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Preface

This book are course notes accompanying the course PMATH 330: Intro-
duction to mathematical logic taught by the author at the University of
Waterloo in the Fall semester 2019. Much of these notes is based on the
material provided by Barbara Csima for the online version of this course.
At the current state the notes are not finished and will grow as we

progress through the semester.
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1 Introduction

As the main object of the title of this book is ”Mathematical logic”, we
should start by saying what mathematical logic is. Doing this we might
as well look what one of the greats of the field has to say about it:

Logic is the study of reasoning; and mathematical logic is the
study of reasoning done by mathematicians. — Shoenfield,
Mathematical Logic

One feature of the field of mathematics that makes it a perfect candidate
to study using the tools that formal logic gives us is that it is not an
empirical science. Indeed, observations barely play a role in the everyday
life of a mathematician. Given some statements the mathematicians wants
to obtain his results by deriving them from these statements. So, what
does it mean to “derive” a statement A from other statements B. Well,
in the case of a mathematician it means that the mathematician writes
down a proof that A follows from B. So in order to study “the reasoning
done by mathematicians” we have to make precise what the verbs in the
above sentences really mean. We have to give formal definitions of what
a proof is, what it means to derive A from B and when A follows from B.
The goal of this book is to develop the formal languages needed to

formulate the above and to equip the reader with the tools to study the
“reasoning done by mathematicians”.
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2 Propositional logic

Consider the following argument which we will refer to several times in
this chapter.

Whenever it rains, the grass is wet.
The grass is dry.
Therefore, it is not raining.

We want to study reasoning, so we are interested in the structure of this
argument. Why can we conclude that “it is not raining” given the argu-
ments “the grass is wet” and “it does not rain”. In order to study this
question we want to formalize it in a formal language of our choice.
One way to do this is the following:

1. Let A stand for “it rains”,

2. B stand for “grass is wet”,

3. ¬ stand for “it is not the case that”,

4. → stand for “implies that”.

Then our argument would read as:
1.
2.
3.

A→ B
¬B
¬A

Assumption
Assumption
Conclusion

Notice how the choice of symbols A and B was somehow arbitrary. We
thus removed the meaning of the arguments and reduced it to a form which
lets us identify the structure of the argument better.
To further illustrate this consider the following exercise.
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2 Propositional logic

Exercise 2.0.1. Formalize the following arguments using the notation
from above:

1. If the plum is green, then it is not ripe. The plum is green. Hence,
it is not ripe.

2. Whenever the liar speaks, he lies. The liar does not speak. Therefore
he does not lie.

2.1 Syntax of propositional logic
In order to study simple arguments as the ones presented in the introduc-
tion of this chapter we have to set up a framework. We therefore now
define the language of propositional logic.

Building of a formal language like propositional logic is not so different
from building a language like English. We start by defining its syntax,
the set of rules that define the structure of a sentence (in the case of
propositional logic formulas). In the next section we define a semantics
for propositional logic, i.e., we give the formulas meaning.

In order to define the syntax of propositional logic we first give its basic
building blocks, symbols.

Definition 2.1.1. The following are symbols of propositional logic.

• Propositional variables (Upper case letters with numerical indices):

{A,B,C, . . . , A0, A1, . . . , B0, B1, . . . }

• Connectives: ¬,→

• Brackets: (, )

If we again want to draw a comparison to English, then the equivalent to
propositional variables would be words, and the equivalent to connectives
and brackets would be punctuation and spaces.
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2.1 Syntax of propositional logic

Not every sequence of words is an English sentence. Indeed, there are
strict rules what a sentence in the English language is – the syntax. We
can now define the syntax for propositional logic allowing us to build
propositional formulas.

Definition 2.1.2. Propositional formulas are inductively defined as fol-
lows

1. All propositional variables are formulas.

2. If ϕ is a formula, then so is ¬ϕ,

3. If ϕ and ψ are formulas, then so is (ϕ→ ψ).

We can now check whether certain strings are formulas. A proof that a
certain string is a formula would look as follows.

Example 2.1.1. The string ¬((P → Q) → R) is a propositional formula.

Proof.
1.
2.
3.
4.

P,Q,R are propositional formulas
(P → Q) is a p. formula

((P → Q) → R) is a p. formula
¬((P → Q) → R) is a p. formula

by 1 of def. 2.1.2
by 3 of def. 2.1.2 and 1
by 3 of def. 2.1.2, 1, and 2
by 2 of def. 2.1.2 and 3

Exercise 2.1.1. Show that the following are propositional formulas.

1. ((P → P ) → ¬P )

2. (((P → Q) → (P → R)) → (Q→ R))

Note the inductive nature of Definition 2.1.2. We first define a base case,
all the propositional variables. We then specify how to, given two formu-
las, build more complicated formulas. The nice thing about inductive
definitions is that properties about these definitions can often be proved
using, as the name suggests, induction. One example is the following.
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2 Propositional logic

Proposition 2.1.2. All propositional formulas have the same number of
left brackets as right brackets.

Proof. Let ϕ be a propositional formula, lϕ be the number of left brackets
in ϕ, and rϕ be the number of right brackets in ϕ. Our goal is to show
that lϕ = rϕ. We show this by induction.

Base case: ϕ = P for some propositional variable P . Then lϕ = rϕ = 0.
Induction step: We have two cases.

Case 1: ϕ = ¬ψ for a propositional formal ψ with lψ = rψ. Then

lϕ = l¬ψ = lψ = rψ = r¬ψ = rϕ.

Case 2: ϕ = (ψ → θ) for propositional formulas ψ, θ with lψ = rψ and
lθ = rθ. Then

lϕ = l(ψ→θ) = 1 + lψ + lθ = 1 + rψ + rθ = r(ψ→θ) = rϕ.

2.1.1 Subformulas
Notice how by Definition 2.1.2 a propositional formula is either a proposi-
tional variable or built from other propositional formulas. Formulas which
are used in the building of a formula ϕ are called subformulas of ϕ. More
formally:

Definition 2.1.3. Given a propositional formula ϕ we define the set
sub(ϕ) as follows.

1. If ϕ = P for a propositional variable P , then sub(ϕ) = {ϕ}.

2. If ϕ = ¬ψ for a propositional formula ψ, then sub(ϕ) = {ϕ}∪sub(ψ).

3. If ϕ = (ψ → θ) for propositional formulas ψ and θ, then sub(ϕ) =
{ϕ} ∪ sub(ψ) ∪ sub(θ).

If ψ ∈ sub(ϕ), then ψ is a subformula of ϕ.
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2.2 Semantics of propositional logic

Example 2.1.3. Calculate sub(ϕ) for ϕ = ¬((P → Q) → R).

Solution.

sub(ϕ) = {¬((P → Q) → R)} ∪ sub(((P → Q) → R))

= {¬((P → Q) → R), ((P → Q) → R))} ∪ sub((P → Q)) ∪ sub(R)
= {¬((P → Q) → R), ((P → Q) → R)), (P → Q), R} ∪ sub(P ) ∪ sub(Q)

= {¬((P → Q) → R), ((P → Q) → R)), (P → Q), R, P,Q}

J

Exercise 2.1.2. to be added after assignment

2.2 Semantics of propositional logic
So far we know when a string is a formula, however we have not defined
the meaning of formulas. In other words, we have not yet developed the
semantics of propositional logic. Similar to the syntax, the definition of
semantics of first order logic will again be inductive starting with propo-
sitions.

Definition 2.2.1. A truth assignment is a function e assigning to each
propositional variable the value T (true) or F (false), i.e.,

e : PV → {T,F}

Truth assignment provide the base case of our definition, assigning
meaning to propositional values. In order to obtain semantics for all
propositional formulas we have to define the semantics for connectives.

Definition 2.2.2. Given a truth assignment e we define a function ê :
PF → {T,F} as follows.

1. If ϕ = P , a propositional variable, then ê(ϕ) = e(P ),
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2 Propositional logic

2. if ϕ = ¬ψ, for ψ ∈ PF , then

ê(ϕ) =

{
T if ê(ψ) = F

F if ê(ψ) = T
,

3. and if ϕ = (ψ → θ) for ψ, θ ∈ PF , then

ê(ϕ) =


T if ê(ψ) = F

T if ê(ψ) = T & ê(θ) = T

F if ê(ψ) = T & ê(θ) = F

.

We will usually write e instead of ê.
The definition of our semantics might seem arbitrary at first. Notice,

however, how it mirrors our approach at the beginning of this chapter
when we formalized the argument “Whenever it rains, the grass is wet.
The grass is dry. Therefore, it is not raining”. There, we said that ¬
stands for “it is not the case that” and → stands for “implies that”. This
is reflected in Definition 2.2.2.

We can now evaluate formulas in propositional logic.
Example 2.2.1. Check whether (¬(P → Q) → R) is true under the
assignment e : P 7→ T, Q 7→ F, R 7→ F.
Solution. We calculate ê((¬(P → Q) → R)) inductively using its subfor-
mulas sub((¬(P → Q) → R).

1. For the propositional variables the definition of ê trivially is ê(Q) =
ê(R) = F and ê(P ) = T,

2. ê((P → Q)) = F,

3. ê(¬(P → Q)) = T,

4. ê((¬(P → Q) → R)) = F.
J

If e is a truth assignment so that e(ϕ) = T we colloquially say that e
satisfies ϕ.
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2.2 Semantics of propositional logic

2.2.1 Truth tables
It is useful to visualize the definition of ê using truth tables. A truth table
of a formula ϕ is a table which has as its columns the subformulas of ϕ
and as its rows all the truth assignments. For example, the truth tables
for our connectives are:

ϕ ¬ϕ
T F
F T

ϕ ψ (ϕ→ ψ)

T T T
T F F
F T T
F F T

We can write down truth tables for any propositional formula and can use
these to evaluate the truth of a propositional formula under an assignment
e by looking at the corresponding row.

Example 2.2.2. A truth table for (¬(P → Q) → R) with the row repre-
senting e : P 7→ T, Q 7→ F, R 7→ F highlighted.

P Q R (P → Q) ¬(P → Q) (¬(P → Q) → R)

T T F T F T
T F T F T T
T T T T F T
T F F F T F
F T F T F T
F F T T F F
F T T T F F
F F F T F T

Exercise 2.2.1. Calculate the truth tables for

1. ((¬P → Q) → R),

2. ((P → Q) → (P → Q)),

3. ¬(¬P → Q).
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2 Propositional logic

2.2.2 Validity, Satisfiability, and logical consequence
We can now start to discuss the central notions of validity and satisfiability.

Definition 2.2.3. Let ϕ be a propositional formula.

1. ϕ is valid, or a tautology, if for every truth assignment e, e(ϕ) = T.

2. ϕ is satisfiable, if there is a truth assignment e such that e(ϕ) = T.

3. ϕ is unsatisfiable. if for every truth assignment e, e(ϕ) = F.

Definition 2.2.4. Let ϕ1, . . . , ϕn, ϕ be formulas. We say that ϕ is a
(logical) consequence of ϕ1, . . . , ϕn, or that ϕ follows from ϕ1, . . . , ϕn if
for all assignments e such that e(ϕ1) = · · · = e(ϕn) = T we also have
e(ϕ) = T. In that case we write

{ϕ1, . . . , ϕn, ϕ} |= ϕ.

We call ϕ1, . . . , ϕn assumptions, or premises, and ϕ the conclusion.

Assuming that the empty set ∅ is valid we sometimes write |= ϕ to say
that a formula ϕ is valid.

Recall our example from the start of the chapter: “Whenever it rains,
the grass is wet. The grass is dry. Therefore, it is not raining.” We can
now see why we said that the argument is correct since we can conclude
that it is not raining from our assumptions.

Proposition 2.2.3. The formula ¬A is a consequence of ¬B and A→ B.

Proof. We write down the truth table for A→ B, ¬B and ¬A:

A B A→ B ¬B ¬A
T T T F F
T F F T F
F T T F T
F F T T T
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2.2 Semantics of propositional logic

We can see that the only assignment making all assumptions true is e(A) =
F, e(B) = F. Under this assignment the conclusion e(¬A) is also true.
Therefore, {A→ B,¬B} |= ¬A.

Definition 2.2.5. A formula ϕ is logically equivalent (sometimes also
called truth equivalent) to a formula ψ if {ϕ} |= ψ and {ψ} |= ϕ. We
write

ϕ ≡ ψ.

Exercise 2.2.2. Let ϕ be a propositional formula. Then

ϕ ≡ ¬¬ϕ. (law of double negation)

Proposition 2.2.4. A propositional formula ϕ is valid if and only if ¬ϕ
is unsatisfiable.

Proof. First assume that ϕ is valid and that e is a truth assignment. Then
e(ϕ) = T. Therefore, by Definition 2.2.2, e(¬ϕ) = F.
Now, assume that ¬ϕ is unsatisfiable and that e is a truth assignment.

Then e(¬ϕ) = F, and therefore e(¬¬ϕ) = T. But ¬¬ϕ ≡ ϕ and thus
e(ϕ) = e(¬¬ϕ) = T.

Let ϕ and θ be propositional formulas and suppose ψ ∈ sub(ϕ). We let
ϕ[ψ/θ] be the formula obtained by replacing every occurrence of ψ in ϕ by
θ.

Exercise 2.2.3. Let ϕ and θ be propositional formulas and ψ ∈ sub(ϕ).
Show that ϕ[ψ/θ] is a propositional formula.

Theorem 2.2.5. Let ϕ be a propositional formula and ψ ∈ sub(ϕ). Sup-
pose ψ̂ ≡ ψ. Then ϕ[ψ/ψ̂] ≡ ϕ.

Proof. We prove this by induction on propositional formulas. First, if
ϕ = P for a propositional variable P , then sub(ϕ) = {P} and thus ψ =
ϕ = P = ψ̂. Therefore, trivially ϕ ≡ ϕ[ψ/ψ̂].
Now assume that ϕ = ¬θ and the theorem holds for θ in place of ϕ. Then

either ψ = ϕ or ψ ∈ sub(θ). In the first case, ϕ = ψ ≡ ψ̂ = ϕ[ψ/ψ̂] and
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2 Propositional logic

thus the result holds. In the second case, we have by induction hypothesis
that θ ≡ θ[ψ/ψ̂]. Let e be any truth assignment, then

e(ϕ) = e(¬θ) = T iff e(θ) = F (by definition of ¬)
iff e(θ[ψ/ψ̂]) = F (by hypothesis)
iff e(¬θ[ψ/ψ̂]) = T. (by definition of ¬)

(2.1)

Thus, we have that ϕ = ¬θ ≡ ¬θ[ψ/ψ̂] = ϕ[ψ/ψ̂] as required.
At last, assume that ϕ = (θ → χ) and the theorem holds both for θ

and χ in place of ϕ. Then either ψ = ϕ in which case again ϕ = ψ ≡
ψ̂ = ϕ[ψ/ψ̂], or ψ ∈ sub(θ) ∪ sub(χ). In the latter case we have that
ϕ[ψ/ψ̂] = (θ[ψ/ψ̂] → χ[ψ/ψ̂]). Now for any truth assignment e,

e(ϕ) = F iff e(θ) = T and e(χ) = F (by definition of →)
iff e(θ[ψ/ψ̂]) = T and e(χ[ψ/ψ̂]) = F (by hypothesis)
iff e((θ[ψ/ψ̂] → ξ[ψ/ψ̂])) = F (by definition of →)

Thus, we get ϕ ≡ ϕ[ψ/ψ̂] as required.

2.2.3 Other connectives
So far our logic has connectives with the meaning “implies that” and “it
is not the case that”. At first sight this seems to weak to formally capture
even simple sentences such as

“Mary likes cake and Hugo bakes cake.”

We might therefore be tempted to extend the syntax and semantics of
propositional logic to allow additional symbols capturing the meaning of
“and”, “or”, or “if and only if”. However this is not necessary. We will see
that the connectives capturing these are logically equivalent to formulas
using only ¬ and →. Towards this let ∧ have the meaning “and”, ∨ have
the meaning “or” and ↔ have the meaning “if and only if”, i.e., were we
to define the semantics ∧, ∨, and ↔ we would require

18



2.2 Semantics of propositional logic

e((ϕ ∧ ψ)) =

{
T if e(ϕ) = T&e(ψ) = T

F otherwise
,

e((ϕ ∨ ψ)) =

{
T if e(ϕ) = T or e(ψ) = T

F otherwise
,

e((ϕ↔ ψ)) =

{
T if e((ϕ→ ψ)) = T and e((ψ → ϕ)) = T

F otherwise
.

Theorem 2.2.6. Let ϕ and ψ be propositional formulas. Then

1. (ϕ ∧ ψ) ≡ ¬(ϕ→ ¬ψ),

2. (ϕ ∨ ψ) ≡ (¬ϕ→ ψ),

3. (ϕ↔ ψ) ≡ ¬((ϕ→ ψ) → ¬(ψ → ϕ)).

Proof. We prove (1) by writing down a truth table and leave (2) and (3)
as an exercise.

ϕ ψ (ϕ ∧ ψ) ¬ψ ¬(ϕ→ ¬ψ)
T T T F T
T F F T F
F T F F F
F F F T F

Definition 2.2.6. A formula of the form (ϕ ∧ ψ) is called a conjunction
of ϕ and ψ. A formula of the form (ϕ∨ψ) is called a disjunction of ϕ and
ψ. The formulas ϕ and ψ are called conjuncts or disjuncts, respectively.

Exercise 2.2.4. Complete the proof of Theorem 2.2.6.

From now on we will use ∧, ∨, and ↔ in our formulas and treat them
as if they were part of our language. This is justified by Theorem 2.2.6.
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2 Propositional logic

Exercise 2.2.5. Formally define symbols × and ? capturing the meaning
of “A or B but not both” and “A and B can not both be true” respectively.
Find formulas ϕ and ψ in propositional logic such that A × B ≡ ϕ and
A ? B ≡ ψ. (You may use ∧, ∨, ↔ in your proofs)

Proposition 2.2.7. Let ϕ, ψ, and θ be propositional formulas. The
following equivalences hold:

((ϕ ∧ ψ) ∧ θ) ≡ (ϕ ∧ (ψ ∧ θ)) (Associativity-∧)
((ϕ ∨ ψ) ∨ θ) ≡ (ϕ ∨ (ψ ∨ θ)) (Associativity-∨)

(ϕ ∧ ψ) ≡ (ψ ∧ ϕ) (ϕ ∨ ψ) ≡ (ψ ∨ ϕ)

Proof. We consider the truth tables and check that the respective columns
are the same.

