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1. BASIC DEFINITIONS AND SOME HISTORY

The goal of this seminar is to introduce the basic ideas and some of the applications of
free analysis. Free analysis deals with so-called noncommutative (nc for short) functions.
One should think of free analysis as a quantized version of complex analysis in the same
line as operator spaces are quantized Banach spaces. The template that I will try to fill
with content is “analytic function of several noncommuting variables”.

Since I have a penchant for history, I will start from afar. The first lecture is dealing
with original motivation and the origins of this field. The idea of an nc function goes
back to Taylor. In 1970 in [33] Taylor proposed a notion of joint spectrum for several
commuting operators based on the idea of the Koszul complex (a complex uniformly loved
by geometers and algebraists, alike). He then proceeded to construct functional calculus
for several commuting operators in [32]. However, his next two papers [34, 35] were far
more ambitious. He has set out to construct a joint spectrum and functional calculus for
several arbitrary operators. The ideas that guided Taylor were again algebraic in their
core. He recast functional calculus and spectrum in the language of modules. Given
T1, . . . Td ∈ B(H) commuting operators on some Hilbert space we automatically get that
H is a module over the polynomial ring A = C[z1, . . . , zd]. Given a topological algebra B
over the polynomial ring, the question of B-function calculus for our operators is ”can one
extend the module structure on H to a B-module structure?”. To be more precise, one
has a natural map H → H ⊗A B, given by ξ 7→ ξ ⊗ 1 and the question is whether this
is an isomorphism? The natural choice for B is the algebra O(U), the algebra of analytic
functions on U ⊂ Cd with the Frechet topology. Where does the spectrum come in? It
gives us a tool to determine whether this works for a given B or not. Classically, one has a
O(U)-functional calculus if and only if the spectrum is in U .

What happens if the operators do not commute? Just replace C[z1, . . . , zd] with the free
algebra C〈z1, . . . , zd〉. What do you replace O(U) with? Taylor suggested several options,
for example, rings of convergent power series in several non-commuting variables. His
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most interesting idea was the nc functions. Here are the first definitions that we will carry
through the seminar (the notations are not Taylor’s).

Definition 1.1. Given a vector space V , we define the nc space over V to me M(V ) =
t∞n=1Mn(V ), where Mn(V ) = Mn(C) ⊗ V . We will write simply Md for M(Cd). For every
subset Ω ⊂M(V ), we will write Ω(n) = Ω ∩Mn(V ), the n-th level of Ω.

Definition 1.2. An nc subset of M(V ) is Ω ⊂M(V ), such that for every X, Y ∈ Ω, we have
that X ⊕ Y = (X 0

0 Y ) ∈ Ω.

Note that Mn(V ) = Mn(C) ⊗ V comes equipped with a natural GLn(C) (or rather
PGLn(C)) action, where S ∈ GLn(C) acts on v ⊗ T by v ⊗ (S−1TS). For X ∈ M(V ),
we will simply write S−1XS. This is the last ingredient we need to define nc functions.

Definition 1.3. Let V and W be vector spaces and Ω ⊂ M(V ) an nc set. A function
f : Ω→M(W ) is called nc if it satisfies the following properties:

• f is graded, i.e, f(Ω(n)) ⊂Mn(W ) for every n ∈ N.
• f respects direct sums, i.e, f(X ⊕ Y ) = f(X)⊕ f(Y ) for every X, Y ∈ Ω.
• f respects similarities, i.e, for every n ∈ N, X ∈ Ω(n) and S ∈ GLn(C), such that
S−1XS ∈ Ω, we have that f(S−1XS) = S−1f(X)S.

Lemma 1.4 ( [18, Proposition 2.1]). The latter two conditions can be replaced by one
condition: if X ∈ Ω(n), Y ∈ Ω(m) and T ∈ Mm,n(C) is such that TX = Y T , then
Tf(X) = f(Y )T . One says that f respects intertwinners in this case.

Proof. If f respects intertwinners, than clearly f respects similarities. Now for direct sums
one writes (

X 0
0 Y

)(
In
0

)
=

(
In
0

)
X.

Let f(X ⊕ Y ) = ( A B
C D ). Since f respects intertwinners A = f(X) and C = 0. Similarly, one

gets that B = 0 and D = f(Y ).
Now let f be an nc function, X ∈ Ω(n) and Y ∈ Ω(m). If T ∈ Mm,n is such that

TX = Y T , then consider the matrix S =
(
In 0
T Im

)
. Then we have

S−1

(
X 0
0 Y

)
S = S−1

(
X 0
Y T Y

)
=

(
X 0
0 Y

)
.

Since f is nc we have that(
f(X) 0

f(Y )T − Tf(X) f(Y )

)
= S−1

(
f(X) 0

0 f(Y )

)
S =

(
f(X) 0

0 f(Y )

)
.

Thus f respects intertwinners. �

Example 1.5. Every element of the free algebra C〈z1, . . . , zd〉 is naturally a free function
on Md. In fact, one can view Md as the parameter space for all finite-dimensional repre-
sentations of the free algebra on d-generators. This is the analog of Cd that Taylor was
looking for in the case of the free algebra.

Let us write from now on Wd for the free monoid on d-letters.
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Example 1.6. Convergent power series in several noncommuting variables. Let r > 0
and consider the series

∑
α∈Wd

aαz
α, where aα ∈ C and zα is just the word α in the

free variables z1, . . . , zd. Let us write |α| for the length of the word α. Assume that
lim supn→∞

√∑
|α|=n aαr

n ≤ 1. Then the power series defines an nc function on the nc
set

Dr = {X ∈Md | ∀1 ≤ j ≤ d, ‖Xj‖ < r} .
This set is the noncommutative polydisc of radius r. One can, of course, use a multi-radius
for this example.

This example brings up the question of topologies, but I will defer the discussion of this
question to the next lecture.

The second father of free analysis is Voiculescu. In [37, 38] he considered nc functions
under the name of “fully matricial functions”. The “fully matricial sets” of Voiculescu are nc
sets we have defined with the additional assumption that they are closed under similiarities
on all levels. Let Ω ⊂M(V ) be an nc set, we will denote by Ω̃ the similarity envelope of Ω.
Namely, for every n ∈ N we set

Ω̃(n) =
{
S−1XS | X ∈ Ω(n), S ∈ GLn(C)

}
.

In [18, Proposition A.3] (alternatively see [1, Proposition 3.10]) it is proved that if f : Ω→
M(W ) is an nc function, then there exists a unique nc function f̃ : Ω̃ → M(W ), such that
f̃ |Ω = f . The functions that interested Voiculescu in particular are the resolvents.

Example 1.7. Let B ⊂ A be two Banach algebras. Let a ∈ A and we defien the B-resolvent
set of a

ρ(a,B)(n) = {b ∈Mn(B) | a⊗ In − b is invertible } .
This is clearly an nc set and it is even similarity invariant, so it is a fully matricial set in
the sense of Voiculescu. We define the function R(a,B) : ρ(a,B) → M(A) by R(a,B)(b) =
(a ⊗ In − b)−1. This is an nc function. In fact, it is an example (not quite) of a rational nc
function and I will discuss those a bit in the upcoming lectures.

The last example is special to me since this is how I got into the world of free analysis.
The commutative generalization of H2(D) and its multiplier algebra H∞(D) is the Drury-
Arveson space with its multiplier algebra. If the reproducing kernel of H2 is 1

1−zw̄ , then
the reproducing kernel of the Drury-Arveson space is 1

1−〈z,w〉 . The Drury-Arveson space is

the symmetric Fock space and thus is a quotient of the full Fock space F2
d = ⊕∞n=0

(
Cd
)⊗n,

where we set
(
Cd
)⊗0

= C. The analog of the multiplier algebra is the free semigroup
algebra — the weak-* closed subalgebra of B(F2

d ) generated by the left creation opera-
tors. Davidson and Pitts studied this algebra in [11–13] and proved, in particular, that it
satisfies a distance formula analogous to the one introduced by Sarason for Nevanlinna-
Pick interpolation. Similar results were obtained by Arias and Popescu in [5]. Popescu
in [23, 24] has already studied this algebra in term of functions on the unit ball of B(H)
for a separable Hilbert space H.

