = A. That means that there are elements a1, . . . , an ∈ P
and b1, . . . , bn ∈ P−1 = (A : P ) satisfying a1b1 + . . .+ anbn = 1.

Each term aibi ∈ A by definition of (A : P ). If all those terms
aibi were elements of P , then we’d have 1 ∈ P , which we don’t.
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So at least one of them, say a1b1, must be an element of A−P .

This means, however, that a1b1 is a unit in AP ! It will turn
out that this means that PP is generated by a1.

To see this, let x ∈ PP be any element. Then x = a1b1y for
some y ∈ PP , because a1b1 is a unit of AP .

But b1 ∈ (A : P ), and y = u/v for some u ∈ P , so b1y =
(b1u)/v ∈ AP , because b1u ∈ A. This means that x = a1(b1y) ∈
a1AP , so PP = a1AP ! ♣

Great! So if we pass to the localisation, our ideal P becomes
principal. Next, we need to make sure that the quotients work
out the same.

Theorem 8.2. Let A be a domain, and let P be a nonzero prime
ideal of A. Then for any positive integer n ∈ Z, we have

A/P n ∼= AP/P
n
P

Proof: If you want to show that two things are isomorphic,
write down an isomorphism.

Define f : A/P n → AP/P
n
P by f(x + P n) = x + P n

P . It’s
really easy to check that this is a well defined homomorphism.
Ideally, we would write down an inverse homomorphism and
gallop home, but unfortunately that turns out to be a bit of a
pain in the neck. So we’ll show that f is one-to-one and onto.

(“Ideally”. Sorry.)

To show that f is injective, assume that f(x+P n) = 0+P n+1
P .

Then we would have x ∈ P n
P , so x = a/b, where b 6∈ P but

a ∈ P n. Then bx ∈ P n but b 6∈ P . Thus, b and P n are coprime,
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so there exist α and β in A, and y ∈ P n, such that

αb+ βy = 1

Notice that α 6∈ P because y ∈ P n ⊂ P and 1 6∈ P .

We can then compute:

x =
αa

αb
x(1− βy) = αa

x = αa+ βxy

which is in P n since a ∈ P n and y ∈ P n. Thus, if f(x) = 0, then
x = 0, so f is injective.

Now to show that f is surjective. Let a/b ∈ AP , where a, b ∈
A but b 6∈ P . We want to find some x ∈ A such that x + P n

P =
a/b + P n

P . In other words, we want to find x ∈ A such that
x− a/b ∈ P n

P , or equivalently, bx− a ∈ P n.

We know that the ideals (b) and P n are coprime, so there are
α and β in A, and y ∈ P n, such that αb+ βy = 1.

Let x = αa. Then

bx− a = bαa− a
= (1− βy)a− a
= −ayβ

which is an element of P n because y ∈ P n. So f is surjective,
and we’re done. ♣

Finally, we need to show that the quotients work out correctly,
and not just the same.

Theorem 8.3. Let D be a DVR with maximal ideal P , and
assume that D/P is finite. Then #(D/P n) = (#(D/P ))n.
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Proof: We will show this by induction. The n = 1 case is, um.
Straightforward.

So assume that #(D/P n) = (#(D/P ))n. To win the day, it’s
enough to show that #(D/P n+1) = #(D/P n) ·#(D/P ).

Let q : D/P n+1 → D/P n be the reduction modulo P n. Its
kernel is P n/P n+1, and it’s onto. If we can show that P n/P n+1

has the same number of elements as D/P , then we’ll be done!

Now, P n/P n+1 is a (D/P )-module.

No, really! It’s clearly an abelian group, and the (D/P )
action is the easiest thing possible: (a + P )(x + P n+1) = ax +
P n+1, which is well defined because x ∈ P n.

But P is a maximal ideal, and so D/P is a field, making
P n/P n+1 into a vector space. If we can show that its dimension
is 1, then it will have the same number of elements as D/P , and
we’ll be done.

I claim that πn is a basis for P n/P n+1 over D/P .

It’s clearly linearly independent, because it’s nonzero and
there’s only one of it. And if x + P n+1 ∈ P n/P n+1, then
x = aπn + P n+1 for some a ∈ D, so x is in the (D/P )-span
of πn. Woo! ♣

Theorem 8.4. Let K be a number field with ring of integers
OK. Then for any two nonzero ideals I and J of OK, we have
N(IJ) = N(I)N(J).

Proof Write I = P a1
1 . . . P an

n and J = P b1
1 . . . P bn

n for non-negative
integers a1, . . . , an, b1, . . . , bn. Then

IJ = P a1+b1
1 . . . P an+bn

n
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and so

N(IJ) = N(P a1+b1
1 ) . . . N(P an+bn

n )

= N(P1)
a1+b1 . . . N(Pn)

an+bn

= N(P a1
1 ) . . . N(P an

n )N(P b1
1 ) . . . N(P bn

n )

= N(I)N(J)

by a combination of the Chinese Remainder Theorem and the
magic of DVRs. ♣

Do you remember, back in the day, when we factored the ideal
(p) in the ring Z[α]? Well, we can do that in OK now, because
of unique factorisation of ideals. And the multiplicativity of the
norm of ideals lets us notice something else.

Definition 8.5. Let K be a number field with ring of integers
OK. Let p ∈ Z be prime. Then we can factor

(p) = P e1
1 . . . P er

r

as a product of prime ideals. The number e(Pi) = ei is called the
ramification index of Pi over p, and the number f(Pi) = fi =
logp(N(Pi)) is called the residue field degree (because it is the
degree of the field extension (OK/Pi)/(Z/p)).

The prime p is said to be ramified in K if ei ≥ 2 for some i.
It is said to be unramified otherwise.

Notice that if d = [K : Q] is the degree of the number field K,
then by taking the norm of both sides of the previous equation,
we get

e1f1 + . . . erfr = d

because the norm is multiplicative, and N(p) = pd. That’s kind
of cool.
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Also, do you remember when you asked what you would do
if you were trying to guess the ring of integers of a number field,
and you guessed wrong? Remember I told you that I’d tell you
when you were older?

Well, you’re older now, and I think you’re old enough to know
the truth.

The local rings are the key. It turns out that just having
DVRs for local rings is enough to make your guess the ring of
integers. Now, that’s a lot of checking – infinitely many primes
at which to localise! – but you can narrow that down fast by
proving that you just need to check the primes whose squares
divide the discriminant of your guess.

Let’s do this in detail now.

Theorem 8.6. Let K be a number field with ring of integers
OK, and let A be a subring of OK of finite index. Then A = OK
if and only if for every nonzero prime ideal P of A, the ring AP

is a DVR.

Proof: One direction we’ve already done: if A = OK ,then its
localisations are all DVRs.

Thus, let’s assume that AP is a DVR for all nonzero prime
ideals P of A, and let P be any nonzero prime ideal of A. Let
I = POK be the ideal of OK generated by P .

Unless I is the unit ideal of OK , I is contained in some
nonzero prime ideal Q of OK . The ideal Q ∩ A is a prime
ideal of A containing P ... but P is maximal, so P = Q, giv-
ing AP ⊂ (OK)Q. (This is straightforward to check.) We will
prove first that AP = (OK)Q, by showing that there are no rings
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strictly between AP and K.

Let x ∈ K be any element. We’re going to show that if
x 6∈ AP , then AP [x] = K.

Since A has fraction fieldK, there is some element α of A such
that αx ∈ A ⊂ AP . If π is a uniformizer for AP , we can write
α = uπr for some unit u ∈ A∗P of AP and some non-negative
integer r.

Thus, we may write x = b
πt for some unit b ∈ A∗P . In partic-

ular, every element of K may be written as uπn for some unit u
of AP and some integer n. The integer n is negative if and only
if x 6∈ AP .

If x 6∈ AP , then consider the ring AP [x]. It contains x = uπn

for some negative integer n. It also contains u−1π1−n, because
it’s in AP : 1 − n ≥ 0 and u is a unit in AP . Therefore, AP [x]
contains π−1.

But then AP [x] must also contain u(π−1)n for all units u of
AP and all positive integers n. This means it contains all of K.

Great! So now, since (OK)Q is a ring that contains AP and
is contained in K, it must either equal AP or equal K. Except
it doesn’t equal K. So AP = (OK)Q, as desired.

There is an unsettling possibility remaining, though. What
if I generates the unit ideal of OK?

Well, in that case, there’s some element of P whose inverse
x (in K) is contained in OK but not in AP . This means that
AP [x] = K. But x is integral over Z (this is the definition of
OK , after all), so a fortiori it’s also integral over AP . (Since
Z ⊂ AP , the monic minimal polynomial for x over Z that has
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coefficients in Z, also has coefficients in AP .)

But if x is integral over AP , then K = AP [x] is also integral
over AP ! Which means that π−1 is integral over AP . Which is
blatantly isn’t: any polynomial in AP [x] with π−1 as a root must
have a factor of πx− 1, which since AP is a PID means that it’s
not monic.

What a relief! We can dispense with that unsettling case,
and rest easy that AP = (OK)Q for all P and Q with P ⊂ Q.

This, sadly, is not the triumphant finish. We want to show
that A = OK .

Well, not proving it isn’t going to get this theorem proven.
Let x ∈ OK be any element. We want to show that x ∈ A. Well,
write x = a/b for a, b ∈ A. It would be cool if we could show
that there’s some way of writing x so that the denominator b
was a unit of A, because then x would obviously be in A.

The set of possible denominators for x is obviously

D = {b ∈ A | bx ∈ A}
It’s not hard to see thatD is the intersection of the two fractional
ideals (A : xA) and A of A, so D is itself a fractional ideal of A.
And since D ⊂ A, D is an integral ideal of A too.

If D = A, then we’re done, because then 1 is a possible
denominator for x.

IfD 6= A, then there is some nonzero prime ideal P containing
D. In particular, every way of writing x as a fraction of elements
of A involves a denominator lying in P . This is exactly what it
means to be not an element of AP .

So x 6∈ AP , and so x 6∈ (OK)Q for some prime ideal Q of OK .
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But x ∈ OK , so this is impossible, and the happy case D = A
is the only one.

Which means we’re done. ♣

And then the next step.

Theorem 8.7. Let K be a number field with ring of integers
OK. Let A be a subring of OK of finite index. Let p ∈ Z be a
prime number such that p2 does not divide the discriminant of A.
Then for any prime ideal P of A containing p, the localisation
AP is a DVR.

Proof: Let n = [OK : A] be the index of A in OK . We know
that p does not divide n, because otherwise p2 would divide the
discriminant of A.

Let P be any prime ideal of A containing p, and let Q be a
prime ideal of OK containing P .

We will show that (OK)Q = AP , and so of course AP will be a
DVR. Let x ∈ (OK)Q. Then x = a/b for a, b ∈ OK , b 6∈ Q. Since
n is coprime to p, it is also coprime to Q, and so nb 6∈ P ⊂ Q.
But na, nb ∈ A, so we have x = na/nb ∈ AP . So (OK)Q = AP ,
as desired. ♣

So how does all this help us figure out whether a ring A is
the ring of integers of K or not?

Watch and learn, baby.