ϕ ψ θ (ϕ ∧ ψ) ((ϕ ∧ ψ) ∧ θ) (ψ ∧ θ) (ϕ ∧ (ψ ∧ θ))
T T T T T T T
T F T F F F F
T T F T F F F
T F F F F F F
F T T F F F F
F F T F F F F
F T F F F F F
F F F F F F F

ϕ ψ θ (ϕ ∨ ψ) ((ϕ ∨ ψ) ∨ θ) (ψ ∨ θ) (ϕ ∨ (ψ ∨ θ))
T T T T T T T
T F T T T T T
T T F T T T T
T F F T T F T
F T T T T T T
F F T F T T T
F T F T T T T
F F F F F F F

The last two equivalences are easy to see from the truth tables.
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2.2 Semantics of propositional logic

From now on we will make the convention that we may omit parenthesis
in disjunctions and conjunctions, e.g., instead of (ϕ ∧ (ϕ ∧ θ)) we may
write (ϕ ∧ ϕ ∧ θ). From a point of view of semantics this is warranted by
Proposition 2.2.7. From a syntactical point of view of course (ϕ ∧ ϕ ∧ θ)
is not a formula and there are more than one option to translate it into
a logical equivalent formula, depending on where we set the parenthesis.
However, we accept this slight abuse of syntax in favor of better readability
of formulas. Be aware however, that we can not do this for → and if we
have different connectives in a formula!
Notice, that even when we have a conjunction (. . . ((ϕ1 ∧ϕ2)∧ · · · ∧ϕn)

involving more than three conjuncts by Proposition 2.2.7 we may drop
the parenthesis. To see this iteratively replace all subformulas of the form
((ϕ∧ψ)∧θ) by (ϕ∧ψ∧θ). After n−2 iterations we obtain (ϕ1∧· · ·∧ϕn).
Of course we use the conventions outlined in the above two paragraphs
also for ∨.

Exercise 2.2.6. Show that the following holds for formulas ϕ, ψ and θ:

1. ((ϕ ∧ ψ) ∨ θ) 6≡ (ϕ ∧ (ψ ∨ θ))

2. ((ϕ→ ψ) → θ) 6≡ (ϕ→ (ψ → θ))

2.2.4 Adequate sets of connectives

We have seen that the connectives → and ¬ are sufficient to obtain, up
to logical equivalence, all formulas using connectives ¬, →, ∧, ∨, and ↔.
Can we use other connectives to obtain all the formulas?

Definition 2.2.7. A set C of connectives is adequate if every formula is
logically equivalent to a formula using only connectives from C.

So far we have seen that {¬,→} is an adequate set of connectives.

Example 2.2.8. {¬,∨} is an adequate set of connectives.
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2 Propositional logic

Proof. It suffices to find for any formula ϕ, ψ, a formula using only ¬ and
∨ which is logically equivalent to (ϕ → ψ). Given ϕ and ψ, consider the
formula (¬ϕ ∨ ψ).

ϕ ψ (ϕ→ ψ) (¬ϕ ∨ ψ)
T T T T
T F F F
F T T T
F F T T

It is easy to see from the table that (ϕ→ ψ) ≡ (¬ϕ∨ψ) and thus we have
found the required formula.

Example 2.2.9. {¬} is not an adequate set of connectives.

Proof. Let ϕ using ¬ as its only connective. Then ϕ = ¬ . . .¬P for some
proposition P . Let n be the number of ¬ in ϕ. Then for any truth
assignment e,

e(ϕ) =

{
e(P ) if n even,
e(¬P ) otherwise.

Now let ψ = P → Q and assume towards a contradiction that ψ ≡ ϕ.
Let e be a truth assignment such that e(P ) = e(Q) = T. Then e(ψ) = T
and since ψ ≡ ϕ also e(ϕ) = T. Let ê be the truth assignment inverting
e, i.e., for all propositions R

ê(R) = e(¬R).

Then ê(ψ) = T by the definition of →. Recall that ϕ is of the form
¬ . . .¬P . As e(ϕ) = e(P ) = T there must be an even number of ¬ in ϕ.
By definition ê(ϕ) = e(ϕ[P/¬P ]) and clearly ϕ[P/¬P ] has an odd number
of negation symbols. So, by our observation above, ê(ϕ) = e(ϕ[P/¬P ]) =
e(¬P ) = F. This contradicts our assumption that ϕ ≡ ψ.
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2.3 SAT and Resolution

2.3 SAT and Resolution

2.3.1 Conjunctive and disjunctive normal form

The goal of this section is to develop an algorithm that tests whether a
formula is satisfiable or not. We have already informally described and
used one such algorithm: truth tables. Given a formula ϕ we can calculate
sub(ϕ) and then calculate its truth table. We then only have to search
through the rows to see if there is one truth assignment e such that e(ϕ) =
T. However, truth tables quickly become very large and therefore this
algorithm is not useful in practice.
We will therefore study another algorithm, called resolution and due to

Putnam and Robinson. While this algorithm works better in practice it
has the drawback that it only accepts formulas in a certain “normal form”,
conjunctive normal form, as input.

Definition 2.3.1. A literal is a formula of the form P or ¬P where P is
a propositional variable.

Definition 2.3.2. A formula ϕ is in conjunctive normal form, short CNF,
if ϕ = (C1 ∧ · · · ∧ Cn) where for each 1 ≤ k ≤ n Ck = (l1k ∨ · · · ∨ lm(k)

k )
where for each 1 ≤ i ≤ m(k), lik is a literal. We refer to the Ck as clauses
or CNF constituents of ϕ.

In other words, a formula is in conjunctive normal form, if it is the
conjunction of disjunctions of literals. Notice that in the above definition
both m(k) or n could be 1. Therefore, also the formulas (l1 ∧ l2), (l1 ∨ l2),
and l1 where l1 and l2 are literals are in conjunctive normal form.
We will prove that every formula has a conjunctive normal form. We

will do this by giving an algorithm which at each step replaces a given
formula ϕ by a logically equivalent formula until it obtains a formula
logically equivalent to ϕ in conjunctive normal form. We will make use of
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the following logical equivalences for propositional formulas ϕ, ψ, and θ:

(ϕ→ ψ) ≡ (¬ϕ ∨ ψ) (Elimination →)
(ϕ↔ ψ) ≡ ((ϕ→ ψ) ∧ (ψ → ϕ)) (Elimination ↔)
¬(ϕ ∧ ψ) ≡ (¬ϕ ∨ ¬ψ) (De Morgan’s law ∧)
¬(ϕ ∨ ψ) ≡ (¬ϕ ∧ ¬ψ) (De Morgan’s law ∨)

(ϕ ∧ (ψ ∨ θ)) ≡ ((ϕ ∧ ψ) ∨ (ϕ ∧ θ)) (Distributivity ∧)
(ϕ ∨ (ψ ∧ θ)) ≡ ((ϕ ∨ ψ) ∧ (ϕ ∨ θ)) (Distributivity ∨)

ϕ ≡ ¬¬ϕ (Law of double negation)

Exercise 2.3.1. Prove that the above equivalences hold.

Theorem 2.3.1. For every propositional formula ϕ with propositional
variables P1, . . . , Pn, there is a formula ψ in conjunctive normal form with
the same propositional variables such that ϕ ≡ ψ.

Proof sketch. We prove this by giving an algorithm that takes any formula
to a formula in conjunctive normal form. The algorithm can be seen in
Algorithm 1.

We have to verify that for any propositional formula ϕ, CNF(ϕ) termi-
nates (i.e., does not get stuck in an endless loop), produces a formula in
conjunctive normal form and that ϕ ≡ CNF(ϕ). To see that the algorithm
terminates just notice that ϕ contains at most finitely many subformulas
of the types in the conditions of the above while statements. Therefore
each of the while statements must terminate and thus the whole procedure
must terminate. Furthermore, by Theorem 2.2.5 we have that for every ψ
and θ ≡ ψ, ϕ ≡ ϕ[ψ/θ]. Thus, also ϕ ≡ CNF (ϕ).

It remains to show that CNF (ϕ) is in conjunctive normal form. First,
notice that CNF (ϕ) does not contain the connectives ↔ and →. Fur-
thermore negations only occur in front of propositional variables. Now,
assume that CNF (ϕ) is not in conjunctive normal form. Then by the
above it contains a subformula of the form ψ ∨ (θ ∧χ) but this can not be
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Algorithm 1 CNF(ϕ)
while (ψ ↔ θ) ∈ sub(ϕ) do . eliminate all occurrences of ↔

ϕ := ϕ[(ψ ↔ θ)/((ψ → θ) ∧ (θ → ψ))]
end while
while (ψ → θ) ∈ sub(ϕ) do . eliminate all occurrences of →

ϕ := ϕ[(ψ → θ)/(¬ψ ∨ θ)]
end while
while ξ := ¬(ψ ∧ θ) ∈ sub(ϕ) or ξ := ¬(ψ ∨ θ) ∈ sub(ϕ) do . push
negation in

if ξ = ¬(ψ ∧ θ) then
ϕ := ϕ[¬(ψ ∧ θ)/(¬ψ ∨ ¬θ)]

else
ϕ := ϕ[¬(ψ ∨ θ)/(¬ψ ∧ ¬θ)]

end if
end while
while ξ := (ψ ∨ (θ ∧ χ)) ∈ sub(ϕ) or ξ := ((ψ ∧ θ) ∨ χ) ∈ sub(ϕ) do .
push ∨ in using distr. ∨

if ξ = (ψ ∨ (θ ∧ χ)) then
ϕ := ϕ[(ψ ∨ (θ ∧ χ))/((ψ ∨ θ) ∧ (ψ ∨ χ))]

else
ϕ := ϕ[((ψ ∧ θ) ∨ χ)/((ψ ∨ χ) ∧ (χ ∨ θ))]

end if
end while
while ¬¬ψ ∈ sub(ϕ) do . ensure that no ¬¬ is occurring

ϕ := ϕ[¬¬ψ/ψ]
end while
return ϕ
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the case as it would have been substituted in one iteration of the second to
last while loop. To see that the propositional variables are the same just
notice that the propositional variables are preserved by the substitutions
in the algorithm.

Example 2.3.2. Find the CNF of ¬(P → (Q ∧R)).

Solution. We proceed according to Algorithm 1.

¬(P → (Q ∧R)) ≡ ¬(¬P ∨ (Q ∧R)) (Def. →)
≡ (P ∧ ¬(Q ∧R)) (De Morgan’s law and ¬¬)
≡ (P ∧ (¬Q ∨ ¬R)) (De Morgan’s law)

J

Example 2.3.3. Find the CNF of ((P ∧Q) ∨ (R ∧ S)).

Solution.

((P ∧Q) ∨ (R ∧ S)) ≡ ((P ∧Q) ∨R) ∧ ((P ∧Q) ∨ S) (Distributivity ∨)
≡ ((P ∨R) ∧ (Q ∨R)) ∧ ((P ∨ S) ∧ (Q ∨ S))

(Distributivity ∨)

J

Similar to conjunctive normal form we can define the dual notions dis-
junctive normal form.

Definition 2.3.3. A formula ϕ is in disjunctive normal form, short DNF,
if ϕ = (C1 ∨ · · · ∨ Cn) where for each 1 ≤ k ≤ n Ck = (l1k ∧ · · · ∧ lm(k)

k )
where for each 1 ≤ i ≤ m(k), lik is a literal. We refer to the Ck as the
conjunctions of ϕ.

We can prove a similar theorem to Theorem 2.3.1 for disjunctive normal
forms of formulas. The proof is symmetric to the one for Theorem 2.3.1.
We thus leave it as an exercise.
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Exercise 2.3.2. For every propositional formula ϕ with propositional
variables P1, . . . , Pn, there is a formula ψ in disjunctive normal form with
the same propositional variables such that ϕ ≡ ψ.

The advantage of formulas in disjunctive normal form is that it is much
simpler to check whether a truth assignment satisfies them. If we are given
a truth assignment e and a formula ϕ in disjunctive normal form it is easy
to verify whether e(ϕ) = T. For instance if ϕ = C1 ∨ · · · ∨ Cn, then by
the semantics of disjunction we know that e(ϕ) = T if and only if there
is an i ≤ n such that e(Ci) = T. But by the semantics of conjunction
e(Ci) = T if and only if for all k ≤ m(i), e(lki ) = T. So we just have
through the Ci and check whether e makes all literals in Ci true.

Example 2.3.4. Let the truth assignment e be defined by e(P ) = T,e(Q) =
F, e(R) = T and

ϕ = (P ∧Q ∧ ¬P ) ∨ (P ∧ ¬R) ∨ (P ∧ ¬Q).

Solution. It is easy to see that e((P ∧Q∧¬P )) = F because e(¬P ) = F.
Likewise, e((P ∧ ¬R)) = F because e(¬R) = F. On the other hand
e((P ∧ ¬Q)) = T because e(P ) = T and e(¬Q) = T. So e(ϕ) = T. J

Notice that while it is conceptually much simpler to test whether a truth
assignment satisfies a formula in disjunctive normal form, in some cases
we still have to check for every conjunction in the formula until we can
verify that e satisfies the formula.
Conjunctive normal form features a property which is dual to that of

disjunctive normal form in the sense that it is simple to check whether a
truth assignment does not satisfy a formula in conjunctive normal form.
Given e and ϕ just check clause by clause whether e satisfies it. If we
find a clause that is not satisfied by e, then we immediately know that
e(ϕ) = F.

Example 2.3.5. Let the truth assignment e be defined by e(P ) = T,e(Q) =
F, e(R) = T and

ϕ = (P ∨Q ∨ ¬P ) ∧ (¬P ∨ ¬R) ∧ (P ∨ ¬Q).
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Solution. We first look at the first clause and see that e((P∨Q∨¬P )) = T
because e(P ) = T, so we check the next clause. We see that e((¬P ∨
¬R)) = F because e(¬P ) = e(¬R) = F. J

2.3.2 A short excursion to computer science
In the field of computer science called complexity theory one studies the
“complexity” of computational problems. A computational problem is
given by a set of instances together with a solution for every instance.
A special case of computational problems are decision problems, prob-
lems where the solution to an instance can either be “yes” or “no”. More
formally, a computational problem is defined as follows.

Definition 2.3.4. A computational problem is given by a set of instances
I, a set of solutions S and a function f : I → S.

Definition 2.3.5. A decision problem is a computational problem where
S = {yes, no}.

Complexity theorists are interested in the complexity of the function f .
It will become clear what we mean by that when we discuss the following
example.

One, if not the most famous decision problem in complexity theory is
SAT, the problem of the satisfiability of propositional formulas in con-
junctive normal form. More formally, SAT is defined as follows:
SAT: The set of instances of SAT are propositional formulas in conjunc-
tive normal form and the function f is the function mapping a formula ϕ
in CNF to “yes” if ϕ is satisfiable and to “no” if it is unsatisfiable.

We have already seen that the problem SAT can be solved by an algo-
rithm, even for all formulas, not only those in conjunctive normal form –
truth tables. First write down all the possible truth assignments for the
variables in ϕ. Then we use the semantics of propositional logic to fill out
the rest of the table row by row. As soon as you find a row in which ϕ is
true stop and return yes. If no such row exists answer no. So we know
that there is an algorithm for the function f .
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The algorithm we developed has a draw back, namely that it is not very
efficient. As the size of the input formula increases the time it takes to
check whether the formula is true increases dramatically. This is true even
for formulas in conjunctive normal form.
Assume that n is the number of clauses in the formula ϕ in conjunctive

normal form. We write down a column for every variable and clause in
ϕ. Now we start by filling out the rows, first filling out the values for
the variables, and then computing the variables for the clauses. We count
every cell containing a clause we fill out as a computation step. We may
stop after we have finished computing a row where all the clauses are
true. But if ϕ is unsatisfiable then we have to go through all the rows.
Assume that the number of variables in ϕ is equal to the number of clauses
n, then there are 2n distinct truth assignments and we will need 2n ·
n computation steps to find the solution. So, in this case the runtime
(number of computation steps) of our algorithm is exponential in the size
of the input. An algorithm which is exponential can not be considered an
efficient algorithm since already for small n, 2n becomes unfeasible large
even for the most modern supercomputers. If we have a formula with
300 variables that is unsatisfiable, then we would have to check 2300 rows,
and this is larger than the number of atoms in the observable universe
(estimated to be 1082). Clearly a ridiculous amount of time which even
on the fastest supercomputers is unfeasible.
In complexity theory we want to classify computational problems given

their runtime into classes called complexity classes. One of the most im-
portant class of problems is the class P, the class of problems which have
polynomial time algorithms – algorithms whose runtime is bound by a
polynomial of the input, for example, n2, or n3 + 10. Polynomial time
algorithms are generally considered to be efficient.
Another important class of problems is the class NP. The name NP

stands for nondeterministic polynomial time. Problems in NP are charac-
terized by admitting the so called guess & check approach to solve them.
For problems in NP it is unknown whether a polynomial time algorithm
exists, but there exists a polynomial time procedure for instances with pos-
itive solutions that makes a nondeterministic guess, and then if it made
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the correct guess it will output yes in polynomial time. Of course the guess
is random, so we might as well be wrong a lot of times before making a
good guess and thus do not have an algorithm which is efficient in general.

The problem SAT is clearly in NP. Given a formula ϕ in CNF ran-
domly choose a truth assignment (guess part). Once we have chosen the
truth assignment we can check whether it makes ϕ true in polynomial time
(in fact linear time). So if ϕ was satisfiable and the algorithm guessed the
correct truth assignment, then it is able to answer yes in polynomial time.

Also, clearly P ⊆ NP. One of the most famous open questions in com-
puter science is whether this inclusion is strict, i.e., whether P = NP. The
problem SAT is in another important class of problems, the class of NP-
hard problems. A problem is NP-hard if for every P ∈ NP there exists a
polynomial time algorithm Φ, also called a reduction, that takes as input
an instance i of P and outputs an instance Φ(i) such that the solution of
i is yes if and only if the solution for Φ(i) is yes. This implies that if we
have found a polynomial time algorithm for SAT, then we would get a
polynomial time algorithm for every problem in NP. Thus we would have
shown that P = NP.

A problem P is NP-complete if it is NP-hard and P ∈ NP. Not only is
SAT NP-complete, it was also the first problem known to be NP-complete
and most of the problems which are nowadays known to be NP-complete
have been shown to be NP-complete by giving a reduction from SAT. If
there is a reduction from SAT to P , then P is NP-hard since reductions
are transitive.