It turns out that the Fock space consists of nc functions on the free ball

Bd =

{
X ∈Md |

d∑
j=1

XjX
∗
j < I

}
.
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This is a nc reproducing kernel Hilbert space, with the kerenlK(Z,W )(T ) =
∑

α∈Wd
ZαTWα∗

(I will explain what are nc functions of several variables, when we discuss Taylor-Taylor
series). The multiplier algebra of this space is the space of nc functions uniformly bounded
on Bd and this algebra is unitarily equivalent to the free semigroup algebra.

Remark 1.8. One may ask why not include n = ∞ in the definition of M(V ), where
M∞(V ) = B(H) ⊗ V ? Of course, the tensor here becomes ambiguous unless V is finite-
dimensional. The answer is: one can do that, see for example the work of Agler and
McCarthy [2] and the works of Muhly and Solel [21]. Sometimes, even one should do that.
Eventually, looking at only finite-dimensional representations implies a form of residual
finite-dimensionality and many things are not such. That being said, if one goes to infinite
dimensions, one introduces the problems related to analytic functions on Banach spaces.
Though such problems will be implicit in our discussion, most analytic tools will be nice
and cozy several complex variables stuff.

2. TOPOLOGIES, ANALYTICITY, AND THE DIFFERENCE-DIFFERENTIAL FORMULA

Since we are doing analysis, one needs to put a topology on V . Even if V is a topological
vector space, then one can still choose various topologies on M(V ). The most immediate
one is the disjoint union (du) topology. This is the topology considered by Taylor in his
original work. The problem with this topology is that it sometimes allows for various
anomalies, that I will present when we discuss analyticity. The first, rather surprising
result is that local boundedness for an nc function is enough to guarantee analyticity (at
least as a function on each level).

Except for the du topology, I am going to introduce three more; the fine topology, the
uniform topology (This is a name from [18], in [3] it is called “the fat topology”) and the
free topology. From now on V is a topological vector space (more assumptions will be
added as necessary).

Definition 2.1. An nc set Ω ⊂M(V ) is called an nc domain if Ω is open in the du topology
and invariant under unitary similarities. The topology generated by all nc domains is called
the fine topology.

The fine topology is a sort of limit topology. This topology won’t be used much in the
seminar, but it appears, for instance, in the work of Pascoe on the free Jacobian conjecture
[22].

Definition 2.2. Assume that V is an operator space. Let Y ∈ M(V )(n) and r > 0, we
define the ball around Y to be the set with levels

Br(kn) =
{
X ∈M(V )(kn) | ‖X − Y ⊕k‖ < r

}
, k ∈ N.

The uniform topology is the topology generated by these balls.

I will be mostly talking about Md, so we will throw in this third quite interesting topology.

Definition 2.3. This topology is defined on Md. Let δ ∈Mk(C〈z1, . . . , zd〉), for some k ∈ N.
We define the following “free polynomial polyhedron”

Uδ = {X ∈Md | ‖δ(X)‖ < 1} .
4



Where the ealuation is a block matrix (tensor product). The free topology is the topology
whose basis is the collection of sets Uδ, where δ runs over all possible square polynomial
matrices over the free algebra in d variables.

Proposition 2.4 ( [3, Proposition 3.10]).

du topology ≥ fine topology ≥ uniform topology ≥ free topology.

Here τ ≥ τ ′ means that τ is finer than τ ′.

Let us assume from now on that V and W are operator spaces. The reason for this
definition will be explained below.

Definition 2.5. Let τ be one of our topologies. Let Ω ⊂M(V ) be an nc domain that is also
opne in the topology τ and f : Ω → M(W ) an nc function. We will say that f is τ -analytic
(e.g. uniformly analytic) if f is τ -locally bounded.

Remark 2.6. These topologies differ quite a bit. Agler and McCarthy in [3, Theorem 1.4,
7.7] prove that there are uniformly analytic functions that are not pointwise approximable
by polynomials, whereas this is true for the free topology (see [1]). However, they also
prove in [3, Theorem 1.5, 6.1] that the uniform topology admits an implicit function the-
orem, but according to [3, Theorem 1.6] the free topology does not.

Lemma 2.7 ( [18, Proposition 2.2]). Let Ω ⊂ M(V ) be an nc set and let f : Ω → M(W ) be
an nc function. If X ∈ Ω(n), Y ∈ Ω(m) and Z ∈Mn,m(V ) are such that (X Z

0 Y ) ∈ Ω, then

f

((
X Z
0 Y

))
=

(
f(X) ∆f(X, Y )(Z)

0 f(Y )

)
.

We have that ∆f(X, Y )(tZ) = t∆f(X, Y )(Z), for every t ∈ C, such that (X tZ
0 Y ) ∈ Ω.

Proof. Write T = (X Z
0 Y ) and set f(T ) = ( A B

C D ). Note that

T

(
In
0

)
=

(
In
0

)
X.

By Lemma 1.4 we have that A = f(X) and C = 0. Now we also have that(
0 Im

)
T = Y

(
0 Im

)
.

Conclude that D = f(Y ) and f(T ) =
(
f(X) ∆f(X,Y )(Z)

0 f(Y )

)
.

Let t ∈ C and write Tt = (X tZ
0 Y ). If T, Tt ∈ Ω, then (tIn ⊕ Im)T = Tt (tIn ⊕ Im). Thus we

get the last statement.
�

Remark 2.8. Due to the generality of [18], they define right (and left) admissible nc sets.
Every domain is both, so I will restrict to the case of nc domains.

Remark 2.9. In [18] the operator ∆f(X, Y ) is called the right difference-differential and
there is a left one corresponding to lower-triangular matrices. By [18, Proposition 2.8] for
nc domains ∆Rf(X, Y )(Z) = ∆Lf(Y,X)(Z). So we will focus on the right one.
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Why do I care about upper-triangular matrices, anyway? The intuition is rather simple.
Let f : D → C be an analytic function. Let A = ( a c0 b ), where a, b ∈ D. What is f(A)?
Assume first that a 6= b. Set S = ( 1 d

0 1 ) and note that

S−1AS =

(
a c− db
0 b

)(
1 d
0 1

)
=

(
a c+ d(a− b)
0 b

)
.

So fix d = c/(b− a), then An = S ( a
n 0
0 bn ). If f(z) =

∑∞
n=0 α− nzn is the Taylor series, then

f(A) = S

(
f(a) 0

0 f(b)

)
S−1 =

(
f(a) cf(b)−f(a)

b−a
0 f(b)

)
.

Note that the upper right corner is the divided difference of f at a, b multiplied by c. If a =
b, then we either take the limit or write A = aI+cJ , where J = ( 0 1

0 0 ). In the second case, it
is immediate that An = anI+nan−1cJ , thus the power series yields f(A) = f(a)I+f ′(a)cJ .
Either way the upper right corner contains the derivative of f at a.

Remark 2.10. A (much more) highbrow approach to this, that is in the spirit of Taylor’s
works is to consider a commutative algebra A and its modules. An extension of an A
module M by an A module N is an exact sequence

0 // N // E // M // 0 .

One can define a notion of isomorphism of extensions and a sum of two extensions. This
gives us a group Ext1

A(M,N). Tee key here is to consider the vector space M ⊕ N and
endow it with a module structure, so that N is a submodule and M is a quotient. Let us
assume that the action of A on M is given by a homomorphism πM : A → EndC(M) and
similarly πN for N . Then to specify a module action on M ⊕N , we need to choose a linear
map from ∆: A→ HomC(M,N), such that the map a 7→

(
πN (a) ∆(a)

0 πM (a)

)
is a homomorphism.

