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Classical Fixed Point Theorem

Let d ∈ N and write Bd for the unit ball of Cd . We will write D for
the unit disc as an exception. We will denote by ρ the Poincare
metric on D.

Theorem (Rudin ’78, Hervé ’63)

If f : Bd → Bd is an analytic function, such that f (0) = 0, then
the fixed points of f and of the linear map f ′(0) coincide. In
particular, the fixed point set of f is the intersection of Bd with a
linear subspace of Cd .

Key ingredient: Every point in ∂Bd is a complex extreme point.
Let U ⊂ Cd be an open set. A point x ∈ ∂U is called complex
extreme if the only vector y ∈ Cd satisfying x + Dy ⊂ U is y = 0.



Application

Let V ,W ⊂ Bd be analytic subvarieties cut out by multipliers on
the Drury-Arveson space. For simplicity, let us restrict ourselves to
the case when 0 ∈ V ,W and V and W span Cd . Let MV and
MW be the associated operator algebras. A natural question is to
what extent does the geometric data determine the
operator-algebraic one and vice versa.

Theorem (Davidson, Ramsey and Shalit ’14)

Assume that V spans Cd and so does W . Then the algebras MV

and MW are completely isometrically isomorphic if and only if
there exists an automorphism of Bd that maps V onto W .

Idea of the proof: One shows that the isomorphism induces two
analytic maps f , g : Bd → Bd , such that f ◦ g |V = IdV and
g ◦ f |W = IdW . Let h = f ◦ g , then V is in the fixed points of h
and thus by the fixed point theorem h is the identity.



Some Hyperbolic Geometry

The result of Rudin and Hervé tells us about the hyperbolic
geometry of the unit ball of Cd . The application we have in mind
requires a brief tour of hyperbolic geometry of convex bounded
domains in Cd .
Let U ⊂ Cd be a bounded open domain, then one can define
hyperbolic metrics on U. The two most prominent are the
Cartheodory and the Kobayashi metric. We will assume that U is
the unit ball of a norm on Cd and thus is convex. In the case of
convex sets the two metrics coincide (Lempert ’82). The
Caratheodory metric is defined by

cU(z ,w) = sup {ρ(f (z), f (w)) | f ∈ Hol(U,D)} .

In particular, if U is the unit ball of ‖ · ‖, then
cU(0,w) = ρ(0, ‖w‖).



Some Hyperbolic Geometry

Let U be a ball of a norm in Cd and z ,w ∈ U. A complex
geodesic connecting z to W is an analytic map γ : D→ U, such
that for every a, b ∈ D, cU(f (a), f (b)) = ρ(a, b) and there exist
two points a0, b0 ∈ D, such that f (a0) = z and f (b0) = w .
Example: Let 0 6= z ∈ U, then the function γ(t) = tz/‖z‖ is a
complex geodesic connecting 0 to z .
The question of the uniqueness of geodesics is a difficult one,
however, if z ∈ U is such that z/‖z‖ is complex extreme, then the
geodesic described above is the unique one connecting 0 to z .



Some Hyperbolic Geometry

The results of Vigué generalize the classical result of Rudin and
Hervé and shed light on the connection with hyperbolic geometry.

Theorem (Vigué ’84, ’85)

Let U be as above and f : U → U an analytic map. If z ,w ∈ U are
fixed by f , then there exists a complex geodesic connecting z to w,
that is fixed by f . Alternatively, if z is a fixed point of f and
v ∈ TzU is a tangent vector fixed by df , then there is a complex
geodesic through z that is tangent at z to v and consisting of fixed
points of f .



Free Functions

Let Md = t∞n=1Mn(C)⊕d and consider the free unit ball
Bd = {X ∈Md | XX ∗ < I}. An nc-map f : Bd →Mk is a graded
function that repects direct sums and similarities. The latter
condition will be used extensively. We will write
Bd(n) = Bd ∩Mn(C)⊕d .
What can be said about the fixed points of an nc map
f : Bd → Bd?
On each level we have an analytic self-map f : Bd(n)→ Bd(n).
Each Bd(n) is a unit ball of a norm, however, most points on the
boundary are not complex extreme.



Main Result

Theorem (S. ’18)

Let f : Bd → Bd be an nc map, such that f (0) = 0 and assume
that the fixed points set of f on Bd(1) = Bd is the intersection of
Bd with a subspace V ⊂ Cd . Then the fixed point set of f on level
n is Bd(n) ∩ V ⊗Mn(C).

Ingredients of the proof:

I The matrix span of a subset S ⊂Md .

I Perron-Frobenius theory of completely positive maps.

I Hyperbolic geometry.