Let K = Q(α), where α is a root of the polynomial x3+3x+3.
We’re going to guess that Z[α] is the ring of integers of K.

First, the discriminant of x3 + 3x + 3 is −351 = −33 · 13.
Which isn’t squarefree, so we don’t know if our guess is right or
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not yet. Darn.

However, the only prime whose square divides the discrimi-
nant of Z[α] is 3, so the localisation of Z[α] at any prime that
doesn’t contain 3 must be a DVR. The only thing left is to check
3.

The prime ideals of Z[α] that contain 3 correspond to the
irreducible factors of x3 + 3x + 3 modulo 3. Those irreducible
factors are all x, so the only prime ideal of Z[α] that contains 3
is the ideal P3 = (3, α).

But 3 = α(−α2 − 3), because of the minimal polynomial for
α! (Always remember: for most algebraic numbers, the mini-
mal polynomial is the only useful thing you know about it!) In
particular, P3 = (α) is a principal ideal! So when you localise
at P3, you get a principal maximal ideal, and the resulting local
ring is a DVR.

In short, our guess was correct, and the ring of integers of
Q(α) is Z[α].

You may also remember that I would tell you how to deal
with stuff if the ring of integers was not of the form Z[α] for
some element α. Well, it’s time we had that rite of passage too.

The idea is that when you want to calculate in OK , there’s
actually probably only a finite set of prime ideals you care about.

For any nonzero α ∈ OK , the subring A = Z[α] has finite
index. So there are only finitely many primes that divide that
index. For any prime ideal Q of OK that doesn’t contain any of
those finitely many primes, we can let P = Q ∩ Z[α] = Q ∩ A,
and then the local rings (OK)Q and AP will be the same, and a
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lot of calculations involving Q will come out the same as if we
just used Z[α] and P instead.

For instance. Let’s say we want to know which prime ideals
of OK contain a certain prime number p ∈ Z. And let’s say
we can find an α ∈ OK whose minimal polynomial m(x) has
discriminant not divisible by p2. So [OK : Z[α]] = n, which is
not divisible by p. (In fact, all you need is for the index to be
prime to p, which amounts to having the discriminant of m(x)
not being divisible by two more factors of p than disc(OK).)

We know how to factor the ideal (p) in Z[α]: the prime ideal
factors correspond precisely to the irreducible factors of m(x)
modulo p:

(p) = P a1
1 . . . P an

n

Since p does not divide the index n of Z[α] in OK , we know that
for each Pi, there is a prime ideal Qi of OK such that Pi ⊂ Qi,
and (OK)Qi

= APi
. Moreover, the Qi are exactly the prime

ideals of OK that contain p.

Therefore, we can factor (p) = Qb1
1 . . . Q

bn
n for some positive

integers bi. If we can show that ai = bi for all i, then we’ll know
that we can factor (p) in A = Z[α] instead of in OK .

For each i, we know that APi
is a DVR. The element p lies

in P ai
i , but not in P ai+1

i (in APi
). But APi

= (OK)Qi
, and so

P r
i = Qr

i for all r. Therefore, as an element of (OK)Qi
, p lies in

Qai
i but not in Qai+1

i .

But by the magic of localisation, since p is an element of OK ,
this means that p lies in Qai

i but not in Qai+1
i . The factorisation

of (p) in OK tells us that p lies in Qbi
i but not in Qbi+1

i . So we
must have ai = bi.
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Let’s do a concrete example. Let K = Q(γ), where γ is a
root of x3 − x2 − 2x − 8. It’s known – although not trivial to
prove – that the ring of integers OK is not of the form Z[α]
for any α. We don’t need to take this for granted, because it’s
enough to know that we’re not clever enough to find an α for
which OK = Z[α]. The fact that no one is clever enough to find
such an α is merely a salve to our egos.

We’ll factor the ideal (5) in OK . First, we need to find an
α ∈ OK such that 5 does not divide the discriminant of Z[α].
Let’s try α = γ.

The monic minimal polynomial for α over Q is x3−x2−2x−8.
The discriminant of this polynomial is

2012 = 22 · 503

Notice the lack of 5 as a prime factor. So we’ve found our α.

How does 5 factor in Z[α]? We use our handy theorem, which
says that the factorisation corresponds to the factorisation of
x3 − x2 − 2x− 8 modulo 5. Which is:

x3 − x2 − 2x− 8 = (x2 + 3)(x− 1)

This means that (5) factors in Z[α] as

(5) = (5, α− 1), (5, α2 + 3)

And thanks to our argument above, since 5 does not divide the
index of Z[α] in OK , we know that this factorisation works in
OK as well.

But can I always find such a useful α ∈ OK? Sadly, no.
But then, I’m pretty lazy – could a more energetic person find
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one? Sadly, still no. Examples of this are a bit abstruse, so
I won’t describe one here. But still, useful α are plentiful for
many applications.

Anyway, we can now prove a cool fact about discriminants.
First, a definition.

Definition 8.8. Let K be a number field with ring of integers
OK. Let p be a prime number. We say that p is unramified in
K if and only if the factorisation (p) = P a1

1 . . . P an
n has distinct

prime ideal factors – that is, ai = 1 for all i. We say that p is
ramified in K if it is not unramified.

Theorem 8.9. Let K be a number field with ring of integers
OK. Let p ∈ Z be a prime number. Then p is ramified in K if
and only if p divides the discriminant of K.

Proof: This is a biconditional statement, so it’s two theorems
for the price of one. We start with forwards.

Assume that p is ramified in K. Then the prime factoriza-
tion of the ideal (p) in OK features a prime factor with exponent
greater than one. Thus, OK/(p) is a finite ring that is not a prod-
uct of fields (because it contains nilpotent elements). Therefore,
the trace pairing on OK/(p) is degenerate, meaning that there
is some x ∈ OK/(p) such that Tr(xy) = 0 for all y ∈ OK/(p).

In other words, there is some X ∈ OK such that for all Y ∈
OK , we have Tr(XY ) ∈ (p). Without loss of generality, we may
assume that X is not divisible by any integer greater than 1. (If
X is divisible by n, replace it with X/n.) Extend X to a basis
{x1 = X, x2, . . . , xn} of OK over Z, which because X is primitive
is always possible. Then the discriminant of K is computed by
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the following matrix:

det

 TrK/Q(x21) TrK/Q(x1x2) . . . TrK/Q(x1xn)
...

...
...

TrK/Q(xnx1) TrK/Q(xnx2) . . . TrK/Q(x2n)


The entire first row of this matrix is divisible by p. So the

determinant – and therefore the discriminant – is divisible by p.

Now for backwards. Assume that the discriminant is divisible
by p. We want to show that p is ramified in K.

Well, the following determinant is divisible by p:

det

 TrK/Q(x21) TrK/Q(x1x2) . . . TrK/Q(x1xn)
...

...
...

TrK/Q(xnx1) TrK/Q(xnx2) . . . TrK/Q(x2n)


which means that the columns of this matrix are linearly de-
pendent. Thus, after reducing modulo p, there are not-all-zero
elements {a1, . . . , an} of Fp satisfying, for all i:

a1Tr(xix1) + . . .+ anTr(xixn) = 0

which by the linearity of trace implies, for each i:

Tr((a1x1 + . . . anxn)xi) = 0

So, if we set x = a1x1 + . . . anxn, we get Tr(xxi) = 0 for all
i, and since the xi are a basis of OK/(p) over Fp, this means
Tr(xy) = 0 for all y ∈ OK/(p). This means that the trace form
is degenerate, and therefore that OK/(p) is not a product of
fields, and so p ramifies in K. ♣
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9 The class group: When is OK a PID?

The question posed in the section title turns out to have an
interesting answer. It turns out that you can sort ideals into
equivalence classes, in such a way that one of the equivalence
classes consists exactly of the principal ideals. Even better, it
turns out that the set of equivalence classes can be made into a
group under ideal multiplication. Let’s make that idea come to
life now.

Definition 9.1. Let K be a number field with ring of integers
OK. The ideal group IK of K is the group of invertible fractional
ideals of OK, with ideal multiplication as its operation.

It’s pretty easy to see that this is a group. The product of
fractional ideals is again a fractional ideal, and invertible ideals
all have an inverse by definition. (Duh.)

But this group is boring. It is, by unique factorisation of
ideals, the free abelian group on the prime ideals of OK . And
anyway, we’re looking for equivalence classes where one of them
consists of all the principal ideals. So we define a subgroup of
IK , which we’ll call PK , which consists of all the principal ideals.
(It’s pretty easy to see that PK is a subgroup – the product of
principal ideals is still principal, and the unit ideal is indeed
principal.)

Now we’re ready for the big definition of this section.

Definition 9.2. Let K be a number field with ring of integers
OK. The ideal class group of K (or class group, for short),
denoted Cl(K), is the quotient group Cl(K) = IK/PK.
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So OK is a PID if and only if IK = PK , which happens if and
only if Cl(K) = 1. Cool.

How do we figure out what Cl(K) is? Thereby hangs a tale.

The first and most important fact, is that Cl(K) is always
finite. This will take some effort to prove. Here’s the plan:

Step 1: Find a constant MK such that every ideal class has
a representative of norm at most MK .

Step 2: Show that there are only finitely many ideals of OK
of norm at most B for any B.

Theorem 9.3. Let K be a number field with ring of integers
OK, with [K : Q] = n, having r real embeddings and s pairs of
complex embeddings. Then every ideal class in Cl(K) is repre-
sented by an integral ideal of norm at most

MK =
√
|disc(K)|

(
4

π

)s
n!

nn

Proof: Pick any ideal class in Cl(K), and pick any integral
representative I of it. (Note that every ideal class has an integral
representative, because if I is a fractional ideal representing that
class, there is some a ∈ K such that aI ⊂ OK , and aI is in
the same ideal class as I.) We will show that there is another
representative, J , of the same class, such that N(J) ≤MK .

Now, I and J represent the same ideal class if and only if
I = aJ for some nonzero a ∈ K. So what we’ll actually do is
find some a ∈ K such that J = aI has norm at most MK .

We also need aI to be an integral ideal. But that means
aI ⊂ OK , so a ∈ I−1. Which will help narrow down the search.
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OK. We want aI to have norm at most M , and we want
a ∈ I−1. We have

N(aI) = N(a)N(I)

so that means that we need

N(a) ≤MKN(I)−1 = MKN(I−1)

since the norm of ideals is multiplicative.

So let’s look at the locus of vectors in Minkowski space VK
that have norm smaller than MKN(I−1), where by “norm” here
I mean the product of the coordinates, since that’s what norm
means for elements of K. Specifically:

Λ = {(v1, . . . , vn) | |v1 . . . vn| < MKN(I−1)}

We want to prove that there’s an element of I−1 sitting inside
Λ somewhere. The following lemma is famously useful in that
regard.

Lemma 9.4 (Minkowski). Let L be a lattice in Rn. Let S be a
subset of Rn with the following properties:

• S is symmetric: if v ∈ S, then −v ∈ S

• S is convex: if v and w are in S, then the line segment
joining v to w is entirely contained in S.

• S has volume strictly greater than 2n| det(L)|.