Now assume that A comes from a geometric object, for example a smooth affine algebraic
variety X. Let m ⊂ A be a maximal ideal and let x be the point corresponding to m. The
Zariski cotangent space toX at x is m/m2. One views this as a vector space over the residue
field A/m. Now consider the exact sequence

0 // m // A // A/m // 0 .

Apply HomA(−, Am) to the sequence to get a long exact sequence

0 // HomA(A/m, A/m) // A/m // HomA(m, A/m) // Ext1(A/m, A/m) // 0 .

The last zero is since A is a free module over itself so one can only extend A trivially.
Now A?m is a field, so the first term is just A.m. Therefore, the first non-trivial arrow
is an isomorphism and we get that HomA(m, A/m) ∼= Ext1(A/m, A/m). However, every
homomorphism of A-modules from m to A/m factors through m/m2 and thus it tells you
that Ext1(A/m.A/m) is the tangent space at x. So the upper triangular matrices with the
same entry on the diagonal know the derivations.

Lemma 2.11. Let Ω ⊂M(V ) be an nc domain, and f, g : Ω→M(W ) be two nc functions
(1) For every X ∈ Ω(n), Y ∈ Ω(m) the map ∆f(X, Y ) : Mn,m(V )→Mn,m(W ) is a linear

map.
(2) For every α, β ∈ C we have ∆(αf+βg)(X, Y )(Z) = α∆f(X, Y )(Z)+β∆g(X, Y )(Z).
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(3) If ϕ : V → W is a linear map, then the collection {ϕ⊗ IMn}n∈N is an nc function and
we have that ∆ϕ(X, Y )(Z) = (ϕ⊗ IMn,m)(Z).

(4) If W is an algebra we can take pointwise products of nc functions and in this case

∆(fg)(X, Y )(Z) = f(X)∆g(X, Y )(Z) + ∆f(X, Y )(Z)g(Y ).

Proof. To prove the first item, note first that for every Z, there exists r > 0, such that
(X rZ

0 Y ) ∈ Ωn+m since Ωn+m is open. Now set ∆f(X, Y )(Z) = 1
r
∆f(X, Y )(rZ) Now one

checks that this is well-defined and homogeneous see [18, Proposition 2.4]. Additivity is
proved in [18, Proposition 2.6]. The rest is trivial. �

Proposition 2.12. Let Ωi ⊂ M(Vi), for i = 1, 2 be nc domains. Let f : Ω1 → Ω2 and
g : Ω2 →M(W ) be nc functions, then for every choice of our usual suspects X ,Y and Z

∆(g ◦ f)(X, Y )(Z) = ∆g(f(X), f(Y )) (∆f(X, Y )(Z)) .

Proof.(
g(f(X)) ∆(g ◦ f)(X, Y )(Z)

0 g(f(Y ))

)
= g

(
f

((
X Z
0 Y

)))
=

g

((
f(X) ∆f(X, Y )(Z)

0 f(Y )

))
=

(
g(f(X)) ∆g(f(X), f(Y )) (∆f(X, Y )(Z))

0 g(f(Y ))

)
.

�

Corollary 2.13. Let f : Ω→ M(W ) be an nc function and let W be a Banach algebra. Write
GLn(W ) for the units of Mn(W ). Then

• The set GL(W ) = t∞n=1 GLn(W ) is an nc domain and ι(X) = X−1 is an nc map on
GL(W ).
• Let Ω× = {X ∈ Ω | f(X) ∈ GL(W )}. This is an nc set and we have that

∆f−1(X, Y )(Z) = −f(X)−1∆f(X, Y )(Z)f(Y )−1.

Proof. Observe that (
A C
0 B

)−1

=

(
A−1 −A−1CB−1

0 B−1

)
.

Thus ∆ι(A,B)(C) = −A−1CB−1 and by the chain rule we have that

∆f−1(X, Y )(Z) = −f(X)−1∆f(X, Y )(Z)f(Y )−1.

�

Now for the difference-differential formula that gives this operator its name

Proposition 2.14. Let Ω ⊂ M(V ) be an nc domain, f : Ω → M(W ) an nc function, X ∈
Ω(n), Y ∈ Ω(m) and S ∈Mn,m(C). That is

Sf(X)− f(Y )S = ∆f(X, Y )(XS − SY ).

Proof. Let T =
(
In S
0 Im

)
, then

T−1

(
X 0
0 Y

)
T =

(
X XS − SY
0 Y

)
7



Hence(
f(X) ∆f(X, Y )(XS − SY )

0 f(Y )

)
=

f(T−1(X ⊕ Y )T ) = T−1(f(X)⊕ f(Y ))T =

(
f(X) f(X)S − Sf(Y )

0 f(Y )

)
.

�

The following corollary appears as part of the proof of [1, Theorem 4.10], which as
the authors themselves point out is a modification of [14, Proposition 2.5]. Agler and
McCarthy prove in [1, Theorem 4.10] that local boundedness implies continuity in the
case when V = Cd and W = B(H,K) and the proof is neat. Since we are going to discuss
Tay-lo-Taylor series, we will do it in a bit more technical way in the next section.

Corollary 2.15. Let V and W be Banach spaces. Let Ω ⊂ M(V ) be an nc domain and
f : Ω→M(W ) be a du-continuous nc function, then f is Gateaux differentiable. The Gateaux
derivative of f at X is ∆f(X,X). In particular, if V = Cd and W = Ce, then f is analytic as
a function in the coordinates on every level.

Proof. Let X ∈ Ω(n) and Z ∈ Mn(V ). We want to show that limt→0
1
t

(f(X + tZ)− f(X))

exists. Since Ω(n) is open, for every Z of small enough norm
(
X+tZ Z

0 X

)
∈ Ω2n, for t ∈ D.

Now note that by the difference-differential formula with S = I we have that for every
s ∈ D

f(X + tZ)− f(X) = ∆f(X + tZ,X)(tZ) = t∆f(X + tZ,X)(Z).

Therefore, limt→0
1
t

(f(X + tZ)− f(X)) = limt→0 ∆f(X+tZ,X)(Z), but the the right hand
limit exists by the continuity of f . Indeed,(

f(X) ∆f(X,X)(Z)
0 f(X)

)
= lim

t→0
f

((
X + tZ Z

0 X

))
=

lim
t→0

(
f(X + tZ) ∆f(X + tZ,X)(Z)

0 f(X)

)
.

We see from this that limt→0
1
t

(f(X + tZ)− f(X)) = ∆f(X,X)(Z). The last claim follows
from Hartogs’ theorem. �

It only remains to understand what kind of map is (X, Y ) 7→ ∆f(X, Y ). Note that

Proposition 2.16 ( [18, Proposition 2.15, 2.17]). Let Ω ⊂ M(V ) be an nc domain and
f : Ω→M(W ) an nc function.

(1) Let X ∈ Ω(n), Y ∈ Ω(m), Z ∈Mn,m(V ), S ∈ GLn(C) and T ∈ GLm(C). Then

∆f(S−1XS, T−1XT )(S−1ZT ) = S−1∆f(X, Y )(Z)T.

(2) Let Xi ∈ Ω(ni), Yi ∈ Ω(mi) and Zij ∈Mni,mj
(V ), fro i, j = 1, 2. Then

(a)

∆f(X1 ⊕X2, Y1)

((
Z11

Z21

))
=

(
∆f(X1, Y1)(Z11)
∆f(X2, Y1)(Z21)

)
.

(b)

∆f(X1, Y1 ⊕ Y2)
((
Z11 Z12

))
=
(
∆f(X1, Y1)(Z11) ∆f(X1, Y2)(Z12)

)
.
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(c)

∆f(X1 ⊕X2, Y1 ⊕ Y2)

((
Z11 Z12

Z21 Z22

))
=

(
∆f(X1, Y1)(Z11) ∆f(X1, Y2)(Z12)
∆f(X2, Y1)(Z21) ∆f(X2, Y2)(Z22)

)
.