Notice that just because a problem is in NP and thus the best known
algorithms for it do not run in polynomial time does not mean that we can
not solve this problem efficiently in practice. It just means that for some
instances in that problem we will need exponential time, even with the best
known algorithms. But for instance, for SAT we know algorithms which
work very well in practice and will check satisfiability of propositional
formulas within very little time in most cases.
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2.3.3 Satisfiability revisited
In Section 2.2.2 we defined what it means for a formula ϕ to be satisfiable.
We can extend this definition to sets of formulas.

Definition 2.3.6. Let Γ be a set of formulas. We say that Γ is satisfiable,
if there is a truth assignment e such that e(γ) = T for all γ ∈ Γ. We may
write e(Γ) = T if e(γ) = T for all γ ∈ Γ. If Γ is not satsifiable, then we
say that Γ is unsatisfiable.

Proposition 2.3.6. Let Γ be a set of formulas and let ϕ be a formula.
Then the following holds.

1. If Γ is satisfiable and Γ |= ϕ, then Γ ∪ {ϕ} is satisfiable.

2. Γ 6|= ϕ if and only if Γ ∪ {¬ϕ} is satisfiable.

Proof. The first statement follows from the definition of logical conse-
quence. If Γ is satisfiable then there is e such that e(Γ) = T. Since Γ |= ϕ
this implies that e(ϕ) = T. Thus e(Γ ∪ {ϕ}) = T.
For the second statement we first show the direction from left to right.

If Γ 6|= ϕ then by definition of logical consequence Γ is satisfiable. Thus
there is e such that e(Γ) = T. Furthermore, e(ϕ) = F. Hence, e(¬ϕ) = T
and e(Γ ∪ {¬ϕ}) = T. For the other direction assume that Γ ∪ {¬ϕ} is
satisfiable. Let e be a assignment satisfying Γ ∪ {¬ϕ}, then e(¬ϕ) = T
and therefore e(ϕ) = F. As e(Γ) = T, the assignment e witnesses that
Γ 6|= ϕ.

Exercise 2.3.3. Let Γ be a finite set of formulas, i.e., Γ = {γ1, . . . , γn}.
Then (γ1 ∧ · · · ∧ γn) is satisfiable if and only if Γ is satisfiable.

This exercise allows us to consider formulas in conjunctive normal form
as a set of clauses. On the other hand, given a clause C, we could also
write it as a set of literals without any ambiguity, since disjunction is
commutative. We will from now on call such a set a clause set.

Definition 2.3.7. A clause set (sometimes also just clause) is a (possibly
empty) finite set of literals.
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Definition 2.3.8. A set Γ of clause sets is satisfiable if and only if there
is at least one truth assignments e such that for every clause set C ∈ Γ,
there is some literal l ∈ C with e(l) = T.

Example 2.3.7. The set {{P,¬Q}, {Q,P}} is satisfiable.

Notice that a set of clauses containing the empty clause (empty set) can
not be satisfiable by definition.

Example 2.3.8. The set {{P,¬P}, {}} is not satisfiable.

Motivated by the observation preceding Definition 2.3.7 we may define
for every formula in conjunctive normal form ϕ, the set

C(ϕ) = {{l ∈ C} : C a clause in ϕ}.

It is now not hard to check that C(ϕ) as a set of clauses is satisfiable if
and only if ϕ is satisfiable. On the other hand we also have that for every
finite set of clause sets Γ we can get a formula ϕΓ which is satisfiable if
and only if Γ is. If Γ does not contain the empty clause then we can just
replace the clause sets with the respective disjunctions. And if we have an
empty clause we just let ϕΓ = A ∧ ¬A.

Notice how we have just described a reduction from SAT to the problem
of satisfying sets of clauses and vice versa. It is not hard to see that these
reductions are polynomial time reductions. In fact they are linear in the
size of the sets.

2.3.4 The resolution rule and the Davis-Putnam algorithm
We want to find an algorithm that tests sets of propositional formulas in
conjunctive normal form for satisfiability. The original algorithm we will
discuss is due to Martin Davis and Hilary Putnam. Since it is invention
in the 1960 it has seen considerable improvements. However, it is still the
core of many modern programs that test formulas for satisfiability (usually
called SAT-solvers).

The algorithm is based on the following rule.
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Definition 2.3.9. Let C1 = {a1, . . . , an, X} and C2 = {b1, . . . , bm,¬X} be
clauses, then the resolution rule is:

{a1, . . . , an, X} {b1, . . . , bm,¬X}
{a1, . . . , an} ∪ {b1, . . . , bm}

We call {a1, . . . , an} ∪ {b1, . . . , bm} the resolvent of C1 and C2 and (C1, C2)
a resolution pair for X.

The rule is to be interpreted as “given a clause set Γ containing {a1, . . . , an, C}
and {b1, . . . , bm,¬C} with contradicting literals c, ¬C, add the union of
the two clauses minus {C,¬C} to the clause set”.
We will encounter rules like this at various points of this cause. At

the top we always have some premises, the dividing line may be read as
“entails” or “infer” and the content after the line is what we may infer
from the premises using the rule.
At a single step in our arguments we will not use only one application

but rather will do resolution on X where X is a variable.

Definition 2.3.10. Let Γ be a set of clauses and X be a propositional
variable. To perform resolution on X for Γ, do the following:

1. Remove all clauses C ∈ Γ with {X,¬X} ⊆ C.

2. Apply the resolution rule for all remaining resolution pairs for X in
Γ.

3. Remove all clauses C ∈ Γ with either X ∈ C or ¬X ∈ C.

Example 2.3.9. Perform resolution on P for

Γ = {{P,Q,R}, {P,¬R}, {P,¬P,Q}, {¬P,R}, {¬P,Q,¬S}, {Q}, {¬Q,R}}

Solution. We first remove all the clauses containing both P and ¬P . The
resulting clause set is

{{P,Q,R}, {P,¬R}, {¬P,R}, {¬P,Q,¬S}, {Q}, {¬Q,R}}.

Next we resolve all the resolution pairs for P . We get the following in-
stances of the resolution rules:
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{P,Q,R} {¬P,R}
{Q,R}

{P,Q,R} {¬P,Q,¬S}
{Q,R,¬S}

{P,¬R} {¬P,R}
{¬R,R}

{P,¬R} {¬P,Q,¬S}
{¬R,Q,¬S}

So, after application of resolution on X we have

Γ = {{Q,R}, {R,¬R}, {Q,R,¬S}, {¬R,Q,¬S}, {Q}{¬Q,R}}.

J

The Davis Putnam procedure (or Davis Putnam algorithm) is now de-
fined as in the Fig. 2.1. Note that we use ¬l to denote the converse of l,
i.e., if l = X, then ¬l is ¬X and if l = ¬X, then l = X.

Example 2.3.10. Use the DPP to decide whether

{{P,Q,R}, {P,¬R}, {P,¬P,Q}, {¬P,R}, {¬P,Q,¬S}, {Q}, {¬Q,R}}

is satisfiable.

Solution. Since {P,¬P,Q} contains both P and ¬P we remove it to
obtain:

{{P,Q,R}, {P,¬R}, {¬P,R}, {¬P,Q,¬S}, {Q}, {¬Q,R}}

There is no clause containing S, so we may remove {¬P,Q,¬S} and obtain:

{{P,Q,R}, {P,¬R}, {¬P,R}, {Q}, {¬Q,R}}

We do resolution on P :
{P, Q, R} {¬P, R}

{Q,R}
{P,¬R} {¬P, R}

{R,¬R}
We obtain

{{Q,R}, {R,¬R}, {Q}, {¬Q,R}}

We can remove {R,¬R} and get:

{{Q,R}, {Q}, {¬Q,R}}
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Γ

For all literals l such that ¬l is not contained in any clause,
remove all clauses containing l

Choose a variable X that appears in Γ, perform resolution on X

∅ ∈ Γ? Γ is unsatisfiable

Γ = ∅? Γ is satisfiable

yes

no

yesno

Figure 2.1: The Davis Putnam procedure for propositional logic

As ¬R does not occur in any clauses, we may remove all clause including
R and get

{{Q}}

We may now remove {Q} as ¬Q does not occur and get the empty set ∅.
Therefore the original set is satisfiable.

J
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We still need to show that the Davis Putnam procedure is correct, i.e.,
that Γ is satisfiable if and only if the procedure returns yes, and that Γ
is unsatisfiable if and only if the procedure returns no. Notice that both
of these statements are necessary, as it theoretically might be the case
that the algorithm gets stuck in a loop and never returns anything as it
does not terminate. However, it is not hard to see that the procedure
always terminates. Just notice that after each resolution step, the num-
ber of variables in Γ reduces by 1. So, as any finite set of clauses only
consists of finitely many variables, say n, the procedure is guaranteed to
terminate after n many iterations of the loop. However, notice that while
resolution on X will remove the clauses containing X, it will introduce
new clauses. For instance, assume there are 6 clauses containing X and 6
clauses containing ¬X but that the clauses are disjoint apart from that.
Then resolution on X will introduce 6 · 6 new clauses.

To improve readability let the rule “For all literals l such that ¬l is not
contained in any clause, remove all clauses containing l” be from now on
called the unnegated literal removal rule. (In the lecture we called it rule
*)

To show that the Davis Putnam procedure it is sufficient to show that
both resolution on X and unnegated literal removal preserve satisfiability.

Lemma 2.3.11. Unnegated literal removal preserves satisfiability, i.e.,
if Γ̂ is the result of applying unnegated literal removal to Γ, then Γ is
satisfiable if and only if Γ̂ is satisfiable.

Proof. First we show the direction from left to right, i.e., if Γ is satisfiable
then so is Γ̂. Towards that assume that Γ is satisfiable and let e be a truth
assignment satisfying Γ. Then for all clauses C ∈ Γ, e(C) = T. But as
unnegated literal removal does not introduce literals we have Γ̂ ⊆ Γ and
thus e(C) = T for all C ∈ Γ̂. Therefore Γ̂ is satisfiable.

To see that Γ̂ is satisfiable implies Γ is satisfiable, assume that Γ̂ is
satisfied by e. Any clause C ∈ Γ \ Γ̂ has a literal l in it whose negation
does not occur in Γ. Furthermore, neither l nor ¬l occur in Γ̂ and hence
we may assume that e is undefined on l. This means that if l = X or
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l = ¬X, for a propositional variable X, e(X) is not defined. If l = ¬X,
then set e(X) = F, and if l = X, then set e(X) = T. Then e(C) = T
is true for every C ∈ Γ containing l. Extending e like this for every l so
that ¬l does not occur in Γ clearly gives a satisfying truth assignment for
Γ.

Lemma 2.3.12. Let Γ be a set of clauses and Γ̂ be obtained from Γ by
resolution on X for some variable X occurring in Γ. Then Γ is satisfiable
if and only if Γ̂ is satisfiable.

Proof. We first show the direction from left to right, that is if Γ is sat-
isfiable, then so is Γ̂. Assume that Γ is satisfiable and that e is a truth
assignment satisfying Γ. Clauses in Γ̂ are either of the form B with B ∈ Γ
where neither X ∈ B nor ¬X ∈ B. Or they are of the form C ∪ D where
{X} ∪ C ∈ Γ and {¬X} ∪ D ∈ Γ.
If B is the first type of clause, then we have that there is an l ∈ B with

e(l) = T since e satisfies Γ.
If B is the second type of clause, then we have two cases, either e(X) =

T, then there exists l1 ∈ D such that e(l1) = T as e(D ∪ {¬X}) = T
because e satisfies Γ. Or e(X) = F, then there exists l2 ∈ C such that
e(l2) = T as e(C∪{X}) = T because e satisfies Γ. In either case e(C∪D) =
T because both l1, l2 ∈ C ∪ D. This shows that Γ̂ is satisfiable.
Now assume that Γ̂ is Γ after resolution on X for some variable X and

that Γ̂ is satisfied. Say Γ̂ is satisfied by e and that e(X) is not defined
(We may assume this as X does not occur in Γ̂). We extend e to satisfy
Γ by defining e(X). If B ∈ Γ̂ and B ∈ Γ, then we have nothing to do
since e(l) = T for a literal in B. Any clause containing X and ¬X in Γ is
satisfied, no matter if we set e(X) = T or e(X) = F. If B ∈ Γ̂ and B 6∈ Γ
then B = C ∪ D where C ∪ {X} ∈ Γ and D ∪ {¬X} ∈ Γ. Let C1, . . . , Cn
and D1, . . . ,Dm be all clauses such that Ci ∪ {X} ∈ Γ and Dj ∪ {¬X} ∈ Γ
for i ≤ n, j ≤ m. We know that for all Ci ∪ Dj , i ≤ n, j ≤ m, e satisfies
some literal in Ci ∪ Dj . If for every i ≤ n, e satisfies some literal in Ci, we
may set e(X) = F and get that e satisfies all clauses Di ∪ {¬X} and thus
Γ. Similarly, if e satisfies some literal in Di for all i ≤ n, then we can set
e(X) = T and get that e satisfies Γ.
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Now, assume that e does not satisfy a literal in some Cj , j ≤ n, then Γ̂
contains

Cj ∪ D1, Cj ∪ D2, . . . , Cj ∪Dn

and therefore Di as well as Di ∪ {¬X} are satisfied by e. So we can set
e(X) = T and e now satisfies Ci ∪ {X}, for all i ≤ n, and in particular
Cj ∪{X}. It might also be the case that after removing clauses containing
both X and ¬X from Γ, we can not find any resolution pairs but that X
still occurs in Γ. But this might only happen if X occurs only positively
in Γ (i.e., ¬X does not occur in Γ), or if X occurs only negatively (i.e., X
does not occur in Γ). In the first case we can just set e(X) = T and get
that every clause in Γ is then satisfied, and in the latter case we can set
e(X) = F and get that every clause is satisfied. Thus also Γ is satisfied
by e.

Theorem 2.3.13. The Davis Putnam procedure terminates on all inputs
and is correct, i.e., DPP(Γ) = yes iff Γ is satisfiable.

Proof. As discussed in the paragraph above Lemma 2.3.11 DPP termi-
nates on any set of clauses, as the number of variables occurring in Γ is
strictly less after an iteration of the loop in the DPP than before.

To show that Γ is correct it is sufficient to show that every step in
the algorithm preserves satisfiability of formulas. To see this, notice that
when DPP terminates on input Γ, then what remains of Γ is either the
emptyset ∅ or the empty clause is an element of Γ. Let Γ̂ be the remains
of Γ after the DPP terminated. Then if all the steps preserve satisfiability,
Γ is satisfiable if and only if Γ̂ is. Either Γ̂ is unsatisfiable, then ∅ ∈ Γ̂ and
the DPP answers no. Or Γ̂ is empty. Then DPP answers yes. So the DPP
would be correct.

We have already seen in Lemmas 2.3.11 and 2.3.12 that all steps pre-
serve satisfiability. So we can conclude that the Davis Putnam procedure
terminates on all inputs and is correct.

Notice that by the comments just before Section 2.3.4 we can use the
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DPP procedure to check the satisfiability of formulas in CNF and even
arbitrary formulas. Given a propositional formula ϕ:

1. Transform ϕ into CNF.

2. Get a set of clauses Γ from the CNF of ϕ.

3. Use the Davis Putnam Procedure to check whether Γ is satisfiable.

Checking satisfiability using only the resolution rule

Note that if Γ is unsatisfiable, then the Davis Putnam procedure will run
until it contains the empty clause. What if we were not to remove any
clauses from Γ at each step and instead just add the new clauses derivable
by the resolution rule to Γ? Then we would have no hope to ever get
the empty set but if Γ was unsatisfiable then we would obtain the empty
clause. Let us make this idea more formal.

Definition 2.3.11. Let Γ be a set of clauses. Then Res(Γ) is the set of
resolvents of all resolution pairs in Γ. Furthermore, let

Res0 = Γ and Resn+1(Γ) = Res(Resn(Γ)) ∪Resn(Γ).

Theorem 2.3.14. Let Γ be a finite set of clauses. Then there is n ∈ N
such that Resn+1(Γ) = Resn(Γ). Furthermore, Γ is unsatisfiable if and
only if ∅ ∈ Resn(Γ).

Proof. Say there are m variables occuring in Γ. Let varΓ be the set of
variables in Γ. Then, every clause having variables from varΓ is a subset
of

varΓ ∪ {¬P : P ∈ varΓ}.

Notice that there are only 22m subsets of this set. So Res2
2m+1(Γ) =

Res2
2m

(Γ). This proves the first statement of the theorem.
It remains to show that Γ is unsatisfiable if and only if ∅ ∈ Resn(Γ). We

first show the direction from left to right. To see that if Γ is unsatisfiable,
then ∅ ∈ Resn(Γ) notice that if ∆ is a set of clauses and ∆̂ is the result
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of applying literal removal and resolution on X for some X to ∆. Then
∆̂ ⊆ Res(∆) ∪ ∆. Now if Γ is unsatisfiable, then after applying literal
removal and resolution on some variable X a finite number, say m, times,
DPP obtains the empty clause, i.e., if Γm is Γ after m applications of this
rule then ∅ ∈ Γm and by induction Γm ⊆ Resm(Γ). Thus ∅ ∈ Γm.

To see that ∅ ∈ Resn(Γ) implies that Γ is unsatisfiable first notice that
if ∅ ∈ Resn(Γ), then by definition Resn(Γ) is unsatisfiable. It is therefore
sufficient to show that Resn(Γ) is satisfiable if and only if Γ is satisfiable.
We proof this by induction on n. If n = 0, the statement is clear. Assume
as the hypothesis that the theorem holds for n − 1, i.e., that Resn−1(Γ)
is satisfiable if and only if Γ is satisfiable. It is sufficient to show that
Resn(Γ) is satisfiable if and only if Resn−1(Γ) is satisfiable. First assume
that Resn(Γ) is satisfiable. Then, as Resn−1(Γ) ⊆ Resn(Γ), Resn−1(Γ) is
also satisfiable by definition. On the other hand assume that Resn−1(Γ)
is satisfied by the truth assignment e. If B ∈ Resn(Γ) and B 6∈ Resn−1(Γ)
then B is obtained by an application of the resolution rule. Let C ∪ {X}
and D ∪ {¬X} be a resolution pair in Resn−1(Γ). Then there is a truth
assignment e satisfying the two clauses. If e(X) = T, then there is a literal
l ∈ D with e(l) = T and therefore the resolvent C ∪ D is satisfied by e. If
e(X) = F, then there is a literal l ∈ C with e(l) = T and therefore C ∪ D
is again satisfied by e. Therefore every clause obtained by resolution is
satisfied by e and thus e satisfies Resn(Γ).