Matrix Span

For a set of points S ⊂Md , we define the matrix span

mat-span(S)(n) = Span {Id ⊗ T (X ) | X ∈ S, T ∈ L(Mn(C))} .

A particular case is the case of a singleton S = {X}. In this case
we have a different description of the matrix span. For every point
X ∈Md(n) we define the set X⊥ ⊂ (Cd)∗ as the set of functionals
ϕ, such that ϕ⊗ IMn(X ) = 0. Then
mat-span(X )(k) =

⋂
ϕ∈X⊥ ker (ϕ⊗ IMk

).

Example: The point P =

([
0 1
0 0

]
,

[
0 0
1 0

])
satisfies

mat-span(P) = Md .



Perron-Frobenius Theory of Completely Positive Maps

To every point X ∈ Bd(n) we can associate a completely positive
map ΨX : Mn → Mn via ΨX (T ) = XTX ∗ =

∑d
j=1 XjTX

∗
j .

A point X ∈Md(n) is called irreducible if the map
C〈z1, . . . , zd〉 → Mn induced by zj 7→ Xj is surjective. In particular,
if X is irreducible, then the completely positive map ΨX is
irreducible, i.e, it does not map the positive cone in Mn into a face
(Farenick ’96).
The Perron-Frobenius theorem for positive maps on
finite-dimensional C ∗-algebras was proved by Evans and
Høegh-Krohn in ’78. It states that if Ψ: A→ A is irreducible, then
there exists 0 < x ∈ A, such that Ψ(x) = rx , where r > 0 is the
spectral radius of Ψ. Furthermore, r is a simple eigenvalue of Ψ.



Irreducible Points and Similarities

This theorem leads us to the following interesting observation:

Lemma

Let X ∈ Bd(n) be irreducible, then there exists S ∈ GLn(C), such
that if Y = S−1XS, then Y ∈ Bd(n) and Y /‖Y ‖is a coisometry (
YY ∗ = ‖Y ‖2I ).

How does this help?
The coisometries are complex extreme points of Bd(n).



What Happens if f fixes an Irreducible Point?

Now we can describe what happens if f fixes an irreducible point
X , under the assumption that f (0) = 0. Since X is irreducible we
have that dimX⊥ ≤ d − 2.

1. Observe that if X ∈ Bd(n) is such that X/‖X‖ is a
coisometry, then f (tX ) = tX , for every t ∈ D.

2. One can prove that if X/‖X‖ is a coisometry and
∆f (0, 0)(X ) = X , then f (tX ) = tX , for every t ∈ D.

3. Since f is nc, if it fixes X , then it fixes a similarity orbit of X ,
so we may assume that X/‖X‖ is a coisometry.

4. If f (X ) = X , then ∆f (0, 0) fixes mat-span(X ) ∩Bd(n).

5. By (2) we have that for every coisometry Y ∈ mat-span(X ),
we have that f (tY ) = tY , for every t ∈ D.

6. Since every irreducible point Z ∈ Bd ∩mat-span(X ) is similar
to a scalar multiple of some coisometry, we have that Z is
fixed by f and thus all of mat-span(X ) is fixed by f .



Idea of the Proof

We just saw that fixing just a single irreducible point implies that a
whole subspace of points is fixed.
Example: Let r > 0, if f : Bd → Bd is an nc map, such that
f (0) = 0 and f (rP) = rP, then f is the identity map. In fact, if f
fixes any irreducible point with lineary independent coordinates,
then f is the identity.
What happens to reducible points? One can think of a point of the

form

[
X Z
0 Y

]
as the point X ⊕ Y with the extra information of a

tangent vector Z at it.
This consideration allows us to show that the irreducible points
determine the fixed points



Application of the Main Result

We will consider subvarieties of Bd . Analogously to the
commutative case, these are the zero loci of weak-* closed ideals
of the algebra of bounded nc function on Bd that we view as
multipliers of the Fock space. We will say that a subvariety
V ⊂ Bd is non-degenerate, if mat-span(V) = Md .

Theorem (S. ’18)

Let V,W ⊂ Bd be non-degenerate subvarieties. Let H∞(V) and
H∞(W) be the associated operator algebras of nc functions.
Furthermore, assume that H∞(V) ∼= H∞(W) completely
isometrically. If V (and thus W) has a scalar point, then there
exists an automorphism of Bd that maps V onto W.



Examples of ”Bad” Varieties

For completeness, we include an example of a subvariety that has
no scalar points.
Example: Consider the subvariety V cut out by the polynomials
x2, y2 and xy + yx = 1/4. This subvariety clearly has no scalar
points. However, 1

2P ∈ V(2).
The lowest non-empty level of a subvariety that does not contain
any scalar points consists entirely of irreducible points. We do not
know yet whether the claim of the last theorem is true for this
more general case.



Thank You!