Proof. To prove the first item note that(
S−1 0

0 T−1

)(
X Z
0 Y

)(
S 0
0 T

)
=

(
S−1XS S−1ZT

0 T−1Y T

)
.

Set Q = S ⊕ T , then we have that(
S−1f(X)S S−1∆f(X, Y )(Z)T

0 T−1f(Y )T

)
= Q−1f

((
X Z
0 Y

))
Q =

f

(
Q−1

(
X Z
0 Y

)
Q

)
=

(
S−1f(X)S ∆f(S−1XS, T−1Y T )(S−1ZT )

0 T−1f(Y )T

)
.

(c) of the second item follows from (a) and (b). To prove (a) one notes that
I 0 0
0 0 I
0 I 0
0 0 I


X1 0 Z11

0 X2 Z12

0 0 Y1

 =


X1 Z11 0 0
0 Y1 0 0
0 0 X2 Z12

0 0 0 Y1



I 0 0
0 0 I
0 I 0
0 0 I

 .

Now one uses the fact that f respects intertwinners. �

This proposition describes ∆f as an nc function of order one. In the next section, we
will meet higher order nc functions and discuss the Taylor-Taylor expansion.

3. HIGHER-ORDER NC-FUNCTIONS, ANALYTICITY AND TAYLOR-TAYLOR SERIES

The treatment in this section is going to be a bit more sketchy. This is due to the fact
that this is quite technical and there is a very good source, namely [18, Chapter 3]. We
have sen in the previous section that ∆f(X, Y ) can be viewed as an nc function of two
variables. The value of this function at X ∈ Ω(n) and Y ∈ Ω(m) is a linear map from
Mn,m(V ) → Mn,m(W ). Let us consider a lightly bigger upper triangular matrix. Let Xi ∈
Ω(ni), for i = 1, 2, 3, Z12 ∈Mn1,n2(V ) and Z23 ∈Mn2,n3(V ). Consider the matrix

P =

X1 Z12 0
0 X2 Z23

0 0 X3

 .

If f : Ω→M(W ) is an nc function, then we have that

f(P ) =

f ((X1 Z12

0 X2

))
∆f

((
X1 Z12

0 X2

)
, X3

)((
0
Z23

))
0 f(X3)

 .

We know what the upper-left corner is. We can also decompose the matrix differently to
get the lower left corner. The bottom line is that

f(P ) =

f(X1) ∆f(X1, X2)(Z12) ?
0 f(X2) ∆f(X2, X3)(Z23)
0 0 f(X3)

 .
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What is the question mark? The second derivative, namely ∆2f(X1, X2, X3)(Z12, Z23). Also
note that we have got

∆f

((
X1 Z12

0 X2

)
, X3

)((
0
Z23

))
=

(
∆2f(X1, X2, X3)(Z12, Z23)

∆f(X2, X3)(Z23)

)
∆f

(
X1,

(
X2 Z23

0 X3

))((
Z12 0

))
=
(
∆f(X1, X2)(Z12) ∆2f(X1, X2, X3)(Z12, Z23)

)
.

This formula is analogous to the commutation of derivatives in different directions.
One can show that in fact ∆2f(X1, X2, X3) is a multilinear map of two arguments. In

other words it is a map from Mn1,n2(V )⊗Mn2,n3 →Mn1,n3(W ). I ignore the question “what
tensor?” on purpose ,since if V = Cd they are all the same. The content of the following
definition is [18, Proposition 3.1] and the original definition of an nc function of order k
is in the beginning of [18, Section 3.1].

Definition 3.1. Let Ω0, . . . ,Ωk ⊂ M(V ) be nc domains. A function f on Ω0 × · · · × Ωk is
called a graded function of order k with values in W , if for every k+1 tuple of Xi ∈ Ωi(ni),
for j = 0, . . . , k, f(X0, . . . , Xk) : Mn0,n1(V ) ⊗ · · · ⊗ Mnk−1,nk

(V ) → Mn0,nk
(W ) is a linear

map. The function F is called an nc function of order k, if it respects intertwiners. That
is, if Zj ∈ Mnj−1,nj

(V ), for j = 1, . . . , k and T ∈ Mm,n0 is such that TX0 = X ′0T , for some
X ′0 ∈ Ω0(m), then

Tf(X0, . . . , Xk)(Z1, . . . , Zk) = f(X ′0, X1, . . . , Xk)(TZ1, . . . , Zk).

If T ∈Mm,nj
(C) is such that TXj = X ′jT , then for every Z ′j ∈Mnj−1,m(V )

f(X0, . . . , Xk)(Z1, . . . , Z
′
jT, Zj+1, . . . , Zk) =

f(X0, . . . , Xj−1, X
′
j, Xj+1, . . . , Xk)(Z1, . . . , Z

′
j, TZj+1, . . . , Zk).

The difference-differential operator can be extended to nc function of higher order. It
then sends functions of order k to functions of order k + 1. The idea of the proof is a
computation similar to the one we have performed to get ∆2. In particular, for every nc
function we get ∆kf — an nc function of order k. We get

Theorem 3.2 ( [18, Theorem 3.11]). Let f : Ω → M(W ) be an nc function and let k ∈ N,
Xi ∈ Ω(ni) for i = 0, . . . , k and Zj ∈Mnj−1,nj

for j = 1, . . . , k, such that

P =


X0 Z1 0 · · · 0

0 X1 Z2
. . . ...

... . . . . . . . . . ...
0 · · · 0 Xk−1 Zk
0 · · · · · · 0 Xk

 ∈ Ω.

Then

f(P ) =


f(X0) ∆f(X0, X1)(Z1) ∆2f(X0, X1, X2)(Z1, Z2) · · · ∆kf(X0, . . . , Xk)(Z1, . . . , Zk)

0 f(X1) ∆f(X1, X2)(Z2)
. . . ...

... . . . . . . . . . ...
0 · · · 0 f(Xk−1) ∆f(Xk−1, Xk)(Zk)
0 · · · · · · 0 f(Xk)
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Then we have the higher-order difference differential formula.

Theorem 3.3 ( [18, Theorem 3.19]). If f is an nc function of order k on Ω0 × · · ·Ωk. Then
we have that

f(X0, . . . , Xk−1, X)(Z1, . . . , Zk)− f(X0, . . . , Xk−1, Y )(Z1, . . . , Zk) =

∆f(X0, . . . , Xk−1, Y,X)(Z1, . . . , Zk, X − Y ).

In particular, if f is the k-th derivative of our favorite nc function, then we get

Corollary 3.4. Let f : Ω → M(W ) be an nc function, let X, Y ∈ Ω(n) and Z1, . . . , Zk ∈
Mn(V ), then

∆kf(Y, . . . , Y,X)(Z1, . . . , Zk)−∆kf(Y, . . . , Y, Y )(Z1, . . . , Zk) =

∆k+1f(Y, . . . , Y,X)(Z1, . . . , Zk, X − Y ).

Now we can use that to get the noncommutative version of Taylor polynomial of a func-
tion. Let X, Y ∈ Ω(n) and recall that from the first-order difference-differential formula
we get

f(X) = f(Y ) + ∆f(Y,X)(X − Y ).

Now we can apply Corollary 3.4 repeatedly to obtain

f(X) = f(Y ) + ∆f(Y, Y )(X − Y ) + ∆2f(Y, Y,X)(X − Y,X − Y ) =

f(Y )+∆f(Y, Y )(X−Y )+∆2f(Y, Y, Y )(X−Y,X−Y )+∆3f(Y, Y, Y,X)(X−Y,X−Y,X−Y ) = · · ·

We conclude that

Theorem 3.5 ( [18, Theorem 4.1]). Let f : Ω → M(W ) be an nc function and let X, Y ∈
Ω(n), then for every k ∈ N we have

f(X) = f(Y )+
n∑
r=1

∆rf(Y, . . . , Y )(X−Y, . . . , X−Y )+∆k+1f(Y, . . . , Y,X)(X−Y, . . . , X−Y ).