Lets look at some examples.

Example 2.3.15. The set Γ = {{¬P}, {R,S}, {¬R,P}} is satisfiable.

Solution.

Res0(Γ) = Γ

Res1(Γ) = {{¬P}, {R,S}, {¬R,P}, {¬R}, {S, P}}
Res2(Γ) = Res1(Γ) ∪ {{S}}
Res3(Γ) = Res2(Γ)

J
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Since iterating Res derives every clause that is derivable by the resolu-
tion rule and therefore it will also derive ∅ it is sometimes easier to just
calculate the resolvents we need to derive ∅ instead of calculating all re-
solvents. In this case it is often common to picture this process in some
kind of tree.

Example 2.3.16. The set Γ = {{¬P}, {P,Q}, {P,¬Q}} is unsatisfiable.

Solution. It is possible to obtain the emptyset from Γ as can be seen from
the following derivation.

{P,Q} {P,¬Q}
res. Q

{P} {¬P}
res. P

∅

An alternative derivation is:

{P,Q} {¬P}
res. P

{Q}
{P,¬Q} {¬P}

res. P
{¬Q}

res. Q
∅

J

2.4 Proof systems for propositional logic

This part of the notes is based on the open logic text:
https://openlogicproject.org/

Logics commonly have both a semantics and a derivation, or proof sys-
tem. The semantics concerns concepts such as truth, satisfiability, validity,
and entailment. The purpose of proof systems is to provide a purely syn-
tactic method of establishing entailment and validity. They are purely
syntactic in the sense that a proof (or derivation in such a system is a
finite syntactic object, usually a sequence (or other finite arrangement) of
sentences formulas (in the case of propositional logic sentences are just
formulas). Good proof systems have the property that any given sequence
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or arrangement of sentences or formulas can be verified mechanically to
be “correct.”

The simplest (and historically first) derivation systems were axiomatic.
A sequence of formulas counts as a proof in such a system if each individ-
ual formula in it is either among a fixed set of “axioms” or follows from
formulas coming before it in the sequence by one of a fixed number of
“inference rules”—and it can be mechanically verified if a formula is an
axiom and whether it follows correctly from other formulas by one of the
inference rules. Axiomatic proof systems are easy to describe but proofs
in them are hard to read and understand, and are also hard to produce.

Other proof systems have been developed with the aim of making it
easier to construct proofs or easier to understand proofs once they are
complete. Examples are natural deduction, truth trees, also known as
tableaux proofs, and the sequent calculus.

So for a given logic, such as first-order logic, the different proof systems
will give different explications of what it is for a sentence to be a theorem
and what it means for a sentence to be derivable from some others. How-
ever that is done, we want these relations to match the semantic notions of
validity and entailment. Let’s write ` ϕ for “ϕ is a theorem” and “Γ ` ϕ”
for “ϕ is derivable (or provable( from Γ.” However ` is defined, we want
it to match up with |=, that is:

1. ` ϕ if and only if |= ϕ

2. Γ ` ϕ if and only if Γ |= ϕ

The “only if” direction of the above is called soundness. A proof system
is sound if provability ` guarantees logical entailment |=. So, colloquially,
it is sound if everything that is derivable in it is true from a point of view
of semantics. Every decent proof system has to be sound; unsound proof
systems are not useful at all. After all, the entire purpose of a proof is
to provide a syntactic guarantee of validity or entailment. We’ll prove
soundness for the proof systems we present.

The converse “if” direction is also important: it is called completeness.
A complete proof system is strong enough to show that ϕ is a theorem
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whenever ϕ is valid, and that Γ ` ϕ whenever Γ |= ϕ. Completeness is
harder to establish, and some logics have no complete proof systems. Both
propositional logic and First-order logic (which we will discuss in Chapter
3) do. Kurt Gödel was the first one to prove completeness for a proof
system of first-order logic in his 1929 dissertation.

2.4.1 An axiomatic derivation system
Axiomatic derivation systems are perhaps the simplest proof system for
logic. A derivation is just a sequence of formulas. To count as a derivation,
every formula in the sequence must either be an instance of an axiom, or
must follow from one or more formulas that precede it in the sequence by
a rule of inference. A derivation derives its last formula.
Axiomatic derivation systems have been invented by Frege and are

therefore often called “Frege systems”. They are also often referred to
as “Hilbert systems”. The reason for that is probably because of Hilbert’s
ambitious planned to develop all of mathematics from a small set of axioms
using a formal proof system.

Definition 2.4.1. If Γ is a set of propositional formulas then a derivation
from Γ is a finite sequence ϕ1, …, ϕn of formulas where for each i ≤ n one
of the following holds:

1. ϕi ∈ Γ; or

2. ϕi is an axiom; or

3. ϕi follows from some ϕj (and ϕk) with j < i (and k < i) by a rule
of inference.

The last clause tells us how to derive new statements from Γ. Rules of
inference can be read as if then statements saying “If ϕk and ϕj are in the
derivation, then it is legal to have ϕi in the derivation.”

A proof system is defined by its axioms, rules of inference and what
counts as a derivation. Associated to it are the notions of derivability and
theorem.
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Definition 2.4.2. A formula ϕ is derivable from Γ, written Γ ` ϕ, if there
is a derivation from Γ ending in ϕ.

Definition 2.4.3. A formula ϕ is a theorem if there is a derivation ϕ from
the ∅. We write ` ϕ if ϕ is a theorem and ¬ϕ if it is not.

What counts as a correct derivation depends on the rules of inference
and axioms we allow. Rules of inference can be read as if then statements.

Our proof system will have one rule of inference.

Definition 2.4.4 (Modus ponens). Let ϕ and ψ be formulas. Then modus
ponens is the following rule:

(ϕ→ψ) ϕ

ψ

The rule is to be read as follows: “If we have (ϕ→ ψ) in our derivation
and ϕ in our derivation, then it is legal to have ψ in our derivation”.

We still need to give our axioms. We would probably get away with
using less axioms but then we would have to write longer proofs. We give
the axioms as schemes, saying for example “If θ is a formula of the form

((ϕ ∧ ψ) → ϕ)

for some formulas ϕ and ψ, then it is an axiom”. So our set of axioms
will be infinite but it will only contain formulas of specific forms. And we
can check mechanically (using e.g. a computer or by just investigating a
formula ourselves) whether a given formula matches one of the schemes,
and therefore is an axiom.

Definition 2.4.5 (Axioms). The set of axioms of our proof system is the
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set of all formulas of the form:

((ϕ ∧ ψ) → ϕ) (Ax 1)
((ϕ ∧ ψ) → ψ) (Ax 2)
(ϕ→ (ψ → (ϕ ∧ ψ))) (Ax 3)
(ϕ→ (ϕ ∨ ψ)) (Ax 4)
(ϕ→ (ψ ∨ ϕ)) (Ax 5)
((ϕ→ χ) → ((ψ → χ) → ((ϕ ∨ ψ) → χ))) (Ax 6)
(ϕ→ (ψ → ϕ)) (Ax 7)
((ϕ→ (ψ → χ)) → ((ϕ→ ψ) → (ϕ→ χ))) (Ax 8)
((ϕ→ ψ) → ((ϕ→ ¬ψ) → ¬ϕ)) (Ax 9)
(¬ϕ→ (ϕ→ ψ)) (Ax 10)
(ϕ ∨ ¬ϕ) (Ax 11)
((ϕ ∧ ¬ϕ) → ψ) (Ax 12)
((ϕ→ (ψ ∧ ¬ψ)) → ¬ϕ) (Ax 13)
(¬¬ϕ→ ϕ) (Ax 14)

Example 2.4.1. ` ((¬P ∨Q) → (P → Q)).

Proof. The formula ((¬P ∨ Q) → (P → Q)) is not the instantiation of
any of our axioms, but if we look at (Ax 6) and instantiate it using χ =
(P → Q), ϕ = ¬P and ψ = Q, then we get that the conclusion of the
fourth implication is what we want. So we will try to use (Ax 6), some
other axioms and modus ponens to obtain ` ((¬P ∨Q) → (P → Q)). The
derivation looks as follows:
` ((¬P ∨Q) → (P → Q))

1.
2.
3.
4.
5.

((¬P → (P → Q)) → ((Q→ (P → Q)) → ((¬P ∨Q) → (P → Q))))
(¬P → (P → Q))

((Q→ (P → Q)) → ((¬P ∨Q) → (P → Q)))
(Q→ (P → Q))

((¬P ∨Q) → (P → Q))

(Ax 6)
(Ax 10)
1, 2 MP
(Ax 7)
3, 4 MP
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Example 2.4.2. {(ϕ→ ψ), (ψ → χ)} ` (ϕ→ χ).

Proof. {ϕ→ ψ,ψ → χ} ` ϕ→ χ

1.
2.
3.
4.
5.
6.
7.

(ϕ→ ψ)
(ψ → χ)

((ψ → χ) → (ϕ→ (ψ → χ)))
(ϕ→ (ψ → χ))

((ϕ→ (ψ → χ)) → ((ϕ→ ψ) → (ϕ→ χ)))
((ϕ→ ψ) → (ϕ→ χ))

(ϕ→ χ)

hyp
hyp
(Ax 7)
2, 3 MP
(Ax 8)
4, 5 MP
1, 6 MP

Proposition 2.4.3. If Γ ` (ϕ→ ψ) and Γ ` (ψ → χ), then Γ ` (ϕ→ χ).

Proof. Suppose Γ ` (ϕ → ψ) and Γ ` (ψ → χ). Then there are deriva-
tions θ0, . . . θn = (ϕ → ψ) and γ0, . . . , γm = ψ → χ from Γ. Let the
formulas ξ3, . . . , ξ7 be the formulas from the steps 3.-7. in the derivation
in Example 2.4.2. Then

θ0, . . . θn, γ0, . . . , γm, ξ3, . . . , ξ7 = (ϕ→ χ)

is a derivation of (ϕ→ χ) from Γ.

Facts about derivability

In Definitions 3.4.4 and 3.4.5 we defined derivability (provability) and
theorems. These notions are the corresponding proof-theoretic notions to
validity and entailment.

In Definition 2.3.6 we defined what it means for a set of formulas to be
satisfiable. The corresponding proof-theoretic notion is consistency.

Definition 2.4.6. A set Γ of formulas is consistent if and only if there
exists ϕ such that Γ 6` ϕ; it is inconsistent otherwise.

Notice that the notions of consistency and derivability depend on the
proof system. If we change the axioms to obtain a different proof system
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then we get different consistent sets. For instance, consider the proof sys-
tem obtained by adding ϕ∧¬ϕ to our axioms. Then by (Ax 12) everything
is derivable from this system and thus every set is inconsistent.
Let us proof a few facts about the derivability relation.

Proposition 2.4.4 (Reflexivity). If ϕ ∈ Γ, then Γ ` ϕ.

Proof. ϕ is a derivation from Γ ending in ϕ.

Proposition 2.4.5 (Monotonicity). If Γ ⊆ ∆ and Γ ` ϕ, then ∆ ` ϕ.

Proof. Every derivation from Γ is a derivation from ∆.

Proposition 2.4.6 (Transitivity). If Γ ` ϕ and {ϕ}∪∆ ` ψ, then Γ∪∆ `
ψ.

Proof. Suppose Γ ` ϕ and {ϕ} ∪ ∆ ` ψ. Then there exists a derivation
from Γ of ϕ and a derivation from {ϕ} ∪ ∆ of ψ. The concatenation of
these two derivations is a derivation from Γ ∪∆.

Proposition 2.4.7 (Compactness). 1. If Γ ` ϕ, then there is finite
Γ0 ⊆ Γ so that Γ0 ` ϕ.

2. If every finite subset of Γ is consistent, then Γ is consistent.

Proof. ad (1). If Γ ` ϕ, then there exists a derivation θ0, . . . , θn = ϕ from
Γ. Let Γ0 = {θi : i ≤ n and θi ∈ Γ}. Then θ0, . . . , θn is also a derivation
from Γ0 and Γ0 is finite as required.
ad (2). We show the contrapositive: If Γ is inconsistent, then there is

a finite subset of Γ that is inconsistent. We will need the following claim
the proof of which is left as an exercise.

Claim 2.4.7.1. A set Γ is inconsistent if and only if Γ ` (ϕ ∧ ¬ϕ) for
some formula ϕ.

Now if Γ is inconsistent, then Γ ` (ϕ ∧ ¬ϕ) by the claim. Then by (1)
there exists finite Γ0 ⊆ Γ such that Γ0 ` (ϕ ∧ ¬ϕ) and this again implies
that Γ0 is inconsistent.
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We leave the proof of the following proposition as an exercise.

Proposition 2.4.8. A set of formulas Γ is inconsistent if and only if
Γ ` ϕ and Γ ` ¬ϕ for some formula ϕ.

Soundness of our derivation system

The most essential things any proof system should have are: (1) sound-
ness, everything that is derivable in our system should also be true. (2)
Completeness, everything that is true should be derivable in our system.

We will first start proving soundness of our system. Recall that what is
a derivation depends on the system. So, in our case, on our axioms and
rule of inference.

We first prove that all our axioms are valid and that our rule of inference,
modus ponens, preserves truth.

Lemma 2.4.9. Every formula ϕ of the form of an axiom defined in Def-
inition 2.4.5 is valid.

Proof. Exercise.

Lemma 2.4.10. Let ϕ and ψ be formulas. Then {ϕ, (ϕ→ ψ)} |= ψ.

Proof. Exercise.

Theorem 2.4.11 (Soundness). Let Γ be a set of propositional formulas.
If Γ ` ϕ, then Γ |= ϕ.

Proof. We proof this by induction on the length of the derivation ϕ1, . . . , ϕn =
ϕ from Γ recall the definition of a derivation from Definition 2.4.1. The
base case is when n = 1. Then the derivation is ϕ1 = ϕ and ϕ is either
an axiom or ϕ ∈ Γ. We have to show that for every truth assignment e so
that e(γ) = T for γ ∈ Γ, e(ϕ) = T. If ϕ is an axiom then it is valid by
Lemma 2.4.9 and thus e(ϕ) = T for every e. On the other hand if ϕ ∈ Γ
then the implication holds trivially.

Suppose that for every ψ that has a derivation from Γ of size less than
n, Γ ` ψ implies Γ |= ψ. Let ϕ have a derivation of length n from Γ,
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i.e., there is a derivation ϕ1, . . . , ϕn = ϕ. There are three cases. If ϕ is
an axiom or ϕ ∈ Γ, then Γ |= ϕ by a similar argument as in the base
case. If ϕ is not an axiom or ϕ 6∈ Γ, then ϕ must be derived from ϕi and
ϕj = ϕi → ϕ using modus ponens for some i, j < n. Clearly, ϕ1, . . . , ϕi
and ϕ1, . . . ϕj are derivations of size less than n, so by hypothesis Γ |= ϕi
and Γ |= (ϕi → ϕ). It is now easy to see that for every truth assignment
e with e(γ) = T for all γ ∈ Γ, e(ϕ) = T. Because if e(γ) = T for all
γ ∈ Γ, then e(ϕi) = T and e((ϕi → ϕ)) = T. Thus by semantics of →,
e(ψ) = T.

The deduction theorem

Proving things in our axiomatic calculus can in some cases be cumbersome.
The deduction theorem is a handy theorem about our calculus that makes
many proves easier.

Theorem 2.4.12 (Deduction theorem). Let Γ be a set of propositional
formulas and ϕ, ψ be formulas. Then Γ ` (ϕ→ ψ) if and only if Γ∪{ϕ} `
ψ.

Proof. The direction from left to right is trivial. If Γ ` (ϕ → ψ), then by
Proposition 2.4.5 also Γ∪ {ϕ} ` (ϕ→ ψ). Let ϕ1, . . . , ϕn = (ϕ→ ψ) be a
derivation from Γ then we can extend the derivation by

n.
n+1.
n+2.

(ϕ→ ψ)
ϕ
ψ

hyp
n, n+1 MP

to obtain a derivation of ψ from Γ ∪ {ϕ}.
We will proof the direction from right to left by induction on the length

of the derivation of ψ from Γ ∪ {ϕ}. For the base case of the induction
assume that ψ is derivable from Γ ∪ {ϕ} using a derivation of length 1.
Then either ψ is an axiom or ψ ∈ Γ∪{ϕ}. If ψ ∈ Γ or ψ is an axiom then
the following is a derivation of (ϕ→ ψ) from Γ:
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1.
2.
3.

ψ
(ψ → (ϕ→ ψ))

(ϕ→ ψ)

hyp or axiom
(Ax 7)
1, 2 MP

If ψ = ϕ, then we have to show that Γ ` (ϕ→ ϕ) which is an assignment.
For the induction step suppose a derivation of ψ from Γ ∪ {ϕ} ends with
ψ justified by modus ponens (If not, then either ψ = ϕ, or ψ is an axiom
and we can reason as in the base case). Then some previous steps in the
derivation are (χ→ ψ) and χ for some formula χ. Hence Γ∪{ϕ} ` (χ→ ψ)
and Γ ∪ {ϕ} ` χ with shorter derivations (the derivation of ψ cut off at
the respective formulas), so the inductive hypothesis applies to them. So
we have:

Γ ` (ϕ→ (χ→ ψ))

Γ ` (ϕ→ χ)

By (Ax 8) we have that

Γ ` ((ϕ→ (χ→ ψ)) → ((ϕ→ χ) → (ϕ→ ψ)))

and two applications of modus ponens give Γ ` (ϕ→ ψ), as required.

2.4.2 The Completeness Theorem
The completeness theorem is one of the most fundamental results in logic.
It was proven for first order logic (the big brother of propositional logic)
by Kurt Gödel in his PhD thesis in 1929. It has several formulations.
The most common is that everything that follows logically from a set of
sentences, has a derivation from these set of sentences. A second equiv-
alent formulation of this result is that every consistent set of formulas is
satisfiable. Before we show that these two formulations are equivalent we
have to show some additional facts about consistent sets.

Lemma 2.4.13. Let Γ be a set of formulas and let ϕ be a formula.

1. If Γ is consistent, and Γ ` ϕ, then Γ ∪ {ϕ} is consistent.
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2. If Γ 6` ϕ, then Γ ∪ {¬ϕ} is consistent.