Then S ∩ L contains a nonzero vector.

We won’t prove this here – we’ll leave that to the geometry
section. But it kind of makes sense that something like this
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should be true: if all your nonzero vectors are big, then they
should combine to give you a big determinant.

But this lemma doesn’t look useful at all for our situation.
I mean, if you make one of the coordinates really small, you
can make the other coordinates really big and still have a small
norm. In particular, the locus Λ is not bounded, and its size
is not easily measured, because the boundary is all curvy and
infinite. Plus it’s not convex ... in short, this lemma looks
hopeless.

The good news is that we don’t need to apply the lemma to Λ.
We will apply it to a specially chosen subset S ⊂ Λ. The subset
S will be awesome, and literally tailor-made for this application.
And if we can find an element of I−1 ∩S, we will of course have
found an element of I−1 ∩ Λ.

So what is this marvelous set S? Wonder no more:

S = {(v1, . . . , vn) ∈ VK |
∑
|vi| ≤ t}

Well, ok, there is still a bit of wonderment left. What is t?

It’s a secret. I’m not going to tell you what it is. So there.

Ok, fine. The number t is a variable, and we’re going to apply
the lemma to S for a complicated set of values of t, and not just
one. So I don’t really know what t is either. I may need to sulk
briefly now.

At any rate, regardless of what t is, it’s clear that the set S
is convex and symmetric, so we just need to verify that it’s big
enough, and that it’s contained in the locus of vectors of norm
at most MKN(I−1).

So what is the volume of the set S? Why, it’s 2rπs
(
tn

n!

)
, where
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r and s are the number of real and complex embeddings of K,
respectively. Honest.

OK, fine, you don’t trust me any more, now that I’ve kept se-
crets from you. The calculation of the volume is in the geometry
section.

So is the volume big enough? Let’s check.

The lemma needs the volume of S to be at least 2n| det(I−1)|.

We know that | det(I−1)| = N(I)−1
√
|disc(K)|, because the

determinant of OK is the square root of the discriminant, and
N(I−1) is the determinant of the linear transformation taking a
basis of OK to a basis of I−1. Combining the two determinants
is multiplicative.

So we need vol(S) > 2nN(I)−1
√
|disc(K)|. This amounts to

2rπs
(
tn

n!

)
> 2nN(I)−1

√
|disc(K)|

After a bit of algebraic wrangling, this turns into the following:

tn >

(
4

π

)s
n!

N(I)

√
|disc(K)|

(Remember that n = r + 2s.) So if t is big enough to satisfy
that, there will be a vector in S ∩ I−1.

We also need to make sure that S is contained in Λ, the locus
of vectors of norm at most MKN(I−1). That is, we need to make
sure that when we find a vector in S, we have found a vector of
norm at most MKN(I−1).

So let’s say that
∑
|vi| ≤ t. The trick to the next part is

the arithmetic-geometric mean inequality. That inequality there

66



looks an awful lot like an arithmetic mean statement:

1

n

∑
|vi| ≤

t

n

But the geometric mean is never greater than the arithmetic
mean, so we get (∏

|vi|
)1/n

≤ t

n
Raising both sides to the power n reveals that the norm of any
vector in S is at most (t/n)n. In order to ensure that S ⊂ Λ, we
therefore need: (

t

n

)n
≤MKN(I−1)

We also need

tn >

(
4

π

)s
n!

N(I)

√
|disc(K)|

We can divide both sides of the latter by nn to get(
t

n

)n
>

(
4

π

)s
n!

nn

√
|disc(K)|N(I−1) = MKN(I−1)

(This is why MK is the right bound – a different number makes
these not match up as well.)

So we’ve deduced that if
(
t
n

)n
> MKN(I−1), then there is

a nonzero vector in S ∩ I−1. And if
(
t
n

)n ≤ MKN(I−1), then
S ⊂ Λ.

This looks bad. I mean, there are literally no values of t that
satisfy both inequalities. But we’re so close that we can sneak by.
What we’ve actually shown is that for every B > MKN(I−1),
there is a vector in I−1 of norm at most B. Equivalently, we’ve
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shown that for every B > MKN(I−1), there is an ideal J of
norm at most B in the same ideal class as I.

But the norm of an ideal is an integer! As in, the kindergarten
kind of integer. So there is an ideal J in the ideal class of I that
has minimal norm (that is, there isn’t an infinite sequence of
ideals of ever-more-slightly decreasing norms), and that minimal
norm must be smaller than every real number B that satisfies
B > MK . It immediately follows that the norm of J is at most
MK , as desired. ♣

That was Step 1, to show that every ideal class has a repre-
sentative of norm at most MK . Now for Step 2, to show that
this means there are only finitely many ideal classes. Step 2 is
much easier than Step 1.

Theorem 9.5. Let K be a number field with ring of integers
OK, and let I be an ideal of OK. Then N(I) ∈ I.

Proof: Well, we already know that N(I) is the number of
elements of OK/I. So N(I)x ≡ 0 (mod I) for all x ∈ OK . In
particular, N(I) · 1 ≡ N(I) ≡ 0 (mod I). So N(I) ∈ I, as
desired. ♣

Theorem 9.6. Let K be a number field with ring of integers
OK, and let B > 1 be a real number. There are finitely many
ideals of OK of norm at most B.

Proof: Let Λ be the gcd of all the integers in the interval [1, B].
For any ideal I of norm at most B, we have Λ ∈ I, because N(I)
divides Λ.

But then the ideal I must be a factor of the ideal (Λ). There
are only finitely many of those. So we’re done. ♣
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Now we know that the class group is finite. The next question
is: how do we calculate it?

10 How to compute the class group

To be honest, the techniques in this section aren’t going to work
all the time. In fact, if your number field has degree four or
bigger, they’re unlikely to work at all, or at best, with a lot of
extra effort.

But there are a lot of cases where it does work. And it’s a
lot of fun to work through. So let’s do it.

There are no big theorems in this section, although there are
a couple of cute results. I’m just going to do an example, so
that you can see how the process works.

There is one thing that’s handy to know before we start,
though.

Theorem 10.1. Let f(x) be a monic irreducible polynomial of
degree d with coefficients in Z, and let α be a root of f . For any
integer n, if we let K = Q(α), then

NK/Q(α− n) = (−1)deg ff(n)

Proof: We already know that the norm of α is equal to (−1)deg ff(0),
because f(x) is the monic minimal polynomial for α over Q. The
monic minimal polynomial for α − n over Q is f(x + n), so we
conclude that the norm of α−n is (−1)deg ff(0 +n), as desired.
♣

OK, that’s cute, but who cares? Patience.
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Let’s compute the class group of K = Q(α), where α is a
root of the cubic polynomial x3 − 3x+ 3.

First off, that polynomial is irreducible because of Eisenstein
on the prime 3. So we’re not sunk from the start.

Next, we have to check that the ring Z[α] is, in fact, the ring
of integers of K. We actually did this already, and it is the ring
of integers. So that’s nice.

The discriminant of x3 − 3x + 3 is −135 = −33 · 5, as noted
before. Our next step is to compute the Minkowski bound for
K, to find out how many ideals we need to look at before we
know we’ve got all the members of the class group.

The polynomial x3− 3x+ 3 has one real root (by calculus, or
by seeing that the discriminant is negative – all real roots would
make the discriminant the square of a real number). So r = 1
and s = 1. This enables us to compute the Minkowski bound:

MK =

(
4

π

)1
3!

33

√
135 < 4

So the class group is entirely represented by ideals of norm less
than 4. Since prime ideals generate the class group (they gen-
erate the ideal group!), this means that the class group is gen-
erated by the prime ideals containing 2 or 3.

So what are those ideals? There’s a systematic trick for this.
The first step is going to look weird, but trust me. Plug each of
−1, 0, 1 into f(x) and factor the answers:

f(−1) = 5

f(0) = 3

f(1) = 1
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From this, we can immediately see that f(x) is irreducible
modulo 2 (no roots – it’s a cubic!). It has one root modulo 3 (we
knew that already), and we know that 3 divides the discriminant
of K, so 3 is ramified in K. That means that the ideal (3) must
factor as a product of three ideals, of which at least two are the
same.

But if the third ideal were different, then the polynomial
would have two roots modulo 3 – f(x) modulo 3 would factor
as a linear factor times the square of a different linear factor.
So all three ideals are the same, and f(x) is the cube of a linear
polynomial modulo 3. (In this case, as we have already seen,
f(x) ≡ x3 (mod 3).

So the ideal (2) is a prime ideal of OK – no further factoring
possible. And the ideal (3) factors as (3) = P 3

3 for some ideal P3

of OK . The class group of K is therefore generated by P3 (since
(2) is principal, and therefore represents the trivial element of
the class group).

Now, we already know from before that P3 is principal. But
even if we didn’t, we could learn it quickly from the fact the
f(0) = 3. To wit: the norm of α is f(0) = 3. That means the
ideal (α) has norm 3 and is therefore prime (OK/(α) has three
elements, so it’s the field F3). In other words, (α) = P3!

So all the prime ideals of norm less than 4 are principal. Since
they generate the class group of K, we conclude that OK is a
PID, because the class group is trivial.

Let’s do a slightly more complicated example.

Let K = Q(α), where α is a root of the polynomial x3+2x−7.
We will compute the class group of K.
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The discriminant of K is −1355 = −5 · 271. It’s squarefree,
so we can be confident that Z[α] is the ring of integers. The
negative discriminant tells us that r = s = 1, as before.

The Minkowski bound is therefore:

MK =

(
4

π

)1
3!

33

√
1355 < 11

Thus, we only have to worry about prime ideals containing a
prime that’s less than 11. Namely, 2, 3, 5, and 7.

The number are bigger than in the last example. I want
information modulo 7, so I’m going to plug −3 to 3 into f and
factor the results:

f(−3) = −40 = −23 · 5
f(−2) = −19

f(−1) = −10 = −2 · 5
f(0) = −7

f(1) = −4 = −22

f(2) = 5

f(3) = 26 = 2 · 13

We can read off this data that there is one root of f modulo
2, no roots modulo 3, two roots modulo 5, and one root modulo
7. Let’s deal with these primes one at a time.

p = 2: The prime 2 is not ramified, so there are no multiple
roots. So if there is only one root, the other factor must be an
irreducible quadratic. Thus, the ideal (2) factor as:

(2) = P2Q2
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where P2 has norm 2 (corresponding to the linear factor x + 1
(mod 2)), and Q2 has norm 4 (corresponding to the quadratic
factor).

p = 3: The prime 3 is also not ramified. And there are no
roots. So f must be irreducible modulo 3, so (3) is a prime ideal
of OK .

p = 5: The prime 5 is ramified, for a change, so there is at
least one multiple root. And there are two roots in total, so it
must be exactly one multiple root, and we can factor:

(5) = P 2
5Q5

where P5 and Q5 both have norm 5. If we actually factor f(x)
modulo 5, we get

f(x) = x3 + 2x− 7 ≡ (x+ 1)2(x− 2) (mod 5)

which means that P5 corresponds to the linear factor x+ 1 and
Q5 corresponds to the linear factor x− 2.

p = 7: Back to the unramified case. There is exactly one
root of f modulo 7, so it must be – like p = 2 – the product of
a linear factor (namely x) and an irreducible quadratic factor.
Thus, we factor

(7) = P7Q7

where P7 has norm 7 and Q7 has norm 72 = 49.