Now we can get the automatic analyticity result. Let us simplify the notations a bit first.
For k ∈ N, let Jk be the Jordan block of order k, namely

Jk =


0 1 0 · · · 0
0 0 1 · · · 0
...

... . . . . . . ...
0 · · · 0 0 1
0 · · · · · · 0 0

 ∈Mk.

FOr Z ∈Mn(V ) let us write Jk,Z = Jk ⊗ Z.

Theorem 3.6 ( [18, Theorem 7.2]). Let Ω ⊂M(V ) be an nc domain and let f : Ω→M(W )
be du locally bounded, then f is Gateaux differentiable and the Gateaux derivative at X ∈
Ω(n) is ∆f(X,X). Furthermore, for every Z ∈Mn(V ) and every k ∈ N we have

1

n!

dk

dtk
f(X + tZ) = ∆kf(X, . . . , X)(Z, . . . , Z).

11



Proof. Fix k ∈ N and let X ∈ Ω(n) and Z ∈ Mn(V ), since Ω is an nc domain we can find
r > 0, such that P = X⊕k + rJk,Z ∈ Ω. Now we can find ε > 0, such that for every |t| < ε
the matrix Pt = X⊕k + tEkk ⊗ Z + rJk,Z ∈ Ω. Shrinking ε further we may assume that f is
bounded on a neighbourhood of X⊕k + rJk,Z that contains the Pt for all |t| < ε. Note that

∆kf(X, . . . , X,X + tZ)(Z, . . . , Z) =
1

rk
(
I 0 · · · 0

)
f(Pt)


0
...
0
I

 .

Since we have an operator space on our hands ∆kf(X, . . . , X,X+tZ)(Z, . . . , Z) is bounded
for |t| < ε. Now apply Theorem 3.5 to get

f(X + tZ) = f(X) +
k−1∑
j=1

tj∆jf(X, . . . , X)(Z, . . . , Z)+

+ tk∆kf(X, . . . , X,X + tZ)(Z, . . . , Z).

Since the remainder is bounded by C|t|k we get that f is k − 1 times differntiable in the
direction of Z and the derivatives have the formula we desired.

�

It is a fact that in our case the function F is also Frechet differentiable, i.e,

lim
‖Z‖→0

‖f(X + Z)− f(X)−∆f(X,X)(Z)‖
‖Z‖

= 0.

Furtheremore, one can pass from the TT “polynomial” with remainder to TT series, namely
if Y ∈ Ω(n) and let r > 0 be such that f is bounded on the ball around Y with radius r,
then for every ‖X − Y ‖ < r we have

f(X) =
∞∑
k=0

∆kf(Y, . . . , Y )(X − Y, . . . , X − Y ).

For the proof see [18, Theorem 7.4 and Corollary 7.5]. If X ∈ Ω(mn) close enough to
Y ⊕m, then again

f(X) =
∞∑
k=0

∆kf(Y ⊕m, . . . , Y ⊕m)(X − Y ⊕m, . . . , X − Y ⊕m).

In particular, if f is locally bounded in the uniform topology one can find r > 0 and
the series will converge uniformly and absolutely on compacta in Br(Y ). Recall that
∆f(Y ⊕m, Y ⊕m) is a linear map Mnm(V )→Mnm(W ) and by the properties of an nc map of
order 1, we have that ∆f(Y ⊕m, Y ⊕m) = IMm ⊗∆f(Y, Y ). Similarly one can simlify higher
order nc functions to get that the TT series have the form

f(X) =
∞∑
k=0

∆kf(Y, . . . , Y )
(
(X − Y ⊕m)�nk

)
Here �nk stands for the product of Mnm(V ) matrices as m × m-matrices over the tensor
algebra of Mn(V ) and we apply ∆kf(Y, . . . , Y ) to each coordinate.
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Remark 3.7. The ultimate reference on Taylor-Taylor expansions and higher-order nc func-
tions is the book [18]. The original ideas, however, are in [36].

4. POLYNOMIALS AND RATIONAL FUNCTIONS

Classically, of all analytic function, the polynomials and rational functions are the sim-
plest in many ways. In this section, we will discuss the noncommutative analogs of these
two basic classes. Let us start with polynomials, namely elements of C〈z1, . . . , zd〉. It is
rather straightforward that for a polynomial p and every n ∈ N the restriction of p to Md(n)
is a matrix polynomial in the coordinates on Md(n). It is also clear that since this function
is GLn(C)-equivariant, not every matrix polynomial in the coordinates is a restriction of an
nc polynomial. In fact, equivariance is not enough. Equivariant matrix polynomials were
studied by Procesi and many others. The algebra of all matrix polynomials on Md(n) that
are GLn(C)-equivariant is called the algebra of matrix concomitants of size n. We shall
denote this algebra by Cd,n.

To understand this algebra we need some definitions. Let us fix n ∈ N and set z(k)
ij ,

for 1 ≤ i, j ≤ n and 1 ≤ k ≤ d, the coordinates on Md(n). For every k = 1, . . . , n, let

Xk =
(
z

(k)
ij

)n
i,j=1

. We call the Xk the generic matrices. For every word α ∈ Wd, the free

monoid on d letters, we write Xα for the monomial in the generic matrices. Finally, let
Td,n ⊂ C[z

(k)
ij ] be the subalgebra generated by tr(Xα), where α runs over Wd.

Theorem 4.1 ( [26]). We have that Td,n = C[z
(k)
ij ]GLn(C), i.e, Tn is precisely the algebra of

similarity invariant polynomials on Md(n). Furthermore, the center of Cd,n is Td,n and Cd,n is
generated over Td,n by finitely many monomials Xα.

Remark 4.2. Since GLn(C) is reductive, by Hilbert’s theorem the algebra Td,n is Noether-
ian. In fact, it corresponds to the categorical quotient of Md(n) by similarities.

Definitely our nc polynomials are inside Cd,n. How can we tell them apart? In fact, the
image of the free algebra under the restriction is the subalgebra generated by Xα without
the traces. This is the so-called algebra of generic matrices. It was studied in relation with
polynomial identities. The following theorem describes nc polynomials in another way.

Theorem 4.3 ( [18, Theorem 6.1] and [19]). Let f : Md → M1 be an nc function and
assume that on every level f is given by a matrix concomitant (in particular, for every n ∈ N,
f |Md(n) is a matrix polynomial in the coordinates). Then f is an nc polynomial if and only the
degree of the matrix polynomials f |Md(n) is uniformly bounded.

Proof. If f is an nc polynomial, there is nothing to prove. So the question is how to prove
the converse direction. This result was first proved by Kaliuzhnyi-Verbovetskyi and Vin-
nikov in [18] using Taylor-Taylor series. Recently, it was given a new proof by Klep and
Špenko using matrix concomitants. I will sketch both of them.

First proof: Let us denote the bound on the degree bym. Since we obtain the difference-
differential operators by applying f to upper-triangular matrices, we get that ∆kf(Y0, . . . , Yk)(Z1, . . . , Zk)
is a polynomial in the coordinates of Y0, . . . , Yk, Z1, . . . , Zk. In particular, if we apply the
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Taylor-Taylor formula, we get

f(Y + tZ) =
k−1∑
r=0

tr∆rf(Y, . . . , Y )(Z, . . . , Z) + tk∆kf(Y, . . . , Y, Y + tZ)(Z, . . . , Z).

For fixed Y and Z this is a polynomial in t of degree at most m, hence the remainder
vanishes for k > m. Now if we write the Taylor-Taylor expansion around some Y we have

f(X) =
m∑
r=0

∆rf(Y, . . . , Y )(X − Y, . . . , X − Y ).

This is, however, independent of the size of Y and we can take Y to be zero and obtain
immediately that f is an nc polynomial.

Second Proof: SInce f is nc and its restriction to each level is a matrix polynomial in
the coordinates, we have that f |Md(n) is a matrix concommitant. Therefore, using the fact
that trace is linear, we can write

f |Md(n) =
∑
|α|≤m

hn,α(X)Xα.