Proof. We first proof (1). Suppose Γ is consistent and Γ ` ϕ. Assume
towards a contradiction that Γ∪{ϕ} is inconsistent. Let ψ be an arbitrary
formula, then Γ ∪ {ϕ} ` ψ. By the deduction theorem we get that Γ `
(ϕ → ψ). Since Γ ` ϕ we can use modus ponens to get Γ ` ψ. As ψ was
arbitrary, this shows that Γ is inconsistent, a contradiction.
For (2), suppose that Γ 6` ϕ and assume that Γ ∪ {¬ϕ} is inconsistent.

Then we get that Γ∪{¬ϕ} ` ϕ. By the deduction theorem, Γ ` (¬ϕ→ ϕ).
We can now get a deduction of ϕ as follows.

Γ ` ϕ

1.
2.
3.
4.
5.
6.
7.

(¬ϕ→ ϕ)
((¬ϕ→ ϕ) → ((¬ϕ→ ¬ϕ) → ¬¬ϕ))

((¬ϕ→ ¬ϕ) → ¬¬ϕ)
(¬ϕ→ ¬ϕ)

¬¬ϕ
(¬¬ϕ→ ϕ)

ϕ

Γ ` (¬ϕ→ ϕ)
(Ax 9)
1, 2 MP
Assignment
3, 4 MP
(Ax 14)
5, 6 MP

But this contradicts our assumption that Γ 6` ϕ.

Theorem 2.4.14. The following are equivalent:

1. (First formulation of completeness) For all Γ and all ϕ, if Γ |= ϕ
then Γ ` ϕ.

2. (Second formulation of completeness) For all Γ, if Γ is consistent,
then Γ is satisfiable.

Proof. We first show that (1) implies (2). Assume towards a contradic-
tion that Γ is consistent but unsatisfiable. Let ϕ be such that Γ 6` ϕ
(such ϕ exists by consistency of Γ) but then as Γ is unsatisfiable, Γ |= ϕ,
contradicting that (1) is true.
It remains to show that (2) implies (1). Assume that Γ is consistent

implies that it is satisfiable. Suppose towards a contradiction that Γ |= ϕ
but Γ 6` ϕ. Then Γ∪{¬ϕ} is consistent by Lemma 2.4.13 and therefore by
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our assumption Γ ∪ {¬ϕ} is satisfiable. But then Γ 6|= ϕ, a contradiction.

We will quickly outline the idea of the proof of the completeness theo-
rem. Looking at the implication “If Γ is consistent, then Γ is satisfiable”
it is hard to see how would go about to prove this implication given some
consistent set Γ. We have to construct a truth assignment e satisfying Γ.

The idea is as follows. If Γ were a set of propositional variables, then we
can just define an assignment that sets all of them to true. If Γ contains
negations of propositional variables. Then we know from consistency that
it can not contain the propositional variables themselves, so we can set
those to false in the assignment we are building.

But what if Γ contains more complex formulas, e.g., of the form ϕψ?
Then we know that our truth assignment must valuate ϕ to true and ψ
to true. So, like this we already see that there might be a way to do it
by induction. But if Γ does not contain ϕ or ψ then we would not know
from what we have done before what to do with ϕ and ψ. To overcome
this hurdle we will do the following. Given Γ we will obtain a new set
Γ∗ by adding propositional variables or their negation to it so that (a) Γ∗

remains consistent and (b) for every variable P , either P ∈ Γ∗ or ¬P ∈ Γ∗.
We then by induction add all the possible formulas consistent with Γ∗. We
end up with what is called a maximal consistent set.

Definition 2.4.7. Let Γ be a set of formulas. We say Γ is a maximal
consistent set of formulas if Γ is consistent and if for every formula ϕ,
either ϕ ∈ Γ or ¬ϕ ∈ Γ.

The following proposition shows that the definition above captures the
idea we described. We leave its proof as an exercise.

Proposition 2.4.15. The set Γ is maximal consistent iff for any formula
ϕ 6∈ Γ, Γ ∪ {ϕ} is inconsistent.

Lemma 2.4.16. Let Γ be a consistent set of formulas. Then there exists
a maximal consistent set of formulas Θ such that Γ ⊆ Θ.
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Proof. Notice that we can build an infinite list of all propositional formulas
ϕ1, ϕ2, . . . . We will now define, for each n a set of formulas Θn as follows.

Θ0 = Γ

for n ≥ 1, let Θn =

{
Θn−1 ∪ {ϕn} if Θn−1 ` ϕn
Θn−1 ∪ {¬ϕn} otherwise

We let Θ =
⋃
n∈NΘn and claim that it is the desired set.

Clearly, Γ = Θ0 ⊆ Θ. If ϕ is a formula, then ϕ = ϕn for some n,
so either ϕ ∈ Θn ⊆ Θ or ¬ϕ ∈ Θn ⊆ Θ. It remains to show that Θ is
consistent. We first show that each Θn is consistent.
We have that Θ0 = Γ is consistent by assumption. Assume that Θn−1

is consistent. If Θn−1 ` ϕn, then Θn = Θn−1 ∪ {ϕn} is consistent by (1)
of Lemma 2.4.13. If Θn−1 6` ϕn, then Θn = Θn−1 ∪{¬ϕn} is consistent by
(2) of Lemma 2.4.13.
Now, assume towards a contradiction that Θ is inconsistent. So there

is a formula ϕ such that Θ ` ϕ and Θ ` ¬ϕ. Let ψ1, . . . , ψk and γ1, . . . , γl
be derivations of ϕ, respectively, ¬ϕ from Θ. Then there exists n such
that all the formulas ψ1, . . . , ψk−1 and γ1, . . . , γl−1 are in Θn. But then
the derivations are derivations from Θn and thus Θn ` ϕ and Θn ` ¬ϕ
and thus Θn is inconsistent, a contradiction.

We are now ready to prove the completeness theorem.

Theorem 2.4.17 (Completeness). For all Γ and all ϕ, if Γ |= ϕ then
Γ ` ϕ.

Proof. We will prove the second formulation of the completeness theorem:
“For all Γ, if Γ is consistent, then Γ is satisfiable.”. This is equivalent to
the statement of our theorem by Theorem 2.4.14.
Given Γ we consider a maximal consistent set Θ ⊇ Γ. Clearly, if we

show that Θ is satisfiable, then so is Γ. As Θ is maximal consistent we
have that for every propositional variable P , either P ∈ Θ, or ¬P ∈ Θ.
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2 Propositional logic

Define a truth assignment e by

e(P ) =

{
T P ∈ Θ

F ¬P ∈ Θ

We have to show that e satisfies every formula in Θ. We do this by
induction by showing that e(ϕ) = T if and only if ϕ ∈ Θ. The base case
where P is a propositional variable is obviously true. In our induction
step we will only consider the cases where ϕ = (χ → ψ) ∈ Θ and where
ϕ = ¬ψ ∈ Θ as {¬,→} is an adequate set of connectives. So assume that
ϕ = ¬ψ ∈ Θ and that ψ ∈ Θ iff e(ϕ) = T.

Then e(ϕ) = T iff e(ψ) = F

iff ψ 6∈ Θ (induction hypothesis)
iff ¬ψ ∈ Θ (maximal consistency of Θ)

Now, assume that ϕ = (χ → ψ) and that for both χ and ψ, χ ∈ Θ iff
e(χ) = T and ψ ∈ Θ iff e(ψ) = T.

Then e(ϕ) = F iff e(χ) = T and e(ψ) = F

iff χ ∈ Θ and ψ 6∈ Θ (induction hypothesis)
iff χ ∈ Θ and ¬ψ ∈ Θ (maximal consistency of Θ)
iff ¬(χ→ ψ) ∈ Θ (maximal consistency of Θ)
iff (χ→ ψ) 6∈ Θ (consistency of Θ)

So for all formulas ϕ, e(ϕ) = T if and only if ϕ ∈ Θ. This implies, that
e satisfies Θ. But then since Γ ⊆ Θ, e also satisfies Γ and thus Γ is
satisfiable.

2.5 Meta vs. Object language
Notice how the symbols |=, ≡, or ` are not part of the language of proposi-
tional logic. Indeed, the statement {ϕ} |= ψ is not a propositional formula.
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But it is a statement about propositional logic; it says something about
the relationship of propositional formulas. Such a statement is said to
be a statement in the metalanguage. The language a statement in the
metalanguage talks about is commonly called the object language. So, in
our case the object language is propositional logic. Notice how all our
definitions of the semantics of propositional logic have been done in the
metalanguage. It involved the use of truth assignments, which are noth-
ing more than functions. But in propositional logic we can not talk about
functions. Here, we will not formally define what the metalanguage ac-
tually is. Defining a formal language which would allow us to prove all
the theorems we are proving about propositional logic (and in the second
chapter about first order logic) is possible but goes beyond the scope of
this course.
The difference between metalanguage and object language becomes even

more apparent now that we have a proof system and the notion of a the-
orem in this system. A theorem about the proof system, like the com-
pletness theorem (Theorem 2.4.17), soundness (Theorem 2.4.11), or the
deduction theorem (Theorem 2.4.12) are what we usually call metathe-
orems. They talk about the system and usually one can not formulate
metatheorems so that they become theorems of the system. For instance,
finding a formula in propositional logic which expresses the completeness
theorem is an impossible task, how would one even express the statement?
We chose to study our axiomatic derivation system, or Hilbert style

system, because the proves of its metatheoremsd are quite “easy”. The
drawback is that it is not easy to produce a proof of a theorem in the
proof system itself. There are other systems which are more intuitive to
use. However, one usually sacrifices the “easy” proofs of metatheorems
about them.
One needs to take special care with how symbols are used. For instance

these common symbols

= ≡ |= ⇒ ⇔ `

are not symbols of propositional logic and therefore there is a difference
between P ⇔ Q and |= (P ↔ Q).
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2.6 Limits of propositional logic
Propositional logic is convenient since we have algorithms that decide
whether a set of formulas is unsatisfiable and complete proof systems
which help us to establish entailment. While the Hilbert style calculus
which we presented does not suit itself well to be “mechanized”, i.e., im-
plemented on a computer, there are other proof systems for propositional
logic which were developed with this in mind. Also, the metatheory about
propositional logic was reasonably easy to develop.

However, the huge disadvantage of propositional logic is that it is simply
not expressive enough to capture language and especially mathematical
language as we would desire it.

Consider the following argument as an example:

All men are mortal.
Sokrates is a man.
Therefore, Sokrates is mortal.

How can we formalize the first and second sentence in propositonal logic
such that we can formally conclude that Sokrates is mortal? It seems
impossible to establish a connection between the fact that Sokrates is
mortal and that all men are mortal.

Similar examples can be found in mathematics. For instance consider
the basic statement that two functions f and g agree on their inputs. A
mathematician would write the “formal” statement:

∀x f(x) = g(x)

How do we say this in propositional logic? How can we relate f and g?
We need a stronger language to do this. We will therefore now develop
the language of first order logic. Indeed within first order logic most of
mathematics can be formalized.
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3 First order logic

3.1 Syntax of first order logic
In propositional logic we had propositional variables as the building blocks
of our formulas. For first order logic the situation is more complicated.
We want to assign truth values to formulas. So what should be a formula.
Should a statement like f(x) have a truth value? Probably not, after all,
it does not really make sense to say that f(x) is true or false (unless it
maps x to true or false of course).
We will now develop the syntax of first order logic with the goal of

developing the notion of a formula which we can assign truth values to.
Formulas in first order logic are always in a specified language.

Definition 3.1.1. A first order language consists of the following:

1. For every n ≥ 1, a (possibly empty) set of n-ary relation symbols,

2. for every n ≥ 1, a (possibly empty) set of n-ary function symbols,

3. and a (possibly empty) set of constants.

For a language L we often write it as L = (R1/aR1 , . . . , f1/af1 , . . . , c1, . . . )
where aX is the arity of the (function) relation symbol X.

Remark. Throughout this course we assume that in every language we
have a binary relation =.

Let us consider some examples.

Example 3.1.1. The language L≤ of linear orders consists of one relation
symbol ≤ /2.
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3 First order logic

Example 3.1.2. The language of arithmetic LArith = {+/2, ·/2,≤/2, 0, 1}
where + and · are function symbols, ≤ is a relation symbol and 0 and 1
are constants.

Example 3.1.3. Let L = {H/1,M/1, s} be the language with constant
s which we stands for “socrates”, and relation symbols H standing for
someone being human and M standing for someone being mortal.

Definition 3.1.2. The symbols of first order logic in the language L are

• elements from L,

• variables x1, . . . , y1, . . . , z1, . . . ,

• logical connectives ¬,∧,∨,→,

• brackets (,),

• quantifiers ∃, ∀.

We call the symbols from items 2-5 logical symbols and the symbols from
1, symbols from the language.

Remark. For every language L we assume that (a) the sets of relation
symbols, function symbols, and constants of L are disjoint, (b) that they do
not contain variable symbols, logical connectives, brackets, or quantifiers,
and (c) that they are all symbols, so their only proper prefix is the empty
string.

We still want a formula to evaluate either to true T or F, but while
for instance f(x) has a value in some interpretation, it should not have a
truth value. So while in propositional logic, all the symbols could be inter-
preted to have some logical meaning, in first order logic function symbols,
variables and constants may occur in formulas but by themselves do not
have logical meaning. They are used to build terms which in turn are the
arguments for our relation symbols.

Definition 3.1.3. For a first order language L, the terms of L are defined
as follows:
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1. All constants of L are terms of L,

2. all variables are terms of L,

3. if f is an n-ary function symbol of L, and if t1, . . . , tn are terms of
L, then f(t1, . . . , tn) is a term of L.

Example 3.1.4. The following are terms in the language of arithmetic:

• +(x, 1)

• ·(+(x, y), 1)

The terms in the example are written in what we call prefix notation.
For binary relations and functions we may sometimes abuse notation and
write them in infix notation. E.g., while x+1 is formally not a term, we
will still write this in our formulas and just interpret them accordingly.
We are now ready to define formulas.

Definition 3.1.4. The following are formulas of L:

1. If t1 and t2 are terms of L, then t1 = t2 is a formula of L.

2. If R is an n-ary relation symbol of L and t1, . . . , tn are terms of L,
then R(t1, . . . , tn) is a formula of L.

3. If ϕ1, ϕ2 are formulas of L, then (ϕ1 ∧ ϕ2), (ϕ1 ∨ ϕ2), (ϕ1 → ϕ2),
¬ϕ1 are formulas of L.

4. If ϕ is a formula and x is a variable, then ∀x ϕ and ∃x ϕ is a formula
of L.

Formulas satisfying (1) or (2) are called atomic formulas.

Example 3.1.5. The following are formulas in Larith:

• ∀x(x = 0 ∨ ∃y x = y+1)

• ∀y, z(y · z = x→ (y = 1 ∨ z = 1))
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3 First order logic

Proof. Let us quickly verify that ∀x(x = 0 ∨ ∃y x = y+1) is indeed a
formula.
1.
2.
3.
4.
5.

x = 0
x = y+1

∃y x = y+1
(x = 0 ∨ ∃y x = y+1)

∀x(x = 0 ∨ ∃y x = y+1)

is a formula by (1)
iaf by (1)
iaf by 2 and (4)
iaf by 3 and (3)
iaf by 4 and (4)

Exercise 3.1.1. Thinking about the natural numbers together with +, ·,
0, and 1 interpreted as usual, what do the formulas say?

3.1.1 Subformulas, bound and free variables

Definition 3.1.5. Let L be a first order language. We define a function
sub that given an L-formula ϕ, outputs the set of all formulas it was built
up from as follows:

1. If ϕ = t1 = t2 for terms t1, t2, then sub(ϕ) = {ϕ},

2. if ϕ = R(t1, . . . , tn) for R a relation symbol in L and t1,…, tn terms
of L, then sub(ϕ) = {ϕ}.

3. if ϕ = ¬ψ for a formula ψ of L, then sub(ϕ) = {ϕ} ∪ sub(ψ).

4. if ϕ = (ψ ◦ θ) where ◦ ∈ {∧,∨,→}, then sub(ϕ) = {ϕ} ∪ sub(ψ) ∪
sub(θ),

5. if ϕ = Qxψ where Q ∈ {∀, ∃} and x a variable, then sub(ϕ) =
{ϕ} ∪ sub(ψ).

A formula ψ is a subformula of ϕ if ψ ∈ sub(ϕ).

Example 3.1.6. Let L = {S/1, R/3, g/1, c} with S and R relations, g a
function and c a constant. Calculate sub(ϕ) for (∀x1(¬∀x2R(x2, c, x1) →
x3 = g(x1)) ∧ (S(x3) ∨ ¬S(x1))).
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3.1 Syntax of first order logic

Solution.

sub(ϕ) ={ϕ} ∪ sub(∀x1(¬∀x2R(x2, c, x1) → x3 = g(x1)))

∪ sub((S(x3) ∨ ¬S(x1)))
={ϕ,∀x1(¬∀x2R(x2, c, x1) → x3 = g(x1))), (S(x3) ∨ ¬S(x1))}∪
sub(S(x3)) ∪ sub(¬S(x1)) ∪ sub((¬∀x2R(x2, c, x1) → x3 = g(x1)))

={ϕ,∀x1(¬∀x2R(x2, c, x1) → x3 = g(x1))), (S(x3) ∨ ¬S(x1)), S(x3),
¬S(x1), S(x1), (¬∀x2R(x2, c, x1) → x3 = g(x1))}
∪ sub(¬∀x2R(x2, c, x1)) ∪ sub(x3 = g(x1))

={ϕ,∀x1(¬∀x2R(x2, c, x1) → x3 = g(x1))), (S(x3) ∨ ¬S(x1)), S(x3),
¬S(x1), S(x1), (¬∀x2R(x2, c, x1) → x3 = g(x1)),¬∀x2R(x2, c, x1)),
x3 = g(x1)} ∪ sub(∀x2R(x2, c, x1))

={ϕ,∀x1(¬∀x2R(x2, c, x1) → x3 = g(x1))), (S(x3) ∨ ¬S(x1)), S(x3)
,¬S(x1), S(x1), (¬∀x2R(x2, c, x1) → x3 = g(x1)),¬∀x2R(x2, c, x1)),
x3 = g(x1),∀x2R(x2, c, x1), R(x2, c, x1)}

J

Definition 3.1.6. The set of variables in a L-term t, var(t), is defined as
follows.

1. If t = x for x a variable, then var(t) = {x},

2. if t = c for c a constant, then var(c) = ∅,

3. if t = f(t1, . . . , tn) for t1, . . . , tn L-terms and f an n-ary function of
L, then var(t) =

⋃
0<i≤n var(ti).

Definition 3.1.7. The set of variables in an L-formula ϕ, var(ϕ), is de-
fined as follows.