Ok. We now know that the class group is generated by the
prime ideals P2, Q2, (3), P5, Q5, P7, and Q7. What are the rela-
tions?

Well, one easy one is (3) – it’s already trivial in the class
group, because it’s principal. One fewer generator.
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But (2) is also principal. And P2Q2 = (2). So, in the class
group Cl(K), we get P2 = Q−12 . So we don’t need Q2 in our list
of generators.

Similarly, P 2
5Q5 = 1, and P7Q7 = 1, so we don’t need Q5 or

Q7 in our list of generators.

So our new list of generators is P2, P5, P7.

We can also read some relations off our table of values up
above. For example, we know that f(−3) = −40 = −23 · 5.
This means that the ideal (α + 3) factors as the product of an
ideal of norm 8 and an ideal of norm 5. The ideal of norm 5 is Q5,
because Q5 corresponds to the linear factor x−2 ≡ x+3 modulo
5. The ideal of norm 8 must be P 3

2 , because P2 corresponds to
the linear factor x+ 1 modulo 2.

Thus, (α + 3) = P 3
2Q5 is trivial in the class group! Which

gives us the relation P 3
2Q5 = 1. Combining this with Q5 = P−25

yields
P 3
2 = P 2

5

Going down the list of values of f gives us a few more rela-
tions. The f(−2) = −19 just tells us that some ideal of norm
19 is principal, which isn’t useful. But f(−1) = −10 = −2 · 5
means that P2P5 = (α + 1), so in Cl(K), we have:

P2 = P−15

Combined with the previous relation, we can eliminate P2 from
our list of generators, and note that P 5

5 = 1 (in Cl(K)).

Next, f(0) = −7 means that (α) = P7. So P7 is principal,
and we don’t need it as a generator of the class group.
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As this point, I’m going to skip ahead to f(2) = 5. This says
that (α − 2) = Q5 is principal. Since Q5 = P−25 , we get P 2

5 = 1
in Cl(K). Combined with P 5

5 = 1, this means P5 = 1 in the
class group.

Our list of generators is now empty – the class group is trivial!
So OK is a PID.

There are some remaining questions here, but the one upper-
most in my mind is: what happens if OK is not a PID? How do
you show that an ideal of OK is not principal?

There is a way. A more or less foolproof way. (A pretty
annoying and computation-intensive way, to be fair.) But it
will have to wait for a little bit of extra technology, in the next
section.

11 What are the units of OK?

It turns out that proving that an ideal is not principal can be
boiled down to computing ... well, not necessarily all the units
of K, but enough of them. We will prove a theorem about what
all of the units are, and then we will do an example of how you
can find enough of them to show that an ideal is not principal.

Here’s the big theorem.

Theorem 11.1 (Dirichlet’s Unit Theorem). Let K be a number
field with ring of integers OK. The group of units O∗K of OK
is generated by the roots of unity of K, together with a free
abelian group of rank r + s − 1, where r is the number of real
embeddings of K, and s is the number of (complex conjugate
pairs of) complex embeddings of K.
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In particular, O∗K is isomorphic to T × Zr+s−1, where T is
the finite group of roots of unity contained in K.

The proof has several steps to it, because of course it does.
And believe it or not, the following proof is much easier than
the one Dirichlet originally used.

The first step is to derive a simple way of testing to see if an
element of OK is a unit.

Theorem 11.2. Let K be a number field with ring of integers
OK. Then α ∈ OK is a unit if and only if N(α) = ±1.

Proof: If N(α) = ±1, then the product of all the conjugates of
α – all of which are algebraic integers! – is ±1, which is a unit of
OK . In particular, 1/α is an algebraic integer that is contained
in K, so it’s contained in OK , so α is a unit of OK .

Conversely, if αβ = 1, then taking norms gives N(α)N(β) =
1. Since those two norms are both integers, we easily deduce
that N(α) = ±1. ♣

Warning! There are plenty of elements of K that have norm
±1 but are not units! They’re just not algebraic integers –
they’re not elements of OK .

The way we’re going to prove Dirichlet’s Unit Theorem is to
find a real vector space of dimension r+s−1 in which the group
of units is a lattice. Which is obviously a lie, because a lattice
is a free abelian group, and the unit group is obviously not free.
(Hello, minus one!)

There is the additional problem that the group operation in
any respectable lattice is addition, and the group operation for
the group of units is multiplication.
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But I know how to turn multiplication into addition – use
logarithms! Here’s how we do it. Let VK ⊂ Cn be the Minkowski
space of K, and let UK be the subset of VK where none of the
coordinates are zero. Define a function ψ : UK → Rn by

ψ(z1, . . . , zn) = (log |z1|, . . . , log |zn|)

Now, it’s important to notice that there’s no need for any fancy
complex logarithms here – we’re taking absolute values of each
coordinate before we take any logarithms. And because we’ve
stripped out the zeroes, there’s no trouble there either.

Notice, too, that the image of K in VK passes through to Rn

without trouble ... except for 0. But 0 is not a unit, so we won’t
miss it. Trust me. The point is, every nonzero element of K
ends up in UK after you stick it in VK . (This is because if α 6= 0,
then none of the conjugates of α are zero either.)

Another neat fact about ψ: it’s a homomorphism! I mean,
in the sense that ψ(uv) = ψ(u) + ψ(v). The multiplication in
UK is coordinatewise, which matches up with multiplication in
K. I mean, in each coordinate, you take an absolute value –
multiplicative homomorphism – and then you take a logarithm
– homomorphism from multiplication to addition.

Next question: Is ψ injective?

No.

Theorem 11.3. The kernel of ψ is the set

kerψ = {(u1, . . . , un) | |ui| = 1 for all i}

The elements of kerψ that lie in K are exactly the roots of unity
in K.
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Proof: The first claim is obvious from the definition of ψ. The
second claim is more subtle. Certainly every root of unity w has
|σi(w)| = 1 for all embeddings i. Conversely, the set of elements
of OK with |σ(α)| ≤ 1 is a finite set, because it’s a closed and
bounded subset of VK , and OK is a lattice in there. But every
power of α is in the same bounded subset, so two of those finite
powers of α must be the same. So αk = α` for some k 6= `,
giving αk−` = 1. In other words, α is a root of unity. ♣

So ψ isn’t injective, but that’s only because it has solved
our biggest problem, at least inasmuch as we wanted to get rid
of those pesky roots of unity. If Dirichlet’s Theorem is correct
(which of course it is), then the image ψ(O∗K) of the unit group
under ψ is a free abelian group! It now, finally, has a chance to
be a lattice!

The next part of being a lattice is for the rank to equal the
dimension. This has two parts: the rank can’t be too big, and
it can’t be too small. We’ll do the “not too big” part first.

We’ll approach this in a slightly funny way. If you have a
subgroup – additive – of a vector space, like we do, then if the
rank is greater than the dimension of the space, the vectors have
to bunch up, somehow, because the vector space isn’t big enough
to hold them all discretely. Like Z[

√
2] inside R, for example –

a rank two group inside a two-dimensional space.

Let’s formalize that.

Definition 11.4. Let S be a subset of a normed real vector space
V . Then S is discrete if and only if for each vector v ∈ S, there
is a positive real number B > 0 such that if w ∈ S satisfies
|v − w| < B, then w = v.
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In other words, S is discrete if each of its points is isolated
from the others. The idea will be that if a subgroup is discrete,
then it doesn’t have enough room, in an n-dimensional space,
to have more than n Z-linearly independent vectors.

Theorem 11.5. Let L be a subgroup of the additive group of a
real vector space V . If L is a discrete subgroup of V , then L is
a free abelian group of rank at most dimV .

The proof of this theorem is in the geometry section.

Now to prove that the image of ψ is discrete. Let v =
(v1, . . . , vn) be any point in the image Ψ = ψ(OK − {0}). Let
X > 0, and consider the set B(X):

B(X) = {(w1, . . . , wn) | |vi − wi| < B for all i}

If ψ(x1, . . . , xn) is in B(X), then

| log |xi| − vi| < B

for all i. Exponentiating gives

|xi|/evi < eB

for all i. But this is a bounded subset of VK , so there are only
finitely many points of OK in it. This means that there are only
finitely many points of OK in B(X), so Ψ is discrete, as desired.

So the rank of the unit group (which is the rank of its image
under ψ) is at most n. But we can actually do better, because
the complex embeddings come in pairs, and the absolute value
of a complex number is the same as the absolute value of its
conjugate. That gives us s linear relations satisfied by the image
of ψ, so the image of ψ is actually of rank no more than r + s.
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Dirichlet says, however, that the rank is r + s − 1. Where’s
the extra relation?

Well, the norm of a unit is always ±1. So the units are
contained in the locus

{(u1, . . . , un) |
∏

u1 = ±1}

in VK . Plugging this into ψ (taking absolute values and then
logarithms) shows that the image of ψ is contained in the locus

{(x1, . . . , xn) | x1 + . . .+ xn = 0}

which is one more linear relation. So the rank of ψ(O∗K) (and
thus the rank of the unit group O∗K) is at most r + s− 1.

Now for the hard part: to show that the rank is at least that
big.

Specifically, let H be the subspace of Rn given by the follow-
ing linear relations:

x1 + . . .+ xn = 0

xr+1 = xr+2, . . . , xn−1 = xn

We will show that ψ(O∗K) spans H.

To do this, let W be the span of ψ(O∗K) in Rn. If W 6= H,
then there is some linear relation `(x) = a1x1 + . . . + anxn = 0
that is satisfied by all the vectors in W , but not by all the vectors
in H. Define the following function f : UK → R:

f(u1, . . . , un) = a1 log |u1|+ . . .+ an log |un|

We’re going to find a unit u ∈ O∗K such that f(u) 6= 0. That
will show that the image of u – which is contained in W – does
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not satisfy `(ψ(u)) = 0, which is a contradiction, meaning that
W = H after all.

Choose c = (c1, . . . , cn) with positive real coordinates such
that ∏

ci = A >

(
4

π

)s√
|disc(K)|

and such that cr+1 = cr+2, . . . , cn−1 = cn. Define a bounded set
S in VK by

|x1| ≤ c1, . . . , |xr| ≤ cr

and

|xr+1|2 + |xr+1|2 ≤ c2r+1, . . . , |xn−1|2 + |xn|2 ≤ c2n−1

The set S is bounded and symmetric and convex and wonder-
ful for applying Minkowski’s Lemma to. As long as it’s big
enough. Its volume is easy to compute, though: it’s a prod-
uct of r intervals of length 2c1, . . . , 2cr and s circles of radius
2cr+1, 2cr+3, . . . , 2cn−1, so the volume is 2rπs

∏
ci > 2n

√
|disc(K)|.

This is big enough, because the determinant of OK in BK is√
|disc(K)|. So there is a nonzero element a of OK in S.