Here the hn,α are some polynomials in traces of monomials, but we remember the n, since
these polynomials might change from level to level. We also require that deg tr(hn,α)+|α| ≤
m. Let us take n ≥ m+ 1. Since f is nc we have that for every X, Y ∈Md(n)∑
|α|≤m

tr(h2n,α(X ⊕ Y ))Xα ⊕ Y α = f(X ⊕ Y ) = f(X)⊕ f(Y ) =

=

∑
|α|≤m

tr(hn,α(X))Xα

⊕
∑
|α|≤m

tr(hn,α(Y ))Y α

 .

Comparing coefficients we see that

tr(h2n,α(X ⊕ Y )) = tr(hn,α(X)) = tr(hn,α(Y )).

However, Procesi in [26] proved that Mn does not satisfy any notrivial trace identity of
degree less than n. Hence these are constants and we are done. �

Remark 4.4. The advantage of the second proof is that it allows us to consider other
groups instead of GLn(C). For example in the real setting with transposes of the variables
allowed, we can consider On and the result still holds.

The next step after considering polynomials is considering rational functions. Classically,
we can always localize a commutative domain (a ring with no zero divisors) at every
multiplicative subset and in particular, the complement of the zero ideal. The result is
the field of fractions of our domain. In the noncommutative setting things are far from
nice. If a noncommutative domain satisfies the Ore conditions, then one can construct
a localization and it will have similar properties to the classical one. However, the free
algebra does not. What can be done? Where can we get rational nc functions? P. M. Cohn
(see for example [9] and [10]) realized that localizing at elements alone is not enough
and one must localize at matrices. An n × n matrix T is called full, if one cannot write as
T = PQ, where P and Q are n × k and k × n matrices, respectively, where k < n. Then
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one localizes (in some sense) at all of the full matrices to obtain the free skew field. One
should also consult [29] for a more modern treatment.

However, this is not a point of view I’d like to take. I would like a more function-theoretic
way of looking at things. In algebraic geometry, localizing at a single element is encoded
by considering the algebraic functions on the Zariski open set — the complement of the
zeroes of f . So one can consider the fraction field as the algebraic functions with some
domain of definition. The approach of Amitsur [4] is to consider all possible syntactically
correct words one can write with the variables of our free algebra, scalars, +, · and −1.
For example ((z1 − z2)−1 + z2z3z2)−1 − 2 or (z1z2 − z2z1)−1 or 0−1. Anything goes! Now
for each expression, we try to evaluate it on elements of some rings. If one can find a
d-tuple of elements of some ring R, such that our expression can be evaluated on, we add
this d-tuple to its domain. Now clearly 0−1 is a silly expression and its domain is empty.
We now throw away all expressions with empty domains. On the remaining we define an
equivalence relation, by r1 ∼ r2 if dom(r1) ∩ dom(r2) 6= 0 and they are equal as functions
on any d-tuple in the intersection. A noncommutative rational function is an equivalence
class. Now one has to work hard to prove that the resulting structure is a skew field (a.k.a.
division ring). This skew-field is the free skew field.

There are several questions that arise instantly. First and foremost what rings do we
take? It is proved in [17] that one can consider only matrix rings of all sizes. From now
one when discussing the domain of a rational function we will restrict ourselves to the
domain in Md and denote this particular nc set by dom(r). The second question is what
is “the” about the skew field that we have constructed? There is no uniqueness for the
ring of fractions and one can construct embeddings of the free algebra into various skew-
fields that are not embeddable one into the other. The correct notion is the notion of the
universal skew-field of fraction. We say that a skew-field K is the universal skew field of
fractions of a ring R, if for every skew-field L and a homomorphism ϕ : R → L, there
exists a subring R ⊂ K0 ⊂ K, and a homomorphism ϕ̃ : K0 → L extending ϕ, such that
for every 0 6= x ∈ K0, we have that x−1 ∈ K0 if and only if ϕ̃(x) 6= 0. The homomorphism
ϕ̃ is unique in an appropriate sense. The universal skew-field of fractions is unique up to a
unique isomorphism. The notation for the free skew-field is C (z1, . . . , zd ) .

Remark 4.5. The notion of noncommutative rational functions came first to the world of
automata in [30] and [31]. For example, a language is accepted by a weighted automaton
if and only if the characteristic series of the language represents a rational function (see
[8].

The nicest part about noncommutative rational functions is that you can simplify the
complicated expressions by passing to matrices. Let me make this more precise in the case
when the domain of our rational function contains the origin.

Theorem 4.6 ( [8, Theorem 2.4], [39, Theorem 3.10], [16, Theorem 3.1]). Let r be a
rational expression with the origin in its domain. Then this function admits a realization,
namely there exists two vectors ξ, η ∈ Cn and matrices A1, . . . , Ad ∈Mn, such that

r(z1, . . . , zd) = r(0) + ξT

(
I −

n∑
j=1

zjAj

)−1

η.
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Furthermore, there exists a unique minimal (in terms of n) realization of r and if L = I −∑n
j=1 zjAj is the pencil of the minimal realization, then

dom(r) = {X ∈Md | detL(X) 6= 0} .

Here for X ∈Md(k) we have that L(X) = In ⊗ Ik −
∑n

j=1 Aj ⊗Xj.

This is basically, writing the Schur complement of the matrix
(
r(0) ξT

η −L

)
. Realizations

and in particular, unique minimal realizations exist for every rational function and can be
constructed using [15, Algorithm 4.3].

Recall that an algebra A is called stably finite if for every matrix T ∈ Mn(A), one-sided
invertibility implies invertibility. In particular, every C∗-algebra with a faithful trace is
stably finite (see [15, Lemma 5.1]). We have the following complementary answer to our
first question. Let us write, for an algebra A and a rational expression r, domA(r) for the
domain of r in A.

Theorem 4.7 ( [15]). The following are equivalent for an algebra A.
(1) A is stably finite.
(2) for every two equivalent rational expressions r1 and r2 and every X ∈ domA(r1) ∩

domA(r2), r1(X) = r2(X).
In fact, one can also work over the real numbers and consider self-adjoint rational expres-

sions and then one can find a realization that is self-adjoint, namely r = r(0) + ξ∗L−1ξ and
coefficients of L are self-adjoint. This is the content of [15, Theorem 4.9].

Now let us be more specific. Let (A.τ) be a C∗-probability space, namely A is a C∗

and τ is afaithful tracial sate. One views τ as an expectations and the elements of A as
free random variables. The noncommutative joint distribution of a1, . . . , ad is the linear
functional on C〈z1, . . . , zd〉 defiend by p 7→ τ(p(a1, . . . , ad). In particualr, if a = a∗ is self-
adjoint one can find a probability measure µa on the real line defined by τ(ak) =

∫∞
−∞ t

kdµa.
This measure knows the moments of a and thus knows the distribution. One define the
Cauchy transform of a probability measure on the real line

Gµ(z) =

∫ ∞
−∞

1

z − t
dµ(t).

This is an analytic function from the upper-half plane (C+) to the lower half-plane (C−).
In particular, we have that Gµa(z) = τ((z − a)−1). The measure can be recovered from the
function using the Stieltjes inversion formula. The same game can be played with B ⊂ A
a subalgebra and a conditional expectation E : A→ B.

Given a1, . . . , ad ∈ Asa and a polynomial p ∈ C〈z1, . . . , zd〉, such that p(a1, . . . , ad) is self-
adjoint, can we calculate the distribution of the polynomial in the a’s using the distributions
of the a’s? The answer is yes and it involves free convolution. In their paper Helton, Mai
and Speicher have given an answer for rational functions as well.