1. If ϕ = t1 = t2 for L-terms t1, t2, then var(ϕ) = var(t1) ∪ var(t2),

2. if ϕ = R(t1, . . . , tn) for R an n-ary relation symbol of L, then
var(ϕ) =

⋃
0<i≤n var(ti),
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3 First order logic

3. if ϕ = ¬ψ for ψ an L-formulas, then var(ϕ) = var(ψ),

4. if ϕ = (ψ ◦ θ) for ψ, θ L-formulas and ◦ ∈ {∧,∨,→}, then var(ϕ) =
var(ψ) ∪ var(θ),

5. and if ϕ = Qx ψ for ψ an L-formula and Q ∈ {∀, ∃}, then var(ϕ) =
var(ψ).

Definition 3.1.8. The set of free variables in a formula ϕ, free(ϕ), is
defined as follows.

1. If ϕ is atomic, then free(ϕ) = var(ϕ),

2. if ϕ = ¬ψ for a formula ψ, then free(ϕ) = free(ψ),

3. if ϕ = (ψ◦θ) for formulas ψ and θ and ◦ ∈ {∧,∨,→}, then free(ϕ) =
free(θ) ∪ free(ψ),

4. and if ϕ = Qx ψ for Q ∈ {∀, ∃}, ψ a formula and x a variable, then
free(ϕ) = free(ψ) \ {x}.

If x ∈ free(ϕ) then we say that x “occurs free in ϕ”. If x 6∈ free(ψ)
for some subformula ψ of ϕ, then we say that x “occurs bound in ϕ”. If
Qxψ ∈ sub(ϕ) for Q ∈ {∃, ∀} and x ∈ free(ψ) then we say that x is in
the scope of Qx and that ψ is the scope of Qx.

Example 3.1.7. Consider the formula ((∀x1∀x3(R(x1, x2) → x1 = d) →
¬f(x2) = x3) → ∀x3R(x3, c) in L = (R/2, f/1, c, d). Indicate the free and
bound occurrences of its variables and the scope of its quantifiers.

Solution.

((∀x1 ∀x3 (R(
b
x1,

f
x2) →

b
x1 = d)

scope ∀x3

scope ∀x1

→ ¬f( f
x2) =

f
x3) → ∀x3R(

b
x3, c)

scope ∀x3

)

J

Definition 3.1.9. If ϕ is a formula with free(ϕ) = ∅, then we say that
ϕ is an (L)-sentence.
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3.2 Semantics of first order logic
Semantics of first order logic are defined using structures (also called mod-
els).

Definition 3.2.1. Let L be a first order language. An L-structure A
consists of a non-empty set A, called the universe, or domain ofA, together
with

1. for every n-ary relation symbol R in L, an n-ary relation RA ⊆ An,

2. for every n-ary function symbol f in L, an n-ary function fA : An →
A,

3. for every constant c in L, an element cA ∈ A.

Example 3.2.1. The following are examples of structures in Larith

• The natural numbers with usual addition, multiplication, and order,
i.e., (N,+ = +, · = ·, 0 = 0, 1 = 1,≤= usual order on the naturals),

• the integers with usual addition, multiplication and order on them,
i.e., (Z, . . . ).

Notice that while both the integers with usual addition, multiplication
and order and the naturals are structures in the language of arithmetic.
They are not the same. For instance, the order of the integers has no least
element while the order on the natural clearly does.

Example 3.2.2. Recall the language L = {H/1,M/1, s} from Example
3.1.3. As an example of a structure consider A = (A,HA,MA, sA) with
A = {socr, aristotle, plato, tom, jerry}, HA = {socr, aristotle, plato},
MA = {socr, aristotle, plato, tom, jerry} and sA = plato.

Definition 3.2.2. Let L be a language and A be an L-structure. A
variable assignment for A is a function from the set of variables var to
the universe of A, i.e. β : var → A.
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3 First order logic

Definition 3.2.3. Let A be an L-structure and β be a variable assignment
for A. Then β[x/a] is the assignment defined by

β[x/a](y) =

{
β(y) y 6= x

a y = x
.

Definition 3.2.4. Let A be a L structure and β be a variable assignment
for A. For all terms t of L we define the evaluation of t in A and β, valAβ
inductively as follows.

1. If t = c for c a constant, then valAβ (t) = cA,

2. if t = x for x a variable, then valAβ (t) = β(x),

3. if t = f(t1, . . . tn) for t1, . . . , tn L-terms and f an n-ary function
symbol in L, then valAβ (t) = fA(valAβ (t1), . . . , val

A
β (tn)).

Example 3.2.3. Evaluate x ·(1+1) in Larith under N, β(y) = 5 for all
variables y.

Solution.

valAβ (x ·(1+1)) = valAβ (x) · valAβ (1+1)

= β(x) · (valAβ (1) + valAβ (1)) = 5 · (1 + 1) = 10

J

As one can see in the above examples, evaluations let us calculate the
value of terms in a given structure.

Definition 3.2.5. We define satisfaction of a formula ϕ in a structure A
relative to some variable assignment β, A, β |= ϕ inductively as follows.
(We write A, β 6|= ϕ to mean “not A, β |= ϕ”)

1. If ϕ = (t1 = t2), then A, β |= ϕ iff valAβ (t1) = valAβ (t2),

2. if ϕ = R(t1, . . . , tn) then A, β |= ϕ iff (valAβ (t1), . . . , val
A
β (tn)) ∈ RA,
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3.2 Semantics of first order logic

3. if ϕ = ¬ψ, then A, β |= ϕ iff A, β 6|= ψ,

4. if ϕ = (ψ ∧ θ), then A, β |= ϕ iff A, β |= ψ and A, β |= θ,

5. if ϕ = (ψ ∨ θ), then A, β |= ϕ iff A, β |= ψ or A, β |= θ (or both),

6. if ϕ = (ψ → θ), then A, β |= ϕ iff A, β 6|= ψ or A, β |= θ,

7. if ϕ = ∀xψ , then A, β |= ϕ iff for every a ∈ A, A, β[x/a] |= ψ,

8. and if ϕ = ∃xψ, then A, β |= ϕ iff there is an a ∈ A such that
A, β[x/a] |= ψ.

Example 3.2.4. Consider again our example of the Socrates syllogism
as in Example 3.2.2. We want to check whether the formula ∀x(H(x) →
M(x)) is satisfied in A, β where β : x 7→ aristotle.

Solution. We have that A, β |= ∀x(H(x) → M(x)) if and only if for all
a ∈ A, A, β[x/a] |= (H(x) → M(x)). So we have to check this for all 5
elements in the universe. We do this here only for a = tom, as it is similar
for all of them.

A, β[x/tom] |= (H(x) →M(x)) iff A, β[x/tom] 6|= H(x) or A, β[x/tom] |=M(x)

iff valAβ[x/tom](x) 6∈ HA or valAβ[x/tom](x) ∈MA

iff β[x/tom](x) 6∈ HA or β[x/tom](x) ∈MA

iff tom 6∈ HA or tom ∈MA

We have tom 6∈ HA so A, β[x/tom] |= (H(x) →M(x)). A similar argument
shows that A, β[x/a] |= (H(x) → M(x)) for all a ∈ A \ {tom} so we can
conclude that A, β |= ∀x(H(x) →M(x)). J

One can only see a fundamental problem with evaluating formulas in
models. To verify an ∀ quantifier we have to test it for every element of the
universe. This is doable for finite structures. But if the structure is infinite
then we can not just evaluate whether it satisfies a formula containing a
∀ quantifier that easily.
To see this even clearer consider the following example.
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Example 3.2.5. Consider the formula ∃y y+1 ≤ x in Larith. Evaluate
it in N under the assignments β : x 7→ 0 and γ : x 7→ 5.

Solution. Let us first check that N, γ |= ∃y y+1 ≤ x. This is the case if
and only if there exists a ∈ N such that N, γ[y/a] |= y+1 ≤ x. From the
outside we can see that 3 should do the job. So we evaluate it at 3.

N, γ[y/3] |= y+1 ≤ x iff (valAγ [y/3](y+1), valAγ [y/3](x)) ∈≤N

We have that valAγ [y/3](y+1) = 4 and valAγ [y/3](x) = 5 and therefore
(4, 5) ∈≤N. Therefore, N, γ[y/a] |= y+1 ≤ x.

For β note that we have to check whether there exists an a ∈ N such
that N, β[y/a] |= y+1 ≤ x and β(x) = 0. We know that there is no such y
in N because we know N, but to formally prove that N, β 6|= ∃y y+1 ≤ x
we would have to try all the possibilities and there are infinitely many, so
it is infeasible. J

On first sight it seems pedantic that we insist that we can not verify
whether N, β 6|= ∃y y+1 ≤ x because after all we know that it is not true
because we know that the natural numbers have a least element, 0. But
what if we wanted to check it not N but for some other structure in Larith
where we don’t know whether it has a least element? Well then we would
actually have to search through the whole structure to verify whether the
structure satisfies the formula under some given assignment β.

Proposition 3.2.6. For all L-structures A and variable assignments β
and all L-formulas ϕ and ψ,

1. A, β |= (ϕ ∧ ψ) if and only if A, β |= ¬(¬ϕ ∨ ¬ψ),

2. A, β |= (ϕ→ ψ) if and only if A, β |= (¬ϕ ∨ ψ),

3. A, β |= ∀xϕ if and only if A, β |= ¬∃x¬ϕ.
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Proof. We prove (3) and leave (1) and (2) as exercises. We have that

A, β |= ∀xϕ iff for all a ∈ A A, β[x/a] |= ϕ

iff for all a ∈ A A, β[x/a] 6|= ¬ϕ
iff there does not exist a ∈ A A, β[x/a] |= ¬ϕ
iff A, β 6|= ∃x¬ϕ
iff A, β |= ¬∃x¬ϕ

Exercise 3.2.1. Prove (1) and (2) of Proposition 3.2.6

Proposition 3.2.6 tells us that if we want to prove semantics properties
of first order logic then it is enough to assume that our formulas are made
up of the symbols {¬,∨, ∃}. As in propositional logic we say that {¬,∨, ∃}
is an adequate set of symbols. We will give a formal definition of this a
little later.
We want to emphasize the special role that sentences play in first order

logic. Namely, that they give us information about the structures that
satisfy them. We will obtain this as a corollary of the following theorem
about formulas.

Theorem 3.2.7. Let A be an L-structure. Then for any L-formula ϕ and
any assignments β and β̂ for A that agree on the free variables of ϕ, i.e.,
β(x) = β̂(x) for all x ∈ free(ϕ), A, β |= ϕ iff A, β̂ |= ϕ.

Corollary 3.2.8. Let ϕ be an L-sentence. Then for every L-structure A
either for every variable assignment β A, β |= ϕ or A, β |= ¬ϕ.

Let us first prove the corollary given the theorem.

Proof. If ϕ is a sentence, then free(ϕ) = ∅. So, for all variable assigne-
ments β and β̂, A, β |= ϕ if and only if A, β̂ |= ϕ.
Assume that A, β 6|= ϕ. We have that

A, β 6|= ϕ iff A, β |= ¬ϕ
iff A, β̂ |= ¬ϕ (by Theorem 3.2.7)
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It remains to prove Theorem 3.2.7. We do this by induction on formulas.
The basic building blocks of atomic formulas are terms, so first we need
to show that terms on the same variables evaluate to the same values.

Lemma 3.2.9. Let A be a L-structure. For any L-term t, if β and β̂ are
variable assignments on A that agree on all variables occuring in t, then
valAβ (t) = valA

β̂
(t).

Proof. We prove this by induction on terms. If t = c, a constant symbol,
then for any assignments β and β̂ on A,

valAβ (t) = valAβ (c) = cA = valA
β̂
(c) = valA

β̂
(t)

If t = x is a variable, since β and β̂ agree on all variables in t we have
β(x) = β̂(x), so

valAβ (t) = valAβ (x) = β(x) = β̂(x) = valA
β̂
(t)

For the induction step assume t = f(t1, . . . , tn) where f is an n-ary func-
tion symbol and t1, . . . , tn are terms for which the lemma holds. I.e., our
hypothesis is that valA

β̂
(ti) = valAβ (ti) for all i ≤ n. Therefore

valAβ (t) = fA(valAβ (t1), . . . , val
A
β (tn))

= fA(valA
β̂
(t1), . . . , val

A
β̂
(tn)) = valA

β̂
(t).

We are now ready to prove Theorem 3.2.7.

Proof of Theorem 3.2.7. Let A be an L-structure. We prove this by in-
duction. Say β(x) = β̂(x) for x ∈ free(ϕ) where ϕ = t1 = t2. Then they
agree on all variables in t1 and t2 and

A, β |= ϕ iff valAβ (t1) = valAβ (t2) = valA
β̂
(t1) = valA

β̂
(t2) iff A, β̂ |= ϕ.
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Say β(x) = β̂(x) for x ∈ free(ϕ) where phi = R(t1, . . . , tn). Then they
agree on all variables in ti for all ti, i ≤n. Thus

A, β |= ϕ iff (valAβ (t1), . . . , val
A
β (tn)) ∈ RA

iff (valA
β̂
(t1), . . . , val

A
β̂
(tn)) ∈ RA iff A, β̂ |= ϕ.

Assume β(x) = β̂(x) for x ∈ free(ϕ) where ϕ = ¬ψ and that if β(x) =
β̂(x) for x ∈ free(ψ), then A, β |= ψ iff A, β̂ |= ψ. Then, as free(ψ) =
free(ϕ),

A, β |= ϕ iff A, β 6|= ψ iff A, β̂ 6|= ψ iff A, β̂ |= ϕ.

Assume β(x) = β̂(x) for x ∈ free(ϕ) where ϕ = (ψ ∨ θ) and that if
β(x) = β̂(x) for x ∈ free(ψ) (for x ∈ free(θ)), then A, β |= ψ iff A, β̂ |= ψ
(A, β |= θ iff A, β̂ |= θ). Then, as free(ψ) ∪ free(θ) = free(ϕ),

A, β |= ϕ iff A, β |= ψ or A, β |= θ

iff A, β̂ |= ψ or A, β̂ |= θ iff A, β̂ |= ϕ.

At last assume β and β̂ agree on the free variables in ϕ = ∃xψ and that
the theorem holds for ψ. Recall that

A, β |= ϕ iff there exists a ∈ A s.t. A, β[x/a] |= ϕ[x/a]

As free(ϕ) = free(ψ) \ {x} we have that for every a ∈ A β[x/a](y) =
β̂[x/a](y) for all y ∈ free(ψ) (including x!). So, by hypothesis for all a

A, β[x/a] |= ψ iff A, β̂[x/a] |= ψ.

We thus have the following.

A, β |= ϕ iff there exists a ∈ A s.t. A, β[x/a] |= ϕ[x/a]

iff there exists a ∈ A s.t. A, β̂[x/a] |= ϕ[x/a] iff A, β̂ |= ϕ
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Corollary 3.2.8 justifies the following definition.

Definition 3.2.6. Let ϕ be an L-sentence and A be an L-structure. We
write A |= ϕ if there is a variable assignment β such that A, β |= ϕ.

3.3 Semantic notions

Definition 3.3.1. Let Γ be a set of L-formulas and let ϕ be an L-formula.
We write Γ |= ϕ and say that ϕ is a logical consequence of Γ, or that Γ
entails ϕ if for all L-structures A and variable assignments β, if for all
γ ∈ Γ A, β |= γ implies that A, β |= ϕ

We will simply write A, β |= Γ if A, β |= γ for all γ ∈ Γ.
Note that the symbol |= is overloaded, it means both being a logical con-

sequence and for a structure and assignment to satisfy a formula. However,
there should be no confusion, as it should be clear from the context what
we are talking about.

Exercise 3.3.1. Show that the socrates syllogism from Example 3.2.2 is
a correct argument, i.e., {∀xH(x) →M(x),H(s)} |=M(s).

Proof. Suppose A, β |= {∀xH(x) → M(x),H(s)}. Since A, β |= H(s) we
have that sA ∈ HA. Furthermore

A, β |= ∀xH(x) →M(x),H(s)

⇒for all a ∈ A A, β[x/a] |= (H(x) →M(x))

That is, for all a ∈ A A, β[x/a] 6|= H(x) or A, β[x/a] |= M(x). Therefore,
since sA ∈ HA we must have sA ∈MA. So, A, β |=M(s).

Definition 3.3.2. Let ϕ be an L-formula. We say that ϕ is logically
valid if ∅ |= ϕ, i.e., ϕ is logically valid if A, β |= ϕ for all structures and
assignments A, β. We will write |= ϕ to say that ϕ is valid.
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Example 3.3.1. Let L = {f/1, R/2, c}, where f is a function symbol, R
a relation symbol and c a constant symbol. Then the following are logically
valid:

1. (∀xf(x) = c ∨ ¬∀xf(x) = c),

2. (∀xR(c, x) → R(c, y)),

3. ∃x(R(x, c) → R(x, c)).

Proof. Let A be any structure and β be any assignment. ad (a).

A, β |= (∀xf(x) = c ∨ ¬∀xf(x) = c)

iff A, β |= ∀xf(x) = c or A, β |= ¬∀xf(x) = c

iff A, β |= ∀xf(x) = c or A, β 6|= ∀xf(x) = c

The last statement is clearly true for any structure and assignment. Thus,
|= ∀xf(x) = c ∨ ¬∀xf(x) = c
ad (b).

A, β 6|= (∀xR(c, x) → R(c, y)) iff A, β |= ∀xR(c, x) and A, β 6|= R(c, y).

Assume towards a contradiction that such A, β exists. Then as A, β 6|=
R(c, y), (cA, β(y)) 6∈ RA. ButA, β |= ∀xR(c, x), so for all a ∈ AA, β[x/a] |=
R(c, x). In particular A, β[x/β(y)] |= R(c, x), so (cA, β(y)) ∈ RA, a contra-
diction. Therefore, |= (∀xR(c, x) → R(c, y)).
ad (c).

A, β |= ∃x(R(x, c) → R(x, c))

iff there exists a ∈ As.t. A, β[x/a] |= (R(x, c) → R(x, c))

iff it is not the case that A, β[x/a] 6|= R(x, c) and A, β[x/a] |= R(x, c)

Recall that for all A, A 6= ∅, so let a ∈ A be arbitrary. Then it can not
be that A, β[x/a] |= R(x, c) and A, β[x/a] 6|= R(x, c). So the last line is true
for any A, β and all a ∈ A. As A 6= ∅ there must in particular be one such
a, so |= ∃x(R(x, c) → R(x, c)).
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Definition 3.3.3. Let ϕ and ψ be formulas in some language L. We say
that ϕ and ψ are logically equivalent ϕ ≡ ψ if {ϕ} |= ψ and {ψ} |= ϕ.