We have N(a) ≤ A, by construction. And none of the conju-
gates of a can be all that small, because then at least one of the
other ones would be too big:

Since a 6= 0, we have |N(a)| ≥ 1, so if σ1, . . . , σn are the
embeddings of K in C, we have:

|σi(a)| ≥ 1∏
j 6=i |σj(a)|

≥ 1∏
j 6=i cj

=
ci
A

for all i.
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There are only finitely many elements of OK of norm at most
A, so there are only finitely many principal ideals of OK of
norm at most A. Pick generators for each of those, and call
them b1, . . . , bk. Because a has norm at most A, there must be
some unit u satisfying a = ubm for some m.

Our next step is to show that |f(u)− f(c)| is bounded from
above independently of the choice of c. Then we’ll pick a clever
c to show that f(u) 6= 0.

|f(u)− f(c)| = |f(a)− f(bm)− f(c)|
≤ |f(bm)|+ |f(a)− f(c)|
= |f(bm)|+ |a1(log(|σ1(a)|)− log |c1|) + . . .

+ an(log(|σn(a)|)− log |cn|)|
≤ |f(bm)|+ log(A) (|a1|+ . . .+ |an|)
= B

where B does not depend on the particular choice of ci!

We can now deliver the coup de grace. If r+ s− 1 = 0, then
there is nothing to prove – H = 0, and the lower bound for the
rank is trivial. Otherwise, there are at least two different ci, and
we can choose one of them freely. In that case, as c1 → ∞, we
have |f(c)| → ∞ as well. As long as |f(c)| > B, we must have
f(u) 6= 0, as desired. ♣
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12 Showing an ideal is not principal: using

the units

Let’s say you have an ideal I in the ring of integers OK of a
number field K, and you want to prove that it’s not principal.
Here’s one idea for how you might do it.

Compute the norm N(I) of I. Any generator of I must have
norm ±N(I). So if I = (x), then ψ(x) = (y1, . . . , yn) must
satisfy

y1 + . . .+ yn = logN(I)

as well as yr+1 = yr+2, . . . , yn−1 = yn.

But if I = (x), then for any unit u of OK , we also have
I = (ux). The units of OK (or, more accurately, their image
under ψ) is a lattice in the subspace H from the previous section.
So, by judicious adding and subtracting of lattice vectors in H

from ψ(x), we can find a generator of I that lies in a bounded,
computable subset of Rn. Search for generators of I in that
subset – it’s a finite search – and if you don’t find any, then you
know that I is not principal.

Let’s do an example. Let K be the number field Q(α), where
α is a root of the polynomial x3 + 4x+ 1. A calculation (which
I will not do here) shows that Z[α] is the ring of integers of K,
and that P = (α + 1, 2) is a prime ideal of OK of norm 2. We
want to show that P is not a principal ideal.

First, we need to find a unit. The polynomial x3 + 4x+ 1 has
exactly one real root, so it has exactly one real embedding, and
one complex embedding. Therefore, the unit group has rank
1 + 1− 1 = 1.
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The norm of α is −1, so it is a unit! Let’s compute its image
under ψ.

A bit of Newton’s method (or some other root approximation
technique, like Maple) shows that the real root of x3 + 4x + 1
is a little bit greater than −1/4. This means, since the norm of
α is −1, that the complex roots have absolute value a little bit
less than 2. So as a vector, we have

ψ(α) ∼ (log(1/4), log(2), log(2)

Thus, if there is a generator x for P , then there must be a
generator y such that

ψ(y) = (log(|y1|), log(|y2|), log(|y2|))

with
0 ≤ log(|y1|) ≤ log(4)

or, equivalently
1 ≤ |y1| ≤ 4

and therefore also (since |y1y22| = 2)

1/
√

2 ≤ |y2| ≤
√

2

The rest is a bit tedious. We have now defined a bounded
subset of Minkowski space. We know a basis for the lattice
OK in VK , namely {1, α, α2}, and we know approximately what
coordinates these basis vectors have in VK . The three vectors
{1, α, α2} are pretty close to orthogonal, so it’s easy to calcu-
late how large a linear combination of them is ... and it’s easy
to check that not very many of those linear combinations have
length 8 or less. Once you’ve got that short list, it’s pretty easy
to check that none of those vectors have norm 2.
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For a quadratic extension, there’s a much easier trick. Let’s
say you want to check if the ideal P = (5, 6 +

√
11) is a prin-

cipal ideal of Z[
√

11]. (Notice that Z[
√

11] is indeed the ring of
integers of Q(

√
11).)

Well, the norm of P is 5, because

Z[
√

11]/P ∼= Z[x]/(x2 − 11, 6 + x, 5)
∼= F5[x]/(x2 − 1, x+ 1)
∼= F5[x]/(x+ 1)
∼= F5

so we just need to check if there’s an element of norm 5 in
Z[
√

11]. So we set N(a+ b
√

11) = 5:

a2 − 11b2 = 5

This equation looks difficult to solve. But in practice, either
there is a solution lying around that’s not too hard to stumble
onto just by a brute force search, or else there’s a small prime
q such that the equation has no solutions modulo qr for some
small r. And the likely primes q are things like 5 and 11, which
are staring you in the face anyway.

In this particular case, there are solutions modulo 5 and 11, so
we suspect that there is a solution more generally. And indeed,
a = 4 and b = 1 gives you a winner! But then, a = ±4 and
b = ±1 are all solutions to the equation. Are they all generators
of P?

No. We know that (5) factors as the product of two prime
ideals of Z[

√
11], because (5) is not prime (it’s properly con-

tained in P !), and it’s not ramified (the discriminant here is
44). So there is another prime ideal Q = (5, 6−

√
11) such that
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PQ = (5). Our four solutions above must include generators for
Q. (Notice that Q has to be principal because it’s (5)P−1, and
(5) and P are both principal!)

So which solutions correspond to generators of P? We must
check. All the solutions will divide into 5 because any element
of norm 5 is a divisor of 5. So we just need to check which
solutions divide 6 +

√
11. And we can ignore the a = −1 case,

because we can multiply a+ b
√

11 by −1 without changing the
ideal it generates. So:

6 +
√

11

4 +
√

11
=

(6 +
√

11)(4−
√

11)

(4 +
√

11)(4−
√

11)

=
13− 2

√
11

5

which is not in Z[
√

11], but

6 +
√

11

4−
√

11
=

(6 +
√

11)(4 +
√

11)

(4−
√

11)(4 +
√

11)

=
35 + 10

√
11

5
= 7 + 2

√
11

which is an element of Z[
√

11]. So P = (4 −
√

11) is principal,
and incidentally, Q = (4 +

√
11) is also principal.

13 Modules

Let R be a commutative ring. An R-module is a bunch of things
that you can add and subtract, and that you can multiply by
elements of R.

86



OK, that’s obviously a terrible definition. But it captures
very well what a module is. We’re pure math types, though, so
we want a definition.

Definition 13.1. Let R be a commutative ring. An R module
is an abelian group M and a function · : R×M →M satisfying

• r(m1 +m2) = rm1 + rm2

• (r1 + r2)m = r1m+ r2m

• r1(r2m) = (r1r2)m

• 1m = m

for all r, r1, r2 in R and all m, m1, m2 in M .

So for a module to make sense, you need to have a ring and
a group. The actual module is the group, but you need to have
the ring around to do the multiplying for you.

For example. If R is a field, then an R-module is a vector
space.

If R = Z, notice that a Z-module is the same thing as an
abelian group. One direction is obvious – any R-module is an
abelian group regardless of what R is – and to go the other way,
notice that an abelian group is an abelian group (yeah), and
you can multiply it by elements of Z (heck yeah!). I mean, to
multiply m by 5, just compute m+m+m+m+m.

If R is any ring, then any ideal I of R is an R-module. In fact,
you could define an ideal to be an R-submodule of R. (An R-
submodule of M is exactly what you think it is: it’s an R-module
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whose elements are contained in M , and whose operations are
the restrictions of the operations of M .)

Better yet, R/I is an R-module, for any commutative ring R
and ideal I. Morally speaking: you can add and subtract the
elements of R/I, and you can multiply them by elements of R
(by reducing them mod I first). Technically speaking ... it’s
really boring and silly. Check it yourself, if you like. But bring
a pillow.

An example that’s a little more directly related to this course:
the Gaussian integers Z[i] are a Z-module. You can add and
subtract them, and multiply them by elements of Z. (Again,
I leave it to you to check that all the axioms of the technical
definition are satisfied.)

More generally, if T is any ring containing R, then T is an
R-module. So, for example, Q is a Z-module. So is R.

More more generally, if φ : R → T is a homomorphism, then
T is an R-module. This explains the R/I example too.

As in any part of mathematics, once you define the objects,
you have to define the morphisms.

Definition 13.2. Let M and N be R-modules. An R-module
homomorphism from M to N is a homomorphism f : M → N
of abelian groups such that f(rm) = rf(m) for all r in R and
m in M . An R-module isomorphism is an R-module homomor-
phism that admits a two-sided inverse that is also an R-module
homomorphism.

In other words, an R-module homomorphism is a function
that plays nice (commutes) with the addition, subtraction, and
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R-multiplication.

Notice that because R-module homomorphisms are always
homomorphisms of abelian groups, it follows that an R-module
homomorphism is an R-module isomorphism if and only if it’s
bijective:

f−1(rn) = f−1(rf(f−1(n))) = f−1(f(rf−1(n))) = rf−1(n)

For example, if R is a field, then an R-module homomorphism
is the same thing as a linear transformation of vector spaces.
(Check it out – the proof is really easy!)

Complex conjugation defines a Z-module homomorphism from
Z[i] to Z[i]. This is also a homomorphism of rings.

The function x→ 2x is a Z-module homomorphism from Z[i]
to Z[i], but it’s not a ring homomorphism, because 1 doesn’t
map to 1.

And complex conjugation defines a ring homomorphism Q(i)→
Q(i), but this homomorphism of rings is not a homomorphism
of Q(i)-modules.

Notice – and the proof here is very easy – that the image and
preimage of a submodule under a module homomorphism are
again submodules.

But there is more work to do before we leave the warm em-
brace of the modules section.

Definition 13.3. Let M be an R-module, S a subset of M . The
submodule generated by S is the intersection of all submodules
containing S.

It’s easy to check that any intersection of R-modules is again
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an R-module, so this definition makes sense. And this definition
leads to a few more, but most especially, we say that an R-
module M is finitely generated if there is a finite set S that
generates M .

I guess we should actually prove some stuff.

Theorem 13.4. Let M be an R-module, N ⊂ M a submodule.
If M is finitely generated, then so is M/N .

Proof: If you can write m ∈ M as a linear combination of
generators {xi}, then that linear combination still works after
you reduce modulo N . ♣

For the next theorem, we will recall a definition.

Definition 13.5. A ring R is noetherian if and only if every
ideal of R is finitely generated.

Theorem 13.6. Let M be a finitely generated module over a
noetherian ring R. Then every submodule of M is also finitely
generated.

Proof: We’re going to start by proving the theorem in the case
that M = Rn = R × R × . . . × R. We will then use a cunning
trick to prove it for a general M . Let N be a submodule of
M = Rn.