Theorem 4.8 ( [15, Theorem 6.10 and Theorem 6.11]). Let r be a self-adjoint rational ex-
pression and a1, . . . , ad ∈ Asa, such that (a1, . . . , ad) ∈ domA(r). LEt r(0)+ξ∗L−1ξ be the min-
imal realization for r and set Λ =

(
r(0) ξ∗

ξ −L

)
. Then r(a1, . . . , ad) = r(0) + ξ∗L(a1, . . . , ad)

−1ξ
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and we have that for every z ∈ C+

(z1A − r(a1, . . . , ad) =
(
1A 0

)((z1A 0
0 0

)
− Λ(a1, . . . , ad)

)−1(
1A
0

)
.

Furtermore,

Gr(a1,...,ad)(z) = lim ε→ 0+
(
1 0

)
GΛ(a1,...,ad)

((
z 0
0 iεI

))(
1
0

)
.

5. THE FOCK SPACE AND THE FREE SEMI-GROUP ALGEBRA WITH NC FUNCTIONS

Recall that classically, H∞(D) – the algebra bounded analytic functions on the unit disc
can be given the structure of a weak-* closed operator algebra, by letting them act as
multiplication operators on H2(D). The latter is the space of all analytic functions on the
disc with square summable Taylor coefficients at the origin. That is H2(D) is the Hilbert
space obtained by defining on C[z] the inner product with orthonormal basis given by the
monomials.

Furthermore, H2(D) is a reproducing kernel Hilbert space (RKHS). That is for every
z ∈ D, the evaluation at z functional is a bounded functional on H2(D). This is, however, a
Hilbert space and thus there exists a vector kz ∈ H2(D), such that evaluation of f ∈ H2(D)
at z is given by f(z) = 〈f, kz〉. The function k(z, w) = kz(w) = 〈kz, kw〉 is called the
reproducing kernel of the RKHS. In the case of H2(D) we have that k(z, w) = 1

1−zw , the
so-called Szego kernel.

One other algebra of note is A(D) – the norm closure of the polynomials in H∞(D).
Equivalently, this is the algebra of all analytic functions on |D that extend to a continuous
function on D. The celebrated von Neumann inequality tells us that for every T ∈ B(H),
such that ‖T‖ ≤ 1 and every polynomial p ∈ C[z]

‖p(T )‖ ≤ sup
z∈D
|p(z)| = ‖p‖∞.

In particular, this means that this inequality is true if replace p with f ∈ A(D). This ties
into Sz.-Nagy-Foias dilation theory. Every contraction T admits a unitary power dilation,
namely if T ∈ B(H) is a contraction, then there exists a Hilbert space K, a unitary U ∈
B(K) and an isometry V : H → K, such that for every n ∈ N, T n = V ∗UnV . In more
modern language we have a commutative diagram

C(T)
z 7→U // B(K)

V −V
��

A(D)

OO

z 7→T
// B(H)

.

This picture is a the motivations behind the Stinespring dilation and Arveson’s extension
theorems.

If we have a d-tuple of commuting contractions this is already difficult, since for d > 2
there is no simultaneous commuting unitary dilation of our d-tuple. Examples for this were
given by Parrott and Varopolous.
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One way to generalize this was to consider rows of operators, namely think of (T1, . . . , Td)
as an operator fromH⊕d toH. If this operator is contractive we say that it is a row contrac-
tion. Frazho, Bunce, and Popescu constructed isometric dilations of row contractions (not
necessarily commuting) and Popescu also has constructed a Cuntz dilation. The algebra
that replaces A(D) is the non-commutative disc algebra Ad. Let us define the objects we
need.

Definition 5.1. Let F2
d = ⊕∞k=0

(
Cd
)⊗k be the Fock space and let Lj be the j-th creation

operator, namely the operator that send v1 ⊗ · · · ⊗ vk to ej ⊗ v1 ⊗ · · · ⊗ vk, where ej is the
j-th element of the standard basis. Let us write Ad for the norm closed operator algebra
generated by the Lj and Ld for the weak-* closed operator algebra generated by them.

Note that Fd2 is the `2 space on the free monoid on d letter. Also note that ( L1 ··· Ld )

is a row isometry and
∑d

j=1 LjL
∗
j = I − P0, where P0 is the projection onto the vector

associated to the empty word — the vacuum vector. The algebras Ad and Ld were studied
extensively by Arias and Popescu [5], Popescu [23, 24], and Davidson and Pitts [11–13].
Davidson and Pitts have shown that the algebras Ld are a noncommutative generalization
of H∞(D) = L1. For example, one has inner-outer factorization in Ldm namely if f ∈ Ld,
there exists an isometry v ∈ Ld and an operator with dense range g ∈ Ld, such that f = vg.
Ld is inverse closed, does not contain any non-scalar normal operators and L′d = Rd, the
weak-* closed algebra generated by the right creation operators.

We already saw that the Fock space F2
d is a Hilbert space of nc functions on the free

ball Bd with square summable Taylor-Taylor coefficients at the origin. Since we have the
vacuum vector 1 ∈ F2

d , we can identify every f ∈ Ld with an nc functions f1 ∈ Fd2 .
However, there is another way but for this, we need cp nc kernels.

Definition 5.2 ( [7]). Let Ω ⊂M(V ) be an nc set and letK : Ω(n)×Ω(m)→ Hom(Mn,m,Mnm)
be a function. We say that K is a cp nc kernel on Ω if

(1) The function ZZ,W ) 7→ K(Z,W ∗) is a first-order nc function.
(2) For every Z ∈ Ω the map K(Z,Z) is positive.

Example 5.3. Let X ∈ Md(n) and Ω = {X⊕k}k∈N. Let K be a cp nc kernel on Ω, then
K(X⊕k, X⊕k) = K(X,X)⊗ IMk

, hence K(X,X) is cp.

Example 5.4. Let k be a classical rperoducing kernel on some set X ⊂ Cd and let Ω ⊂Md

be the minimal nc set containing X, namely Ω consits of all possible direct sums of points
of X, then k extends naturally to a cp nc kernel on Ω by setting

k

z1

. . .
zn

 ,

w1

. . .
wm

 (P ) = (k(zi, wj)) ◦ P.

Here ◦ stands for the Schur product.

Example 5.5. The noncommutative Szego kernel is defined on Bd by

K(Z,W )(T ) =
∑
α∈Wd

ZαTWα∗ =
∞∑
n=0

Ψn
Z,W (T ).
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Here ΨZ,W (T ) =
∑d

j=1 ZjTW
∗
j . In particular, for every Z ∈ Bd, the map ΨZ = ΨZ,Z is

a cp map and since Z is a strict row contraction, Ψ is strictly contractive. So the series
converges and K(Z,Z) = (Id−ΨZ)−1.

Just like in the classical case we have

Theorem 5.6 ( [7]). Let K be a cp nc kernel on Ω, then there exists a Hilbert space of
nc functions on Ω with reproducing kernel K. Conversely, if we have a Hilbert space of nc
functions on Ω, such that for every X ∈ Ω(n) and every v, y ∈ Cn, the functionals f 7→
〈f(X)v, y〉 are bounded, then there exists a cp nc kernel K on Ω, such that this space is the nc
RKHS of K.

Lastly, if K is locally bounded, then so are the functions in the nc RKHS associated to K.

Given a kernel K on Ω and X ∈ Ω(n) and v, y ∈ Cn we define the follwoing nc function
that corresponds to the classic kz

KX,v,y(Z)u = K(Z,X)(uv∗)y.

It is easy to check that this is an nc function.

Example 5.7. Let K be the nc Szego kernel, then for every X ∈ Bd(n) and every v, y ∈ Cn,
we have that

KX,v,y(Z)u =
∑
α∈Wd

Zαuv∗Xα∗y =
∑
α

〈y,Xαv〉Zαu.

Note that since X is a strict row contraction this functtion is an element of the Fock space.

Proposition 5.8 ( [27]). The Fock space and the nc RKHS associated to the Szego kernel are
unitarily equivalent.