Example 3.3.2. Let L be any language, and ϕ, ψ, θ be L-formulas. Then
((ϕ ∧ ψ) ∧ θ) ≡ (ϕ ∧ (ψ ∧ θ)) and ((ϕ ∨ ψ) ∨ θ) ≡ (ϕ ∨ (ψ ∨ θ)).

Proof. Assignment.

Definition 3.3.4. Let Γ be a set of L-formulas. We say Γ is satisfiable if
there exists a structure A and a variable assignment β such that A, β |= Γ.

Consider example (a) from Example 3.3.1. If we look at its structure
it looks like P ∨ ¬P which is clearly a tautology in propositional logic.
Indeed if we take a propositional tautology and replace the propositional
variables by L formulas then we get a tautology in the language L.

Let L be a countable first order language and enumerate all its atomic
formulas:

ϕ1, ϕ2, . . .

To each propositional formula γ we associate a L-formula γ∗ as follows.
Let P1, . . . be an enumeration of all propositional variables. If γ = Pi we
let γ? = ϕi. Say we have a formula of the form ¬γ and γ∗ is defined. Then

[¬γ]∗ = ¬γ∗.

If we have a formula (γ1 → γ2) and γ∗1 , γ∗2 are defined, then

(γ1 → γ2)
∗ = (γ∗1 → γ∗2).

Theorem 3.3.3. Let ϕ be a tautology in propositional logic, then ϕ∗ is a
first order tautology.

Now given a structure A and a variable assingment β we define the
following truth assignment.

eA,β(Pi) =

{
T A, β |= ϕi

F A, β 6|= ϕi

The theorem now follows immediately from the following lemma.
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Lemma 3.3.4. Let γ be a propositional formula. Then eA,β(γ) = T if
and only if A, β |= γ∗.

Proof. The proof is by induction on formulas. If γ = Pi it follows by
definition of eA,β.
Say for γ eA,β(γ) = T if and only if A, β |= γ∗ and consider the formula

¬γ. Then

eA,β(¬γ) = T iff eA,β(γ) = F iff A, β 6|= γ iff A, β |= ¬γ

and thus the lemma holds for ¬γ. Assume that eA,β(γi) = T if and only
if A, β |= γi for i ≤ 2 and consider the formula (γ1 → γ2). Then

eA,β((γ1 → γ2)) = T iff e(γ1) = F or e(γ2) = T

iff A, β 6|= γ1 or A, β |= γ2

iff A, β |= (γ∗1 → γ∗2) = (γ1 → γ2)
∗

3.3.1 Towards a proof system
Consider the formula (∀x∃y y = x→ ∃y y = 1+1) in Larith. This formula
is of a special form in that it contains the universal statement ∀x∃yy = x
as a premise and the specific statement ∃yy = 1+1 as a conclusion. That
statement is clearly a tautology and we can proof this easily as follows.

A, β 6|= (∀x∃y y = x→ ∃y y = 1+1)

iff A, β |= ∀x∃y y = x and A, β 6|= ∃y y = 1+1

Now we have that A, β |= ∀x∃y y = x iff for all a ∈ A A, β[x/a] |= ∃y y = x.
Then especially for b = valAβ[x/a](1+1) A, β[x/b] |= ∃y y = x. This is clearly
the case if and only if A, β[x/b] |= ∃y y = 1+1, but there is no x in the
formula so A, β |= ∃y y = 1+1 and A, β satisfies the formula.
We want to prove a general result about formulas of the form as above,

i.e., that formulas of the form (∀x ϕ → ψ), where ψ is obtained by sub-
stituting x in ϕ with t, are always valid. However, we need to be careful
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how we do this substitution. Lets first define our substitution and then
look at the reason why we need to be careful.

Definition 3.3.5. Let L be a first order language. For x a variable and
t an L-term, define sx/t for all L-terms s by induction.

1. If s = c for c a constant symbol, then sx/t = s,

2. if s = y for y 6= x a variable, then sx/t = s,

3. if s = x, then sx/t = t,

4. if s = f(t1, . . . , tn) for t1, . . . , tn L-terms and f a function symbol,
then sx/t = f(t1x/t, . . . tnx/t).

Definition 3.3.6. Let L be a first order language. For x a variable and
t an L-term, define ϕx/t for all L-formulas ϕ by induction.

1. If ϕ = t1 = t2 with t1, t2 L-terms, then ϕx/t = t1x/t = t2x/t,

2. if ϕ = R(t1, . . . , tn) with t1, . . . , tn L-terms and R a relation symbol,
then ϕx/t = R(t1x/t, . . . , tnx/t),

3. if ϕ = ¬ψ with ψ an L-formula, then ϕx/t = ¬ψx/t,

4. if ϕ = (ψ ◦ θ) with ψ and θ L-formulas and ◦ ∈ {∧,∨,→}, then
ϕx/t = ψx/t ◦ θx/t,

5. if ϕ = Qyψ where y 6= x and Q ∈ {∀, ∃}, then ϕx/t = Qyψx/t

6. and if ϕ = Qxψ where Q ∈ {∀,∃}, then ϕx/t = ϕ.

Why do we have to be careful. Consider the formula (∀x ϕ→ ϕx/y + 1),
where ϕ = ∃y x = y. This formula is

(∀x∃y x = y → ∃y y+1 = y)

and it is clearly not logically valid. It is not true in N for instance. The
problem is that our substitution created a new bound occurrence of y in
ϕ.
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Definition 3.3.7. Let t be an L-term, ϕ be an L-formula, and x a variable.
We say that t is substitutable for x in ϕ if no variable in t has a new
bounded occurrence in ϕx/t.

Example 3.3.5. Let R be a binary relation symbol and f be a binary
function symbol. Which of the following substitutions is suitable?

1. ∃xR(x, y) y/f(x, y),

2. (∃xR(x, y) → y = z) z/f(x, y),

3. ∃xR(x, y) x/f(x, y),

Solution. No, Yes, Yes. J

Lemma 3.3.6 (Substitution lemma). Let L be a first order language.

1. For any terms s and t, any variable x, and any structure and variable
assignment A, β in L, valAβ (sx/t) = valAβ[x/valAβ (t)](s).

2. For any formula ϕ, for any term t and variable x, if t is substitutable
for x in ϕ, then for all A, β in L, A, β |= ϕx/t iff A, β[x/valAβ (t)] |= ϕ.

Proof. We first prove (1) by induction on terms.

1. If s = c with c a constant symbol, then valAβ (sx/t) = cA = valAβ[x/valAβ (t)](s).

2. If s = x, then valAβ (sx/t) = valAβ (t) = valAβ[x/valAβ (t)](s).

3. If s = y with y 6= x a variable, then valAβ (sx/t) = βy = valAβ[x/valAβ (t)](s).

4. If s = f(t1, . . . tn) with t1, . . . tn such that valAβ (tix/t) = valAβ[x/valAβ (t)](ti)

for i ≤ n, then

valAβ (f(t1, . . . , tn)x/t) = valAβ (f(t1x/t, . . . , tnx/t))

= fA(valAβ (t1x/t), val
A
β (tnx/t))

= fA(valAβ[x/valAβ (t)](t1), . . . , val
A
β[x/valAβ (t)](tn))

= valAβ[x/valAβ (t)](f(t1, . . . , tn)).
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(2) is again proved by induction.

1. First base case ϕ = t1 = t2, then

A, β |= t1 = t2 x/t iff A, β |= t1x/t = t2x/t

iff valAβ (t1x/t1) = valAβ (t2x/t2)

iff valAβ[x/valAβ (t)](t1) = valAβ[x/valAβ (t)](t2)

iff A, β[x/valAβ (t)] |= t1 = t2

2. Second base case ϕ = R(t1, . . . , tn).

A, β |= R(t1, . . . , tn)x/t iff A, β |= R(t1x/t, . . . , tnx/t)

iff (valAβ (t1x/t), . . . , val
A
β (tnx/t)) ∈ RA

iff (valAβ[x/valAβ (t)](t1), . . . , val
A
β[x/valAβ (t)](tn)) ∈ RA

iff A, β[x/valAβ (t)] |= R(t1, . . . , tn)

3. Assume ϕ = ¬ψ, the theorem holds for ψ and t is substitutable for
x in ϕ. Note that this implies that t is substitutable for x in ψ as
well as any new bound occurence in ψx/t would yield a new bound
occurrence in ϕx/t. So for any A, β,

A, β |= [¬ψ]x/t iff A, β 6|= ψx/t

iff A, β[x/valAβ (t)] 6|= ψ (hypothesis)
iff A, β[x/valAβ (t)] |= ¬ψ

4. Assume ϕ = (ψ ∧ θ), the theorem holds for ψ and θ and t is substi-
tutable for x in ϕ. By the same reasons as in (3) t is substitutable
for x in ψ and θ. So for any A, β,

A, β |= (ψ ∧ θ)x/t iff A, β |= ψx/t and A, β |= θx/t

iff A, β[x/valAβ (t)] |= ψ and A, β[x/valAβ (t)] |= θ (hypothesis)
iff A, β[x/valAβ (t)] |= (ψ ∧ θ)
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5. Assume ϕ = ∀xψ, the theorem holds for ψ, and t is substitutable for
x in ϕ. Suppose A, β are arbitrary, then

A, β |= [∀xψ]x/t iff A, β |= ∀xϕ
iff for all a ∈ A, A, β[x/a] |= ψ

iff for all a ∈ A, A, β[x/valAβ (t)][x/a] |= ψ

iff A, β[x/valAβ (t)] |= ∀xψ

6. Assume ϕ = ∀yψ, the theorem holds for ψ, y 6= x and t is substi-
tutable for x in ϕ. Note that t substitutable for x in ∀yψ implies
that y does not occur in t and that t is substitutable for x in ψ.
Suppose A, β are arbitrary, then

A, β |= [∀yψ]x/t iff A, β |= ∀y[ψ]x/t
iff for all a ∈ A, A, β[y/a] |= ψx/t

iff for all a ∈ A, A, β[y/a][x/valAβ[y/a](t)] |= ψ (hypothesis)
iff for all a ∈ A, A, β[y/a][x/valAβ (t)] |= ψ (since y does not occur in t)
iff for all a ∈ A, A, β[x/valAβ (t)][y/a] |= ψ (since x 6= y)
iff A, β[x/valAβ (t)] |= ∀yψ.

Theorem 3.3.7. For any formula ϕ, any variable x and any term t such
that t is substitutable for x in ϕ,

|= (∀xϕ→ ϕ x/t).

Proof. Let A, β be an arbitrary structure and variable assignment. If
A, β 6|= ∀xϕ, then A, β |= (∀xϕ → ϕx/t) by definition of the semantics
of implication. On the other hand, if A, β |= ∀xϕ, then for all a ∈ A,
A, β[x/a] |= ϕ. So, especially, A, β[x/valAβ (t)] |= ϕ. Then by the substitution
lemma, A, β |= ϕ x/t. So ϕ is a tautology.
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Proposition 3.3.8. Let ϕ be an L-formula. Then for all x, ϕ is a
tautology if and only if ∀xϕ is a tautology.

Proof. Assume ϕ is a tautology, then for all A and β A, β |= ϕ. So also
for all A, β and a ∈ A, A, β[x/a] |= ϕ. Thus, A, β |= ∀xϕ.

On the other hand assume ∀xϕ is a tautology, then for all A, β, A, β |=
∀xϕ. Take arbitraryA and β, then for all a ∈ AA, β[x/a] |= ϕ, so especially
A, β[x/β(x)] |= ϕ. But β[x/β(x)] = β, so A, β |= ϕ.

Exercise 3.3.2. Show that if ϕ is a tautology, then so is ∃xϕ for any x.
Show that the converse is not always true.

Proposition 3.3.9. For two L-formulas ϕ and ψ, ϕ ≡ ψ if and only if
|= (ϕ↔ ψ).

Proof.

ϕ ≡ ψ iff ϕ |= ψ and ψ |= ϕ

iff for all A, β if A, β |= ϕ, then A, β |= ψ

and for all A, β if A, β |= ψ, then A, β |= ϕ

iff for all A, β A, β 6|= ϕ or A, β |= ψ

and A, β 6|= ψ or A, β |= ϕ

iff for all A, β A, β |= (ϕ→ ψ) and A, β |= (ψ → ϕ)

iff for all A, β A, β |= (ϕ↔ ψ)

iff |= (ϕ↔ ψ)

See assignment 7 for the last equivalence.

Recall our definition of ∗ which takes a propositional formula to a for-
mula in some fixed language L such that if ϕ is valid, then so is ϕ∗.

Proposition 3.3.10. For propositional formulas ϕ and ψ. If ϕ ≡ ψ, then
ϕ∗ ≡ ψ∗.
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Proof.

ϕ ≡ ψ ⇒|= (ϕ↔ ψ)

⇒|= (ϕ↔ ψ)∗

⇒|= (ϕ∗ ↔ ψ∗)

⇒ ϕ∗ ≡ ψ∗

Theorem 3.3.11. Let ϕ be an L-formula and ψ be a formula of ϕ. Suppose
ψ̂ is such that ψ̂ ≡ ψ and let ϕ̂ be obtained by replacing an occurrence of
ψ in ϕ by ψ̂. Then ϕ̂ ≡ ϕ.

Proof. Exercise.

3.3.2 Prenex normal form

Definition 3.3.8. A first order formula is said to be quantifier-free if no
quantifiers occur in the formula.

Example 3.3.12. ¬(R(c, x) → f(c, d) = d) and x = 0 ∧ x ≥ 0 are
quantifier free, while ∃xx = x is not.

Definition 3.3.9. A first order formula is said to be in prenex normal
form if it has the form Q1x1 . . . Qnxnψ where n ≥ 0, for 1 ≤ i ≤ n xi is a
variable and Qi ∈ {∀, ∃}, and ψ is quantifier free.

Example 3.3.13. ∀x∃y∃z(R(x, z) → f(c) = y) is in prenex normal form
but ∀x∃y(∃zR(x, z) → f(c) = y) is not in prenex normal form.

Our goal is to prove the following theorem.

Theorem 3.3.14. Every first order formula is logically equivalent to a
formula in prenex normal form.
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We will prove this theorem for formulas in which only the connectives
¬,∧ and ∀ occur, as every formula is equivalent to one with only these
connectives.

In order to prove this theorem we will need logical equivalences that
allow us to pull out quantifiers from a formula. We gather and prove these
equivalences in the next lemma.

As a notational convention if Q denotes a quantifier let

Q =

{
∃ if Q = ∀
∀ if Q = ∃

Lemma 3.3.15. For any quantifier Q and all first order formulas we have
the following logical equivalences.

1. If ϕ ≡ ψ, then ¬ϕ ≡ ¬ψ,

2. if ϕ0 ≡ ψ0 and ϕ1 ≡ ψ1, then (ϕ0 ∧ ϕ1) ≡ (ψ0 ∧ ψ1),

3. if ϕ ≡ ψ, then Qxϕ ≡ Qxψ,

4. ¬Qxϕ ≡ Qx¬ϕ,

5. if x 6∈ free(ϕ), then (ϕ ∧Qxψ) ≡ Qx(ϕ ∧ ψ) ≡ (Qxψ ∧ ϕ),

6. if y 6∈ free(ϕ) and y is substitutable for x in ϕ, then Qxϕ ≡ Qyϕx/y.

7. if x 6∈ free(ϕ), then (ϕ ∨Qxψ) ≡ Qx(ϕ ∨ ψ) ≡ (Qxψ ∨ ϕ),

8. if x 6∈ free(ϕ), then (ϕ → Qxψ) ≡ Qx(ϕ → ψ) and (Qxψ → ϕ) ≡
Qx(ψ → ϕ),

Proof. Items (1) to (3) follow directly from Theorem 3.3.11.
For (4), if Q = ∀, then Q = ∃ and

Qx¬ϕ = ∃x¬ϕ ≡ ¬∀x¬¬ϕ (by assignment, see also Proposition 3.2.6)
≡ ¬∀xϕ (since ¬¬ϕ ≡ ϕ)
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The case where Q = ∀ is analogous.
For (5), suppose x 6∈ free(ϕ) and let A, β be arbitrary. It is easy to

show that (ϕ∧Qxψ) ≡ (Qxψ∧ϕ) (exercise!). We show that (ϕ∧Qxψ) ≡
Qx(ϕ ∧ ψ). Assume that Q = ∀, the case where Q = ∃ is symmetric,

A, β |= (ϕ ∧Qxψ) iff A, β |= ϕ and for all a ∈ A, A, β[x/a] |= ψ

iff for all a ∈ A, A, β[x/a] |= ϕ and for all a ∈ A, A, β[x/a] |= ψ

(since x 6∈ free(ϕ))
iff for all a ∈ A, A, β[x/a] |= ϕ and A, β[x/a] |= ψ

iff A, β |= Qx(ϕ ∧ ψ)

For (6), suppose y 6∈ free(ϕ) and y is substitutable for x in ϕ. Let A, β
be arbitrary and assume that Q = ∀, then

A, β |= ∀xϕ iff for all a ∈ A A, β[x/a] |= ϕ

iff for all a ∈ AA, β[y/a][x/valAβ[y/a](y)] |= ϕ

iff for all a ∈ AA, β[y/a] |= ϕx/y

iff A, β |= ∀yϕx/y

If Q = ∃, then ∃xϕ ≡ ¬∀x¬ϕ and we can use Theorem 3.3.11 to get that
this is equivalent to ¬∀y¬ϕx/y ≡ ∃yϕx/y.
Items (7) and (8) are left as exercises.

Example 3.3.16. Put ϕ = (∀y¬(y = z → ∀yy = z) → R(y, z)) into
prenex normalform.

Proof. Our first goal is to rename all variables so that every variable is
bound by at most one quantifier and no variable occurs bound and free.
Using (6) of Lemma 3.3.15 we know that

∀yy = z ≡ ∀xx = z.

Using Theorem 3.3.11 we get that

ϕ ≡ (∀y¬(y = z → ∀xx = z) → R(y, z))

81



3 First order logic

Now using (6) and Theorem 3.3.11 again we get

ϕ ≡ (∀u¬(u = z → ∀xx = z) → R(y, z))

We now use (4) and (8) of Lemma 3.3.15 and Theorem 3.3.11 to pull the
quantifiers to the front.