If n = 1, then an R-submodule of M is better known as an
ideal of R, and is therefore finitely generated by assumption.

We will now induce on n. (The verb “to induct” is what
you use to admit people to a Hall of Fame. “Deduce” gives
“deduction”, so “induce” gives “induction”. I know, I know.
I’m telling the tide not to come in.)
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If n ≥ 2, then we can write Rn = Rn−1 × R. Let N1 =
{(r1, . . . , rn) ∈ N | rn = 0}. Then N1 is isomorphic to an R-
submodule of Rn−1, and so it is finitely generated.

Let N2 = πn(N) ⊂ R, where πn : Rn → R is the projec-
tion onto the nth coordinate. In other words, let N2 be the
set of elements of R that appear as the nth coordinate of some
element of N . Since it’s the image of a submodule under a ho-
momorphism, it’s a submodule of R, and therefore an ideal, and
therefore finitely generated.

Let x1, . . . , xs be generators for N1, and let y1, . . . , yt be el-
ements of N whose nth coordinates are generators for N2. For
any m ∈ N , we can find an R-linear combination of the yi whose
nth coordinate is the same as that of m. In other words, we can
find r1, . . . , rt ∈ R such that the nth coordinate of the following
element of M is zero:

m− r1y1 − . . .− rtyt

But this means that this element is in M1! So it’s a linear
combination of the xi:

m− r1y1 − . . .− rtyt = r′1x1 + . . . r′sxs

Reorganising this shows that m is in the R-linear span of the
set {x1, . . . , xs, y1, . . . , yt}. So N is finitely generated.

Now let’s do the general case. Since M is finitely gener-
ated, there is a surjective R-module homomorphism φ : Rn →
M , mapping the standard basis vectors to the n generators
{x1, . . . , xn} of M :

φ(r1, . . . , rn) = r1x1 + . . .+ rnxn
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(It’s easy to check that this is indeed a surjective homomor-
phism. This is, by the way, a standard trick in algebra. Re-
member it.)

Let N be a submodule of M . Its preimage φ−1(N) is a sub-
module of Rn, and is therefore finitely generated. The images
of these generators under φ therefore generate N , and so N is
finitely generated. ♣

14 Algebra that isn’t really number theory

Theorem 14.1. Let D be a finite commutative domain. Then
D is a field.

Proof: Let a ∈ D be any nonzero element, and define a function
φ : D → D be the function φ(x) = ax. Since D is a domain,
φ is injective. But D is finite, so φ must also be surjective! So
there is some element b ∈ D such that φ(b) = 1. Which is to
say, ab = 1, so a is a unit. Since a was arbitrary, D is a field. ♣

The following theorem is known as the “Linear independence
of characters” theorem, because a homomorphism from a group
to a field is called a character.

Theorem 14.2 (Linear independence of characters). Let f1, . . . , fn
be distinct homomorphisms from an abelian group G to the mul-
tiplicative group F ∗ of a field F . Then f1, . . . , fn are linearly
independent over F .

Proof: We proceed by induction on n. If n = 1, then we are
done before we start. Now assume that n ≥ 2, and that there
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are a1, . . . , an ∈ F such that

a1f1(g) + . . .+ anfn(g) = 0

for all g ∈ G. We want to show that all the ai are zero.

Since f1 6= fn, there is some g0 ∈ G such that f1(g0) 6= fn(g0).
Applying the linear dependence relation to an element g0g ∈ G
gives:

a1f1(g0)f1(g) + . . .+ anfn(g0)fn(g) = 0

and if we multiply the original dependence relation by fn(g0) we
get:

a1fn(g0)f1(g) + . . .+ anfn(g0)fn(g) = 0

Subtracting the two equations cancels the last term, and gives:

a1(f1(g0)−fn(g0))f1(g)+. . .+an−1(fn−1(g0)−fn(g0))fn−1(g) = 0

which is a linear dependence relation between f1, . . . , fn−1. By
induction, this means that all the coefficients in this relation are
zero! In particular, we get a1 = 0, since f1(g)(f1(g0)− fn(g0)) 6=
0.

But if a1 = 0, then our original dependence relation becomes
a relation between the n − 1 homomorphisms f2, . . . , fn! So all
the other ai have to be zero too. ♣

Theorem 14.3 (Chinese Remainder Theorem). Let R be a do-
main, I and J ideals of R. Let IJ be the product ideal:

IJ = {a1b1 + . . .+ arbr | ai ∈ I, bi ∈ J}

If I + J = R, then R/IJ ∼= (R/I)× (R/J).
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Proof: If you want to show that two things are isomorphic,
probably you should write down an isomorphism. So, define the
following function from R to (R/I)× (R/J):

f(r) = (r (mod I), r (mod J))

The kernel of f is clearly I ∩ J . To show that it induces an
isomorphism from R/IJ to (R/I)× (R/J), all we need to do is
show that I ∩ J = IJ and that f is onto.

The first of these, that I ∩J = IJ , is mere algebraic trickery.
The inclusion IJ ⊂ I ∩ J is obvious from the definition of ideal.
For the reverse inclusion, note that I ∩ J = (I ∩ J)(I + J) ⊂
JI + IJ = IJ . (Remember that I ∩ J is a subset of both I and
J !)

Surjectivity of f is a little more involved. A useful shortcut is
to notice that if we can show that both (0, 1) and (1, 0) are in the
image of f , then f must be surjective. (Say f(a) = (0, 1) and
f(b) = (1, 0). Then for any x and y, we get f(xa+yb) = (x, y).)

We know that I + J = R. So there are some a ∈ I and b ∈ J
such that a + b = 1. Then f(a) = (a (mod I), a (mod J)) =
(0, 1), and similarly f(b) = (1, 0). So we’re done. ♣

Theorem 14.4. Let F be a field, and f(x) a nonconstant poly-
nomials with coefficients in F . The prime ideals of F [x]/(f(x))
are all maximal, and they are the ideals generated by the irre-
ducible factors of f(x) over F .

Proof: First off, notice that if q(x) is an irreducible factor of
f(x), then the ideal (q(x)) is certainly prime. By the Third
Isomorphism Theorem for rings, if you like.
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So now assume that P is a prime ideal of F [x]/(f(x)). Then
it is the reduction modulo (f(x)) of a prime ideal of F [x] that
contains (f(x)). Prime ideals of F [x] are either 0, or they’re
generated by irreducible polynomials. Since f is nonconstant, P
can’t be generated by 0, so it must be generated by an irreducible
polynomial q(x).

But P contains f(x), so q(x) | f(x), as desired. ♣

Theorem 14.5. Let R be a noetherian ring, I ⊂ R an ideal.
Then there is a finite sequence of primes P1, . . . , Pn such that
I ⊂ Pi for each i, and

∏
Pi ⊂ I.

Proof: If I is prime, we’re done, so assume that I is not
prime. Since R is noetherian, assume further that I is maximal
with respect to the property of not satisfying the conclusion
of the theorem. Then there are a, b such that a, b 6∈ I, but
ab ∈ I, so I is a proper subset of both Ra + I and Rb + I.
Hence – by the maximality of I – there are primes P1, . . . Pn and
Q1, . . . Qm such that

∏
Pi ⊂ Ra + I and

∏
Qj ⊂ Rb + I. Then∏

Pi
∏
Qj ⊂ (I+Ra)(I+Rb) ⊂ I, and for each i, j, I ⊂ Pi and

I ⊂ Qj, as desired. ♣

Theorem 14.6. Let R be a domain, and let I and J be coprime
ideals. Then for all positive integers n and m, the ideals In and
Jm are also coprime.

Proof: The ideal In + Jm is either equal to R (in which case
we’re done), or else it’s contained in some maximal ideal M . If
In + Jm ⊂ M , then In ⊂ M and Jm ⊂ M . But M is maximal,
so it’s prime. In particular, this means that In ⊂ M means
I ⊂ M , and similarly J ⊂ M , implying I + J ⊂ M ... which is
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impossible since I and J are coprime. So In and Jm are coprime
too. ♣

The following is not the strongest version of this theorem
that’s known. But it will do for us.

Theorem 14.7. Let R be a noetherian ring, and let I1 ⊂ I2 ⊂
. . . be an increasing chain of ideals. Then for some k, Ik = Im
for all m ≥ k.

Proof: Define I =
⋃
k Ik. It’s an ideal: given any x and y in I,

there is some k such that x, y ∈ Ik. Then x ± y ∈ Ik ⊂ I, so I
is closed under plus and minus. And if r ∈ R, then rx ∈ Ik ⊂ I

as well, so I is indeed an ideal.

ButR is noetherian, so I is finitely generated, by {x1, . . . , xn}.
For each i, there is some ki such that xi ∈ Iki. Letting k be the
largest of the ki, we get xi ∈ Ik for all i. But then Ik = I, so
Im = Ik for all m ≥ k, as desired. ♣

The following is not the only version of Nakayama’s Lemma
that’s around. But it will do for what we want, and the proof is
nicely illustrative.

Theorem 14.8 (Nakayama’s Lemma). Let A be a ring, I 6= A
an ideal of A, and M a finitely-generated A-module. If IM =
M , then there exists some a ∈ A with a ≡ 1 (mod I) such that
aM = 0.

Proof: Let M = x1A + . . . + xnA. Since IM = M , we know
that for each xi, we can write:

xi = a1ix1 + . . .+ anixn
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where aji ∈ I for each i. This looks a lot like linear algebra, so
let’s define the matrix B = (δij−aij), where δij is the Kronecker
delta: it equals 1 if i = j, and equals 0 if i 6= j.

The determinant of B is clearly congruent to 1 modulo I,
because B itself is congruent to the identity matrix modulo I.
By Cramer’s Rule, the classical adjoint matrix B∗ of B satis-
fies B∗B = (detB)Idn, where Idn denotes the N by n identity
matrix.

Now write B∗ = (cij), and multiply out that matrix equation
entry by entry. (Yuck.) You get, for each i and k between 1 and
n:

n∑
j=1

cij(δjk − ajk) = δik(detB)

Multiplying both sides by xk gives:

n∑
j=1

cij(δjk − ajk)xk = δik(detB)xk

If we sum over k, this becomes:

n∑
j,k=1

cij(δjk − ajk)xk =
n∑
k=1

δik(detB)xk

But now we reap the benefits of all this crunchy calculation,
with a festival of cancellation. We already know that

n∑
k=1

(δjk − ajk)xk = 0

by definition of the ajk. So the left hand monstrosity is just a
bunch of zeroes added together! And by the definition of δik, we
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have:
n∑
k=1

δik(detB)xk = (detB)xi

So we get (detB)xi = 0 for all i, and so (detB)M = 0. Setting
a = detB allows us to put our feet up and celebrate our success.
♣

15 Geometry that’s not really number theory

Theorem 15.1. Let V be a real vector space with a nondegen-
erate symmetric bilinear pairing 〈·, ·〉, and let {v1, . . . , vn} be a
basis for V . Let B be an orthonormal basis of V with respect to
the pairing. Then

det
(

[v1]B . . . [vn]B
)2

= det

 〈v1, v1〉 . . . 〈vn, v1〉
...

...
〈v1, vn〉 . . . 〈vn, vn〉


where [vi]B denotes the column vector of vi written in B-coordinates.