Classically, every RKHS of functions on X has ana algebra of multipliers. This is an alge-
bra of functions f onX, such that for every g in our RKHS, fg is also in the RKHS. For every
f in the multiplier algebra, we immediately have M∗

fKX,v,y = KX,v,f(X)∗y. Furthermore, if
we have an nc function f and one can define a bounded operator TKX,v,y = KX,v,f(X)∗y,
then f is a multiplier and T = M∗

f . Lastly, every multiplier is bounded in the sense that
supX∈Ω ‖f(X)‖ <∞. The proof is just like in the classical case.

Lemma 5.9 ( [7]). LEt f be an nc function on Ω, then f is a multiplier with ‖f‖ ≤ 1 if and
only if the following is a cp nc kernel

Kf (Z,W )(T ) = K(Z,W )(T )− f(Z)K(Z,W )(T )f(W )∗.

Proof. It is easy to check that Kf (Z,W
∗) is a first-order nc function. If f is a multiplier of

norm less that 1, then for every KX,v,y, we have that ‖KX,v,f(X)∗y‖ ≤ ‖KX,v,y‖. Now we
calculate

〈KX,v,y, KX,v,y〉 = 〈KX,v,y(X)v, y〉 = 〈K(X,X)(vv∗)y, y〉.
Hence for every v, y ∈ Cn we have that

〈K(X,X)(vv∗)f(X)∗y, f(X)∗y〉 ≤ 〈K(X,X)(vv∗)y, y〉

Or in other words, K(X,X)(vv∗) ≥ f(X)K(X,X)(vv∗)f(X)∗. Since this is true for every
rank 1 projection it is true for every positive matrix. �
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Corollary 5.10. Let us assume that for every n ∈ N and every X ∈ Ω(n), there exists A ≥ 0,
such that K(X,X)(A) = I. Then for every multiplier f on the nc RKHS associated to K we
have that supX∈Ω ‖f(X)‖ ≤ ‖Mf‖.
Proof. Let f be a a multiplier, such that ‖Mf‖ = 1. Then Kf is a positive cp nc kernel.
Hence for every n ∈ N and every X ∈ Ω(n) we choose A ≥ 0, such that K(X,X)(A) = I
and get that 0 ≤ Kf (X,X)(A) = I − f(X)f(X)∗. Conclude that ‖f(X)‖ ≤ 1. �

Example 5.11. Let K be the nc Szego kernel. The above is true for K, since for every X,
K(X,X) = (Id−ΨX)−1. Thus K(X,X) (I −ΨX(I)) = I for every X ∈ Bd. Since every X
is a strict row contraction I − ΨX(I) > 0. Hence every multiplier on the Fock space is a
bounded nc function on Bd.

In [20] Mittal and Paulsen prove that every multiplier algebra is weak-* closed. An
analogous result is true for nc RKHS

Proposition 5.12 ( [27]). Let K be a cp nc kernel on Ω and HK be the associated nc RKHS.
Assume that for every X ∈ Ω(n) we have that

Span{h(X)v | v ∈ Cn, h ∈ HK} = Cn.

Then bounded WOT onvergence of multipliers is pointwise convergence on Ω. In particular,
the multiplier algebra is weak-* closed.

Proof. Let fα be a bounded net of multipliers that converges to f in WOT. Then for every
X ∈ Ω(n), v, y ∈ Cn we have

〈fα(X)h(X)v, y〉 = 〈fαh,KX,v,y〉 → 〈fh,KX,v,y〉 = 〈f(X)h(X)v, y〉.
Conversely, if for every point fα(X)→ f(X), then we have that 〈fαh,KX,v,y〉 → 〈fh,KX,v,y〉
for every h and every choice of X, v and y as above. It is easy to check that linear combina-
tions of kernel functions are again kernel functions, hence the kernel functions are dense
in HK . Now since the net fα is bounded we have that fα → f in WOT.

The last claim is a consequence of Krein-Smulian combined with the fact that a multiplier
is determined by its values. �

In fact, more is true in the case of the Fock space.

Theorem 5.13. The multiplier algebra of the nc RKHS associated to the nc Szego kernel is
H∞(Bd) — the algebra of all bounded nc function on Bd. Furthermore, H∞(Bd) is unitarily
equivalent to Ld.

Some ingredients that we need are the theory of finite-dimensional representations of
Ld developed by Davidson and Pitts.

Theorem 5.14 ( [11]). Let Homcc(Ld,Mn) be the space of completely contractive (and of
course unital) homomorphisms of Ld to Mn. Then the map that sends π to ( π(L1) ··· π(Ld) ) is a
surjection onto Bd(n). Moreover, if X ∈ Bd(n), then the fiber over X is the singleton {ΦX},
where ΦX is the completely contractive and weak-* continuous representation of evaluation
at X.

In fact, more is true for the boundary. Recall that a row contraction is called pure
if Ψn

X(I) → 0 in WOT. It is a necessary and sufficient condition to guarantee a weak-*
continuous Łd-functional calculus.
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Theorem 5.15 ( [25, 28]). Let X ∈ ∂Bd(n) is pure if and only if X = S−1Y S for some
S ∈ GLn(C) and Y ∈ Bd(n). Hence over every pure point the fiber is a singleton and
contains only the evaluation at this point.

here is one important property of the classical Szego kernel that we haven’t discussed yet
and that is the (complete) Nevanlinna-Pick property (NP). Recall that a kernel k on a set X
has NP, if for every x1, . . . , xn ∈ X and w1, . . . , wn ∈ C. There exists a multiplier of norm at
most 1, such that f(xi) = wi for i = 1, . . . , n if and only if the matrix ((1− wiwj)k(xi, xj))
is positive. The complete property is the same only the values are allowed to be matrices.
For Ld we have the following theorem of Davidson and Pitts

Theorem 5.16 ( [12, Theorem 2.1]). Let I ⊂ Ld be a weak-* closed right ideal, then Ld/I
is completely isometrically isomorphic to PM⊥Ld, where M = I1 ⊂ F2

d . In other words for
every n ∈ N and every F ∈Mn(Ld) we have that

dist(F,Mn(I)) = ‖(PM⊥ ⊗ I)F‖.

How does this relate to the nc kernels business? Ball, Marx and Vinnikov define the
(complete) Nevanlinna-Pick property in [6]. To define it we need the notion of a full nc
envelope of a set of points in M(V ). Let Ω ⊂ M(V ) be an nc set, we say that Ω is full if
Ω = Ω̃ and for every point (X Z

0 Y ) ∈ Ω we have that X ∈ Ω. Alternatively, one can say that
Ω is closed under injective intertwinners. The full envelope of a subset of S ⊂M(V ) is the
smallest full nc set that contains S. We will denote the full envelope by Sfull. Let Ω be an
nc set and let Z ∈ Ω, the relative full

Definition 5.17. Let K be a cp nc kernel on Ω, then K has the NP property if for every
point Z ∈ Ω and every function f0 that extends to {Z}full ∩ Ω, there exists a multiplier of
norm at most 1 on the nc RKHS associated to K, such that f(Z) = f0(Z) if and only if the
following map is completely positive

Kf0(Z,Z)(T ) = K(Z,Z)(T )− f0(Z)K(Z,Z)(T )f0(Z)∗.

For the complete property, we allow tensoring with matrices or more generally operator in
some B(E).

Note that we can consider a single point since we are allowed to take direct sums. As
should be in good generalizations we have that

Theorem 5.18 ( [6, Corollary 5.6], [27, Theorem 4.7]). The nc Szego kernel has the com-
plete NP property.

Proof. One shows [27, Lemma 4.4] that f0 extends to {Z}full ∩ Bd if and only if f0(Z)
is in the algebra generated by Z. Since this is the case one can find a polynomial p that
agrees with f on Z. Now let I be the kernel of the evaluation at Z. By the theorem of
Davidson and Pitts the distance of p to I is at most 1 (since we have the norm of the
compression encoded in Kf0). Therefore, there exists g ∈ I, such that ‖p − g‖ ≤ 1. Now
set f = p− g. �
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