ϕ ≡∃u(¬(u = z → ∀xx = z) → R(y, z))

≡∃u(¬∀x(u = z → x = z) → R(y, z))

≡∃u(∃x¬(u = z → x = z) → R(y, z))

≡∃u∀x(¬(u = z → x = z) → R(y, z))

Exercise 3.3.3. Put ((R(z, y) ∨ ¬∃y∀yR(y, x)) → y = x) into prenex
normal form.

We are now almost ready to prove Theorem 3.3.14. The proof will again
be by induction but instead of inducting on the definitions of formula. We
will do induction on the number of quantifiers in a formula.

Definition 3.3.10. Let ϕ be an L-formula. We let qn(ϕ) be the number
of quantifiers in ϕ. Formally qn(ϕ) is defined as follows:

1. If ϕis atomic, then qn(ϕ) = 0,

2. if ϕ = ¬ψ, then qn(ϕ) = qn(ψ),

3. if ϕ = (ψ ◦ θ) for ◦ ∈ {∧,∨,→}, then qn(ϕ) = qn(ψ) + qn(θ),

4. and if ϕ = Qxψ, Q ∈ {∃,∀}, then qn(ϕ) = qn(ψ) + 1.

We will assume without loss of generality that formulas only contain the
universal quantifier ∀ and the connectives ¬,∧. Clearly this set of symbols
is adequate.

In order to prove Theorem 3.3.14 we prove the following statement.
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Lemma 3.3.17. If ϕ is an L-formula with qn(ϕ) ≤ n for some n, then
there is an L-formula ψ in prenex normal form with qn(ϕ) = qn(ψ),
free(ϕ) = free(ψ) and ϕ ≡ ψ.

Proof. If n = 0 and ϕ is an L-formula with qn(ϕ) ≤ 0, then ϕ is quantifier
free and therefore in prenex normal form.
Assume the theorem holds for formulas with number of quantifiers less

or equal to n. We show it holds for n+1, assume that ϕ is a formula with
qn(ϕ) ≤ n+ 1.

1. If ϕ is atomic then ϕ is quantifier free and hence in prenex normal
form.

2. Suppose ϕ = ¬ψ where the result holds for ψ, then if qn(ϕ) = 0,
then ϕ is in prenex normal form. If 1 ≤ qn(ϕ) ≤ n + 1, then
qn(ψ) = qn(ϕ). Since the lemma holds for ψ, there is a formula
Qxψ0 in prenex normal form with

qn(ψ) = qn(Qxψ0), free(ψ) = free(Qxψ0), and ψ ≡ Qxψ0.

By (1) of Lemma 3.3.15 ¬ψ ≡ ¬Qxψ0. By (4), ¬Qxψ0 ≡ Q̄x¬ψ0

and

qn(¬ψ0) = qn(ψ0) = qn(Qxψ0)− 1 = qn(ψ)− 1 ≤ n

Now, by hypothesis, there exists a formula ψ1 in prenex normal form
with

qn(ψ1) = qn(¬ψ0), free(ψ1) = free(¬ψ0), and ψ1 ≡ ¬ψ0.

By (3) of Lemma 3.3.15 we have Q̄x¬ψ0 ≡ Q̄xψ1. Now, clearly Q̄xψ1

is in prenex normal form and

Q̄xψ1 ≡ Q̄x¬ψ0 ≡ ¬Qxψ0 ≡ ¬ψ = ϕ,

qn(Q̄xψ1) = qn(ψ1)+1 = qn(ψ0)+1 = qn(Qxψ0) = qn(ψ) = qn(ϕ),

free(Q̄xψ1) = free(ψ1)\{x} = free(¬ψ0)\{x} = free(ψ0)\{x} = free(Qxψ0) = free(ψ) = free(ϕ)

So, Q̄xψ1 is as desired.
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3. Suppose ϕ = (ψ ∧ θ) where the the result holds for ψ and θ. If
qn(ϕ) = 0, then ϕ is in prenex normal form. If 1 ≤ qn(ϕ) ≤ n + 1,
then since qn(ϕ) = qn(ψ) + qn(θ), either 1 ≤ qn(ψ) ≤ n + 1, 1 ≤
qn(θ) ≤ n+ 1, or both.
Suppose 1 ≤ qn(ψ) ≤ n+1. Then since the result holds for ψ, there
is a formula Qxψ0 in prenex normal form with

qn(Qxψ0) = qn(ψ), free(Qxψ0) = free(ψ), ψ ≡ Qxψ0.

Let y be a variable such that y 6∈ free(θ) ∪ free(ψ) and y is sub-
stitutable for x in ψ0. Then by (6) of Lemma 3.3.15, Qxψ0 ≡
Qyψ0x/y. So by (2), ϕ ≡ (Qyψ0x/y ∧ θ). As y 6∈ free(θ), by (5)
ϕ ≡ Qy(ψ0x/y ∧ θ). Furthermore

qn((ψ0x/y∧θ)) = qn(ψ0x/y)+qn(θ) = qn(ψ0)+qn(θ) = qn(ψ)−1+qn(θ) = qn(ϕ)−1 ≤ n

So by hypothesis there is a formula χ in prenex normal form with χ ≡
(ψ0x/y∧θ), qn(χ) = qn((ψ0x/y∧θ)), and free(χ) = free((ψ0x/y∧θ)).
By (3) of the lemmaQy(ψ0x/y∧θ) ≡ Qyχ and by the aboveQyχ ≡ ϕ.
Clearly, Qyχ is in prenex normal form so it is as desired. The case
were θ has qn(θ) ≤ n+ 1 is symmetric.

4. Suppose ϕ = ∀xψ where the result holds for ψ. If qn(ϕ) ≤ n + 1,
then qn(ψ) = qn(ϕ) − 1 ≤ n. So, by hypothesis there exists a
formula ψ0 in prenex normal form with ψ0 ≡ ψ, qn(ψ0) = qn(ψ),
and free(ψ0) = free(ψ). Then by (3) of Lemma 3.3.15 ∀xψ ≡ ∀xψ0.
Clearly ∀xψ0 is in prenex normal form and

qn(∀xψ0) = 1 + qn(ψ0) = 1 + qn(ψ) = qn(∀xψ)

free(∀xψ) = free(ψ) \ {x} = free(ψ0) \ {x} = free(∀xψ0)
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3.4 A proof system
Our proof system is defined as in the propositional case, i.e., proofs and
derivations are exactly as in Definiton 2.4.2 and Definition 2.4.3. We have
to define our axioms and rules of inference.

Definition 3.4.1. The axioms of our proof system are all the axiom
schemes in Definition 2.4.5 (except that ϕ,ψ, and χ are now first order
formulas and not propositional) plus the following axioms:

(∀xϕ→ ϕx/t) if t is substitutable for x in ϕ (Ax 15)
(ϕ→ ∀xϕ) if x 6∈ free(ϕ) (Ax 16)
(ϕx/t → ∃ϕ) if t is substitutable for x in ϕ (Ax 17)
(∃xϕ→ ϕ) if x 6∈ free(ϕ) (Ax 18)
x = x (Ax 19)
(x = y → (ϕ→ ϕ̂)) if ϕ̂ is ϕ with some free occurrences of x replaced by y

(Ax 20)

Example 3.4.1. Here are some examples of axioms in the language R, f
where R is a binary relation and f a unary function:

1. (∀xR(x, f(y)) → (∃xR(x, x) → ∀xR(x, f(y))) Ax 7

2. (∀xR(x, y) → R(z, y)) Ax 15

3. (∃xR(y, f(z)) → R(y, f(z)) Ax 18

Our only rule of inference is again modus ponens. Recall (Definition
2.4.4):

Definition 3.4.2 (Modus ponens). Let ϕ and ψ be formulas. Then modus
ponens is the following rule:

(ϕ→ψ) ϕ

ψ

Recall the definition of a derivation, the derivability or provability op-
erator and the notion of a theorem.
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3 First order logic

Definition 3.4.3. If Γ is a set of first order formulas then a derivation
from Γ is a finite sequence ϕ1, …, ϕn of formulas where for each i ≤ n one
of the following holds:

1. ϕi ∈ Γ; or

2. ϕi is an axiom; or

3. ϕi follows from some ϕj (and ϕk) with j < i (and k < i) by a rule
of inference.

Definition 3.4.4. A formula ϕ is derivable from Γ, written Γ ` ϕ, if there
is a derivation from Γ ending in ϕ.

Definition 3.4.5. A formula ϕ is a theorem if there is a derivation ϕ from
the ∅. We write ` ϕ if ϕ is a theorem and ¬ϕ if it is not.

Lets consider the following example of a proof in our proof system.

Example 3.4.2. Recall our example of the Socrates syllogism, Exam-
ple 3.2.2. We have that {∀x(H(x) →M(x)),H(s)} `M(s).

Proof.
1.
2.
3.
4.
5.

∀x(H(x) →M(x))
(∀x(H(x) →M(x)) → (H(s) →M(s)))

(H(s) →M(s))
H(s)
M(s)

hyp
Ax 15
1, 2 MP
hyp
3, 4 MP

We can now establish soundness of our proof system. The proof is very
similar to that of our proof system for propositional logic.

Theorem 3.4.3 (Soundness for first order logic). For any set of L-
formulas Γ and any L-formula ϕ, if Γ ` ϕ, then Γ |= ϕ.

Proof. We must check that all our axioms are valid and that modus ponens
preserves truth in the sense that {ϕ, (ϕ → ψ)} |= ψ. Then the result
follows from the transitivity of |=.
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3.4 A proof system

First, note that if A, β are a structure and assignment such that A, β |=
ϕ and A, β |= (ϕ→ ψ), then A, β |= ψ by definition of →. Thus {ϕ, (ϕ→
ψ)} |= ψ.
It remains to check that our axioms are valid. Axiom 1-14 follow from

the fact that they are propositional tautologies and the transfer theorem.
We sketch the proof of one of them:

Validity of Axiom 7. Suppose we are given a formula of the form
(ϕ → (ψ → ϕ)) where ϕ and ψ are first order formulas. Then there are
formulas ϕ̂ and ψ̂ such that ϕ̂∗ = ϕ and ψ̂∗ = ψ. Then (ϕ̂ → (ψ̂ → ϕ̂))
is a propositional tautology as we have seen in the proof of soundness of
propositional logic Theorem 2.4.11. By Theorem 3.3.3 so is

(ϕ̂→ (ψ̂ → ϕ̂))∗ = (ϕ̂∗ → (ψ̂∗ → ϕ̂∗)) = (ϕ→ (ψ → ϕ)).

That axiom 15, and axiom 17 are valid follows from Theorem 3.3.7 and
the assignment.

Validity of Axiom 16 & 18. We show Axiom 16, Axiom 18 is the
contraposition of Axiom 18 with ¬ϕ in place of ϕ or, alternatively one
can obtain Axiom 18 by applying Lemma 3.3.15 twice. Let A, β be an
arbitrary structure and assignment. Then

A, β |= (ϕ→ ∀xϕ) iff A, β 6|= ϕ or for all a ∈ A A, β[x/a] |= ∀xϕ

If A, β 6|= ϕ, then the axiom is satisfied. On the other hand, if A, β |= ϕ,
then as x 6∈ free(ϕ), A, β[x/a] |= ϕ for all a ∈ A, so A, β |= ∀xϕ and thus
the Axiom is satisfied.

Validity of Axiom 19. Immediate by definition of semantics.
Validity of Axiom 20. Fix arbitrary A, β such that A, β |= x = y (in

the other case the axiom is satisfied anyway). This implies that β(x) =
β(y) and an easy induction shows that for all t, valAβ (t) = valAβ (t̂) where
t̂ is obtained from t by replacing some occcurences of x with y. Induction
over formulas then shows that the Axiom holds for any formula A, β |= ϕ
if and only if A, β |= ϕ̂ for any formula ϕ (ϕ̂ is obtained as in the axiom
by replacing some free occurences of x by y). This shows the axiom is
valid.
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3 First order logic

The following definitions and theorems are all analogues of the theorems
for propositional logic. Mostly their proves are very similar. We define
consistent sets of formulas as for propositional logic.

Definition 3.4.6. A set Γ of L-formulas is consistent if and only if there
exists ϕ such that Γ 6` ϕ; it is inconsistent otherwise.

Soundness of our proof system tells us that satisfiable formulas are con-
sistent.

Theorem 3.4.4. If Γ is satisfiable, then it is consistent.

Proof. Assume Γ is satisfiable. Then there exists A, β such that A, β |= Γ.
Let ϕ be a formula such that A, β |= ϕ, then A, β 6|= ¬ϕ. Now if Γ where
inconsistent, then Γ ` ¬ϕ and therefore also Γ |= ¬ϕ. But this implies
that A, β |= ¬ϕ, a contradiction.

Notice that our system includes the same axiom schemes as the one for
propositional lgoic and also only modus ponens as a rule. So, if we had a
general derivation in our system for propositional logic we also have one
in the system we are working in now. Thus, many theorems just trivially
carry over. In particular we have theorems such as Reflexitivity, Mono-
tonicity, and Transitivity which just follow from the concept of derivations.
But also more complicated theorem such as the following follow by exactly
the same proof.

Theorem 3.4.5 (Deduction Theorem). Let Γ be a set of L-formulas and
ϕ, ψ be L-formulas. Then Γ ` (ϕ→ ψ) if and only if Γ ∪ {ϕ} ` ψ.

Proof. Exactly the same as for Theorem 2.4.12.

Theorem 3.4.6. A set Γ is inconsistent if and only if there is a formula
such that Γ ` ϕ and Γ ` ¬ϕ.

Theorem 3.4.7. Let Γ be a set of L-formulas. Then

1. If Γ is consistent and Γ ` ϕ, then Γ ∪ {ϕ} is consistent.

2. If Γ 6` ϕ, then Γ ∪ {¬ϕ} is consistent.
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3.4 A proof system

3.4.1 The completeness theorem

The idea of the proof the completeness theorem is similar to the idea of
the proof for propositional logic. However, it is quite more complicated.
We are not gonna give the full prove but instead just give a rough sketch.

Theorem 3.4.8 (Completeness). Let Γ be a set of L-formulas and ϕ be
an L-formula. Then Γ |= ϕ implies Γ ` ϕ.

Instead of showing the statement above we will show the equivalent
statement that “For all Γ, if Γ is consistent then Γ is satisfiable.” (see
Theorem 2.4.14).
Now recall how the proof of the theorem for propositional logic went.

Given consistent Γ, we were constructing a truth assignment e that wit-
nesses that Γ is satisfiable. We were doing this not by using Γ directly but
by using a maximal consistent set Θ ⊇ Γ. I.e., if ϕ 6∈ Θ, then Θ ∪ {ϕ} is
inconsistent.
We will do something similar but this time we have to construct a struc-

ture and a variable assignment. Given L and Γ, how would such a structure
A and assignment β look like. What would we take as the universe?
A good first try is to take A as all the L-terms, i.e. A = {t : tis an L−

term}. But then what if L contains a unary function f and a constant c
and Γ ` f(c) = x. As f(c) and x are distinct terms, our structure with
universe A would not do the job. Instead we might take the equivalence
classes as universe, A = {[t] : t is an L − term} (here [t] = {s : Γ ` s =
t, s an L − term}. We can now define
([t1], . . . , [tn]) ∈ RA iff Γ ` R(t1, . . . , tn) for n-ary relation symbols

R, [fA([t1], . . . , [tn])] = [s] iff Γ ` f(t1, . . . , tn) = s, for n-ary functions,
β(x) = [x], and cA = [c] for constants.
There is another problem, namely the quantifiers. If Γ ` ∃xϕ, then we

need to have a term t such that A, β |= ϕx/t. However if we have some
set Γ that is (a) consistent, (b) maximal, and contains witnesses in the
sense that if Γ ` ∃xϕ, then Γ ` ϕx/t for some term t, then we can build a
structure A that does the job.
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3 First order logic

How do we do that? We know by the assignment that if c is a fresh
constant symbol, then if Γ is satisfiable, so is Γ∪ {(∃xϕ→ ϕx/c)}. So if Γ
is maximal and ∃xϕ ∈ Γ, then Γ ∪ {ϕx/c} is satisfiable. So we will extend
our language by adding for every L-sentence ∃xϕ so that Γ ` ∃xϕ, a new
constant c. This of course blows up our language and we end up with a
set of formulas Γ̂ ⊃ Γ. We then blow up Γ̂ to a maximal consistent set Θ
in the language with constant symbols and build A as above for it. Then
A, β |= Θ and as Γ ⊆ Θ also A, β |= Γ. As Γ does not mention any of the
new constant symbols we can consider the L-reduct Â of A (defined like
A but lacking definitions for the new constants). Then Â is as required,
i.e., Â |= Γ and is an L-structure.

Of course all of this needs formal proof which we are not going to give
here.

3.4.2 Limits of first order logic
Recall the compactness theorem for propositional logic ??. The same
theorem holds for first order logic. Its prove carries over directly from
propositional logic.

Theorem 3.4.9. 1. If Γ ` ϕ, then there is finite Γ0 ⊆ Γ so that Γ0 ` ϕ.

2. If every finite subset of Γ is consistent, then Γ is consistent.

Using completeness and soundness we can get the following.

Theorem 3.4.10 (Semantic compactness). If every finite subset of Γ is
satisfiable, then Γ is satisfiable.

The completeness theorem together with the compactness theorem are
useful to show limitations of first order logic. For example:

Example 3.4.11. Let L = (E/2, c, d) be the language containing one
binary relation, also called the language of graphs, and two constants c
and d. We say that an element b ∈ A is reachable from an element a ∈ A
if there is a path, i.e., a finite sequence g1, . . . , gn ∈ A such that aEAg1,
giE

Agi+1 for i < n and gnEAb.
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There is no L-formula ϕ such that A, β |= ϕ iff dA is reachable from
cA.

Proof. We can consider formulas saying that d is not reachable from c in
less than n steps:

ψn = ∀x1 . . . ∀xn (¬cEx1 ∨ ¬x1Ex2 · · · ∨ ¬xnEd).

Assume ϕ was a formula saying that d is reachable from c and consider
Γ = ϕ∪{ψn : n ∈ N}. Note that {ψn : n ∈ N} says that d is not reachable
from c and thus Γ can not be satisfiable. Observe that every finite subset of
Γ is satisfiable. So by compactness Γ is satisfiable. But this is impossible,
therefore the formula ϕ can not express that d is reachable from c.

To express such a property as reachability in the language of graphs
we need an even stronger logic. The downside is that logics capable of
expressing this lack other nice features you would want of a logic such as
and especially compactness.
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