Proof: Write B = {e1, . . . , en}, and let T : V → V be the linear
transformation satisfying T (ei) = vi. Then we have

det
(

[v1]B . . . [vn]B
)2

= (det[T ]B)2

where [T ]B denotes the matrix of T with respect to the basis B.

But because B is orthonormal, we know that [v]B · [w]B =
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〈v, w〉 for any vectors v and w in V . So we can compute 〈v1, v1〉 . . . 〈vn, v1〉
...

...
〈v1, vn〉 . . . 〈vn, vn〉



=
(

[v1]B . . . [vn]B
)t (

[v1]B . . . [vn]B
)

= [T ]tB[T ]B

That pretty much does it, given that detA = detAt for any
square matrix A. ♣

Theorem 15.2. Let M ⊂ Zd be a lattice in Rd with M ∼=
Zd, and let T : Rd → Rd be a linear transformation such that
T (Zd) = M . Then

[Zd : M ] = | detT |

where [Zd : M ] is the index of M in Zd.

Proof: Let {e1, . . . , ed} be the standard basis for Zd, and let
{v1, . . . , vd} be the basis of M for which vi = T (ei).

Consider the following two sets:

D = {(x1, . . . , xd) ∈ Rd | 0 ≤ xi < 1 for all i}

and

F = {{a1v1 + . . .+ advd ∈ Rd | 0 ≤ ai < 1 for all i}}

The set D is a fundamental domain for Zd. That is, for every
vector v ∈ Rd, there is a unique vector y ∈ D such that v = y+z
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for some z ∈ Zd. Similarly, F = T (D) is a fundamental domain
for M . (This is fancy geometric language for “D is a complete
set of representatives for Rd modulo Zd.”)

Let {w1, . . . , wn} be a complete set of representatives for Zd
modulo M , so that every element of Zd can be written uniquely
as wi + m for some m ∈ M . (Notice here that n = [Zd : M ].)
Then the set

S = (w1 +D) ∪ . . . ∪ (wn +D)

is also fundamental domain for M . To see this, notice that for
any v ∈ Rd, there is a unique vector y ∈ D and z ∈ Zd such
that v = y + z. But for z, there is a unique i ∈ {1, . . . , n} and
m ∈M such that z = wi +m, giving v = (wi + y) +m uniquely,
as desired.

All three of the sets D, F , and S are bounded. So there
are finitely many translates of F by elements of M whose union
contains S. (Translates of F by elements of M cover the whole
of Rd, remember – this is part of what “fundamental domain”
means.) Let m1, . . . ,mr be the finitely many elements of M
associated to those finitely many translates, so that

S ⊂
r⋃
i=1

(mi + F )

If we define Si = S ∩ (mi + F ), then S is the disjoint union of
the Si.

Now define Fi = −mi + Si. I claim that F is the disjoint
union of the Fi.

To see this, notice first that the Fi are certainly disjoint,
because if v ∈ Fi ∩ Fj, then v = mi + s = mj + s′ for some
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s, s′ ∈ S, giving s − s′ ∈ M . Since S is a fundamental domain
for M in Rd, it follows that s = s′, and so mi = mj, giving i = j.

Now choose any v ∈ F . There is a unique s ∈ S such that
v − s = m ∈ M , since S is a fundamental domain for M in Rd.
But then s ∈ −m+F , meaning that −m = mi for some i (m is
unique!), so s ∈ Si and v ∈ Fi, as desired.

Each Fi is the translate of Si, and so they have the same
volume. Since F is the disjoint union of the Fi and S is the
disjoint union of the Si, it follows immediately that F and S

have the same volume. But the volume of S is n = [Zd : M ] –
it’s the union of n hypercubes of volume 1! So we’re done. ♣

Theorem 15.3 (Minkowski). Let L be a lattice in Rn. Let S be
a subset of Rn with the following properties:

• S is symmetric: if v ∈ S, then −v ∈ S

• S is convex: if v and w are in S, then the line segment
joining v to w is entirely contained in S.

• S has volume strictly greater than 2n| det(L)|.

Then S contains a nonzero vector in L.

Proof: Choose a basis {v1, . . . , vn} be a basis for L over Z. Let
T be the subset of Rn defined by

T = {v = a1v1 + . . .+ anvn ∈ Rn | 0 ≤ ai ≤ 2 for all i}

The volume of T is just 2n| det(L)|, by definition, almost – the
2n comes from the stretching factor by 2.
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Define f : S → T by

f(a1v1 + . . . anvn) = (a1 (mod 2))v1 + . . .+ (an (mod 2))vn

where an (mod 2) denotes the unique real number r such that
r − an ∈ 2Z. So, for example, 47.23452 (mod 2) = 1.23452.

Now, f is the disjoint union of a bunch of translations, so on
each of those pieces, it is volume-preserving. Since the volume
of S is strictly greater than the volume of T , there must be some
overlap between the images of those pieces. In other words, f is
not injective, and there are v and w in S such that v 6= w and
f(v) = f(w).

But this means that v − w is a nonzero vector of the form
b1v1 + . . . bnvn, where the bi are all even integers! Since S is
convex, the vector (v−w)/2 is in S, because it’s exactly halfway
between v and w ... and it’s a point in L! We retire victorious.
♣

Theorem 15.4. Let L be a subgroup of the additive group of a
normed real vector space V . If L is a discrete subgroup of V ,
then L is a free abelian group of rank at most dimV .

Proof: Let n = dimV , and let A ⊂ L be any finitely generated
subgroup. We will show that A is a free abelian group of rank
at most dimV – it will immediately follow that L is also a free
abelian group of rank at most dimV .

So assume that A is generated by {v1, . . . , vm}. Then A is a
free abelian group (since V has no torsion), so we may assume
that {v1, . . . , vm} is a basis of A over Z.

Since A is discrete, there is some ε > 0 such that A contains
no nonzero vectors of length at most ε. Therefore, there are no
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two vectors v, w ∈ A such that |v − w| < ε unless v = w. In
other words, if no nonzero vector can get within ε of 0, then no
two distinct vectors can get within ε of each other. Fix this ε
for A.

If m > n, then there is a linear dependence relation between
the vi. After reordering the vi, we may assume that {v1, . . . , vk}
is a maximal linearly independent subset of the vi, and that

vk+1 = a1v1 + . . .+ akvk

where some ai is irrational (because {v1, . . . , vk+1} is linearly
independent over Z). Fix this index i.

We will show that A is not discrete. Let B be the subgroup
of A generated by {v1, . . . , vk}, and let D be the fundamental
parallelepiped for B:

D = {b1v1 + . . .+ bkvk | 0 ≤ bj < 1 for all j}

For each positive integer r, define the point

Pr = c1v1 + . . .+ ckvk

where cj = raj (mod 1). That is, cj is the unique real number
in [0, 1) such that cj − raj is an integer.

Then Pr is in D. If Pr = Ps for some r and s, then raj−saj ∈
Z for all j. But then (r−s)ai ∈ Z, which because ai is irrational
means that r = s.

So the Pr are all different! And they’re all crammed into the
set D, which has bounded area. Since no two vectors in A are
closer than ε, it follows that the balls of radius ε/2 around the
Pr are disjoint. (Any overlap would lead to a distance of less
than ε.) Since the volume of D is finite, this is impossible, so
the rank of A is at most n, as desired. ♣
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16 Finite rings

Theorem 16.1. Every prime ideal of a finite ring is maximal.

Proof: Let P be a prime ideal of a finite ring R. Then R/P is
a finite domain, so it’s a field, so P is maximal. Notice that this
works even if P = 0. ♣

We’re ready to characterise finite rings now.

Theorem 16.2. If R is a finite ring, then

R ∼= (R/P a1
1 )× . . .× (R/P an

n )

where the ai are positive integers and the Pi are prime ideals of
R.

Proof: Let R be a finite ring. Then it’s noetherian (think
about that for a sec!), so there are primes P1, . . . , Pm of R such
that

∏
Pi ⊂ 0. But then for any prime P , we have

∏
Pi ⊂ P ,

so for some i, Pi ⊂ P , and thus Pi = P (since every prime
ideal of a finite ring is maximal). Thus, there are only finitely
many distinct primes P1, . . . , Pn of R, satisfying

∏
Pmi = 0,

where mi is some positive integer depending only on i. Since
each Pi is maximal, they’re pairwise coprime, so by the Chinese
Remainder Theorem, R is isomorphic to

∏
R/(Pmi

i ). ♣

There’s one more handy thing about finite rings.

Theorem 16.3. Let L be a finite ring that contains a field K.
The trace pairing 〈x, y〉 = Tr(xy) on L is nondegenerate if and
only if L is isomorphic to a product of fields.

Proof: We know from the previous theorem that

L ∼= (L/P a1
1 )× . . . (L/P an

n )
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If some ai ≥ 2, then L/P ai
i contains a nilpotent element: if

x ∈ Pi is nonzero, then xai = 0. But then we can define the
element (0, . . . , x, . . . , 0) ∈ L, where the x is in the ith place,
and this element X will also be nilpotent.

This means that for any y ∈ L, the element Xy is also nilpo-
tent (or zero) – remember that L is commutative! So the linear
transformation TXy is nilpotent, so all its eigenvalues are zero,
so its trace is zero. Thus, if the pairing is nondegenerate, then
ai = 1 for all i, and L is the product of fields.

Conversely, if L is the product of fields, then all the ai are
equal to 1. Let x = (x1, . . . , xn) ∈ L be any nonzero element.
We want to find another element y ∈ L such that Tr(xy) 6= 0.

Well, L/Pi is a field, and it must contain K. (L contains K,
and L maps onto L/Pi via the ith projection homomorphism.
Since homomorphisms of fields are always injective, the restric-
tion of the ith projection to K must be injective as well.)

If for just one index i, we can find a yi ∈ L/Pi such that
Tr(L/Pi)/K(xiyi) 6= 0, then we’ll be done, because then Tr(xy) 6=
0, where y = (0, . . . , yi, . . . , 0).

Since x is nonzero, there is some index i such that xi 6= 0.
Our problem thus reduces to showing that if L/K is an extension
of finite fields, then for every x ∈ L, there is some y ∈ L such
that Tr(xy) 6= 0.

Let L = K(α) by the Primitive Element Theorem. (Recall
that L and K are perfect, so L/K is separable.) Consider the
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following matrix:

M =


1 1 . . . 1
α σ2(α) . . . σn(α)
α2 σ2(α)2 . . . σn(α)2

...
...

...
αn−1 σ2(α)n−1 . . . σn(α)n−1


where σ1 = id, σ2, . . . , σn are the elements of Gal(L/K).

That matrix right there brings back memories of that Van-
dermonde guy. In particular, the determinant of M is just

detM =
∏

(σi(α)− σj(α))2

which is nonzero because L/K is separable and so all the con-
jugates of α are different.

Thus, the columns of this matrix are linearly independent
over K. In particular, if you add them all together, you don’t
get the zero vector. So, for some j, we have

αj + σ2(α)j + . . .+ σn(α)j 6= 0

Therefore, we conclude that

Tr(αj) = αj + σ2(α)j + . . .+ σn(α)j 6= 0

So let yi = xi/α
j. Then Tr(xiyi) = Tr(αj) 6= 0, as desired. ♣

17 Finite Fields

This section is dedicated to describing all the finite fields, how
they fit together, and what their Galois theory is.
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The first, somewhat odd thing, is that none of this really
depends on the characteristic of the fields. So we will fix a prime
number p right now, for the whole section, and then pretty much
forget about it.

Theorem 17.1. Every finite field of characteristic p has cardi-
nality pn for some positive integer n.

Proof: Let F be a finite field of characteristic p. Then F
contains a subfield B isomorphic to Z/pZ. This means that F
is a B-module, which since B is a field, is the same things as a
B-vector space.

Let v1, . . . , vn be a basis for F as a B-vector space. Then the
elements of F are precisely the linear combinations a1v1 + . . .+
anvn, where ai ∈ B. And by the magic of bases, all of those
pn linear combinations are different. So the cardinality of F is
exactly pn. ♣

Ok, ok, fine. We didn’t forget about p. But we stopped
worrying about what it might be.

Theorem 17.2. Let F and F ′ be finite fields with pn elements,
where p is prime and n is a positive integer. Then F and F ′

are isomorphic. Moreover, if K is a field (possibly infinite) that
contains two subfields F and F ′ with pn elements, then F = F ′.

Proof: The nonzero elements of F form a group F ∗ under mul-
tiplication, and F ∗ has pn−1 elements. By Lagrange’s Theorem,
they’re all roots of the polynomial m(x) = xp

n−1 − 1, which has
coefficients in Z/pZ. This means that F is isomorphic to the
splitting field of m(x) over Z/pZ.
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But F ′ is also isomorphic to the splitting field of m(x) over
Z/pZ, by the same argument with judiciously placed ′ markers
here and there. So F is isomorphic to F ′, as desired.

And if F and F ′ are both contained in some larger field K,
then they are both the set of roots of m(x) (plus zero) in K.
There’s only one such set, so F = F ′. ♣

Theorem 17.3. Let p be a prime number, n a positive integer.
Then there is a finite field of cardinality pn.

Proof: Let K be a splitting field of the polynomial m(x) =
xp

n−1 − 1 over Z/pZ. Then K has at least pn elements, because
it contains all the roots of m(x), and it contains 0. (Note that
m(x) has distinct roots because its derivative m′(x) = −xpn−2
has only the root zero, which is not a root of m(x).)

So all we need to do is show that K contains no further
elements. So let a and b be two roots of m(x) (or zero). We
need to show that a ± b, ab, and 1/a (if a 6= 0) are also roots
of m(x) (or zero). If we do that, then we’ll know that the roots
of m(x) (with zero) form a field, which must therefore be its
splitting field.

If a or b are zero, that’s all easy, so let’s assume ab 6= 0. We
know that ap

n−1 = bp
n−1 − 1. So ap

n

= a and bp
n

= b. Therefore

(a± b)pn = ap
n ± bpn = a± b

and
(ab)p

n

= ap
n

bp
n

= ab

so that a± b and ab are roots of xm(x), as desired. (Remember
that (a + b)p = ap + bp in characteristic p, and iterating that
gives (a+ b)p

n

= ap
n

+ bp
n

.)
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Finally, if a 6= 0, then 1/a ∈ K, and (1/a)p
n

= 1/ap
n

= 1/a,
so 1/a is also a root of m(x). So K is exactly the roots of xm(x),
and therefore has pn roots. ♣

Theorem 17.4. Let F be a field with pn elements. Then F
contains a subfield with pm elements if and only if m | n.

Proof: If m | n, then xp
m − 1 is a factor of xp

n − 1, so all the
roots of xp

m − 1 are also roots of xp
n − 1, and so F contains a

subfield with pm elements.

Conversely, if F contains a subfield B with pm elements, then
F is a B-vector space. In that case, F has b` elements, where b
is the cardinality of B and ` is the dimension of F as a B-vector
space. But then (pm)` = pn, so m` = n and we’re done. ♣

Theorem 17.5. The multiplicative group of a finite field is
cyclic.

Proof: Let F be a finite field. Then F ∗ is a finite abelian group,
so it’s isomorphic to the product of cyclic groups:

F ∗ ∼= (Z/a1Z)× . . .× (Z/arZ)

Better yet, we can insist that ai+1 | ai for each i. To show that
F ∗ is cyclic, it’s enough to show that a2 = 1.

So, assume a2 6= 1. Then there is a prime number p that di-
vides evenly into a2. Then p also divides evenly into a1, because
a2 | a1. This means that there are at least p2 elements of F ∗ of
order p.

But the polynomial xp−1 has at most p roots in F . So there
can’t be at least p2 elements of F ∗ of order p in F , and so a2 = 1
and F ∗ is cyclic, as desired. ♣
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Theorem 17.6. Let K be the finite field with pn elements, and
let L be the finite field with pkn elements. Then the extension
L/K is Galois, with cyclic Galois group generated by the auto-
morphism FrobL/K(x) = xp

n

.

Proof: First, notice that L is a splitting field over Z/pZ, and
so it’s Galois over that field. Since K also contains Z/pZ, it
immediately follows that L is Galois over K.

Furthermore, the automorphism FrobL/K is an automorphism
of L that fixes K pointwise. So it’s an element of the Galois
group Gal(L/K). I claim that, in fact, FrobL/K generates the
Galois group.

If you iterate FrobL/K ` times, you get the automorphism

a 7→ ap
`n. If 2 ≤ ` ≤ k − 1, then the fixed set of a 7→ ap

`n is
exactly the roots of xp

`n − x, which is strictly smaller than L

because `n < kn. So FrobL/K has order (in the Galois group)
at least k.

But the degree [L : K] = k, so FrobL/K has order at most k
as well! So its order is exactly k, and so it’s a generator of the
cyclic Galois group Gal(L/K). ♣

We now have enough theorems to have a picture of how the
finite fields of characteristic p fit together. Because there is
a unique field (up to isomorphism, in a strong sense) with pn

elements for every prime p and positive integer n, let’s give the
name Fpn to the unique (isomorphism class of) field with pn

elements. Then the lattice of finite fields of characteristic p by
inclusion looks like this:
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I mean, there are infinitely many of those finite fields, so we
had to leave a few out. But hopefully that gives you the general
idea.

And in that picture, every extension is Galois, with cyclic
Galois group, generated by the appropriate Frobenius automor-
phism. Life is good.

18 Local rings and DVRs

Local rings are extremely useful objects in algebra. The name
“local” comes from algebraic geometry, and unfortunately it’s
a little too much to explain the origin of the name here. But
honestly, algebraic geometry is awesome and you should go learn
some.

Definition 18.1. Let A be a domain, P a prime ideal of A, K
the fraction field of A. The localisation of A at P is the set

AP =
{a
b
| a, b ∈ A, b 6∈ P

}
Notice that if a/b ∈ AP , it’s still possible that b ∈ P ! There

are many different fractions that represent the same element
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of K – all you need is for one of them to have a denominator
outside P , and the fraction ends up in AP . Otherwise, nothing
would be in AP : if p ∈ P , then a/b = pa/pb.

Theorem 18.2. The localisation of A at P is a local ring.

Recall that a local ring is a ring with a unique maximal ideal;
that is, the set of all non-units is an ideal.

Proof: Let a/b and c/d be in AP , such that b and d are not
in P . Then all of a/b± c/d and (a/b)(c/d) can be written with
denominator bd. Since neither of them is in P and since P is
prime, it follows that bd 6∈ P and so AP is closed under plus,
minus, and times. Since AP clearly contains 0 and 1, it’s a
subring of K.

To see the local part: the non-units are exactly the elements
of K of the form a/b, where a ∈ P . (If a/b = c/d, then bc = ad ∈
P , so b 6∈ P means c ∈ P . So you can’t have one representation
with numerator in P , but a different one where the numerator
isn’t in P .) This is an ideal, because if a/b and c/d satisfy
a, c ∈ P and b, d 6∈ P , then a/b± c/d also satisfies that, as does
(a/b)(u/v) for any u/v ∈ AP .

In other words, the unique maximal ideal of AP is the ideal
(of AP ) generated by P , often written PP , or even just P if the
context is clear. ♣

The magic of this section is that the localisation of OK at a
nonzero prime ideal is a very special and pleasant ring, called
a Discrete Valuation Ring. Because of how many syllables that
is, modern types call that a DVR.

Definition 18.3. A Discrete Valuation Ring (DVR) is a noethe-
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rian local ring whose unique (nonzero) maximal ideal is princi-
pal. A generator of the maximal ideal is called a uniformizer.

The easiest example of a DVR is Z(p), the localisation of
Z at the prime ideal (p). This ring is all the fractions whose
denominators are not divisible by p. The maximal ideal of Z(p) is
the fractions a/b where p | a, which is exactly the ideal generated
by p.

Crucially important is that the quotients work out the same
for the localisation as they do forOK – remember that paragraph
above! And indeed, in this example, we see that Z(p)/p

n ∼= Z/pn,
just like we want – all the extra stuff in the localisation is just
units that wash away when you mod out by the nonunits.

Um. We will, um, prove all that. But first, we’ll start by
characterising the ideals of any DVR.

Theorem 18.4. Let D be a DVR, I a nonzero, proper ideal of
D. Then for some positive integer n, I = Mn = (πn), where
M = (π) is the unique maximal ideal of D. In particular, a
DVR is a PID.

Proof: Since M is principal, it’s invertible, with inverse M−1 =
π−1D ⊂ K, where K is the fraction field of D.

Let I1 = IM−1. Then I ⊂ I1 ⊂ D, because D ⊂ M−1 and
I ⊂ M . Nakayama’s Lemma says we can’t have I = I1, so I1
must be a strictly larger ideal than I.

If I1 = D, then I = M and we’re done. Otherwise, I1 ⊂ M
(remember every nonunit is contained in M !), so let I2 = M−1I1.
Again, I2 6= I1 = MI2 by Nakayama, and I2 ⊂ D. If I2 = D,

113



then I = M 2 and we’re done. Otherwise, we can keep going by
defining, at each stage, In+1 = InM

−1, with In $ In+1 ⊂ D.

Since D is noetherian, this can’t go on forever, so eventually
we have I = Mn, as desired. ♣

Another useful fact about localisation.

Theorem 18.5. Let A be a noetherian domain, P a prime ideal
of A. Then the localisation AP is noetherian.

Proof: Let I be an ideal of AP . We want to show that I is
finitely generated.

Consider J = I ∩ A. Since A is noetherian, J is finitely
generated, say, by {x1, . . . , xn}.

If x ∈ I, then we can write x = a/b for some a, b ∈ A, b 6∈ P ,
and so a = xb ∈ I as well. But a ∈ A, so a ∈ J , so we can write

a = a1x1 + . . .+ anxn

for some a1, . . . , an ∈ A. Dividing both sides by b gives

x = (a1/b)x1 + . . .+ (an/b)xn

with ai/b ∈ AP because b 6∈ P . So I is generated by {x1, . . . , xn}
as well. ♣
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