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Abstract5

We study the low rank matrix completion problem. We give a sufficient and necessary con-6

dition such that the completed matrix is globally unique. We assume the observed entries of the7

matrix corresponds to a special chordal graph. Under this assumption, the matrix completion8

problem is either globally unique or it has infinitely many solutions (thus excluding local unique-9

ness). The proof of the theorems make extensive use of the Schur complement. Algorithmically,10

we give a polynomial algorithm to decide if a partial matrix can be uniquely recovered if the11

graph corresponding to the sampled data is chordal with some special structure.12
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1 Introduction29

30

The problem of low rank matrix completion has many applications to real applications in various31

scenarios. Given an low rank matrix Z with partially sampled data z, an important problem is32

under which conditions can we guarantee the exact recovery of the matrix Z. Assume we know33

that rank(Z) = z, then the uniqueness of the completions with the target rank z ensures the exact34

recovery of Z. Currently, most of the work studying this problem is based on generic approach.35

In this paper, we study this problem with no generic assumption. We give sufficient and necessary36

conditions for the low rank matrix completion to be unique.37

1.1 Outline38

2 Background on LRMC , SDP39

We now introduce the framework for the problem we are considering in this paper. We also include40

a graph theoretic framework that allows us to explore the facial structure of our problem.41

2.1 Models42

Suppose that we are given a low rank m × n real matrix Z ∈ Rm×n with r = rank(Z) where a43

subset of entries are sampled.44

The hard nonconvex low rank matrix completion problem, LRMC , for recovering the low rank
matrix Z can be reformulated as follows:

(LRMC )
min rank(L)
s.t. PÊ(L) = z

(2.1)

where Ê is the set of indices containing the known (sampled) entries of Z, PÊ(·) : Rm×n → R|Ê|45

is the projection onto the corresponding entries in Ê, and z = PÊ(Z) is the vector of known46

entries formed from Z. It is known that if the linear mapping PÊ satisfies some restricted isometry47

properties, then Z is the unique matrices satisfying rank(L) ≤ r,PÊ(L) = z.48

3 Uniqueness of the completion by clique intersection49

In this section, we study the uniqueness of the low rank matrix completion. Suppose we know the50

target rank, a natural question the readers may ask is which elements can be uniquely determined51

and which elements can not? Also under which situation the whole low rank matrix L admits a52

unique completion? In this section, we provide a sufficient condition by exploiting the properties53

of the intersections of bicliques.54
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Question 3.1. How many bicliques do we need and what is the relation between the bicliques in55

order to have a unique completion?56

Recall the basic property of Schur complement:57

Lemma 3.2. [2] Consider the partitioned matrix

M =

[
A B
C D

]
∈ Rm×n,

if we assume that Range(B) ⊆ Range(A) and Range(CT ) ⊆ Range(AT ), then M/A = D − CA†B
is well-defined and [

I 0
−CA† I

] [
A B
C D

] [
I −A†B
0 I

]
=

[
A 0
0 M/A

]
and hence

rank(M) = rank(A) + rank(M/A).

We first start with a simple case.58

Theorem 3.3. Consider the partitioned matrix

M =

[
A B
C D

]
∈ Rm×n,

where rank(M) = r, and the blocks A,B,C are fixed. Then M is unique if and only if rank(A) = r.59

Proof. First assume rank(A) = r. Let M/A = D − CA†B be the generalized Schur complement,60

e.g., [3], where A† denotes the Moore-Penrose generalized inverse. Then we have rank(M/A) +61

rank(A) = rank(M). Therefore rank(M/A) = 0 and D = CA†B is unique.62

For necessity, assume rank(A) < r, we first assume Range(B) ⊆ Range(A) and Range(CT ) ⊆
Range(AT ). Then we by Lemma 3.2 we have the following equality

rank(D − CA†B) + rank(A) = rank(M)

Since rank(A) < r and rank(M) = r, we have rank(D−CA†B) = rank(M)− rank(A) = r̄ > 0. We63

can then let D = CA†B +E where E is an arbitrary matrix of rank r̄. Therefore D is not unique.64

Now suppose either Range(B) ( Range(A) or Range(CT ) ( Range(AT ). Without loss we can65

assume Range(CT ) ( Range(AT ). Then we have Null(A) ( Null(C) which means there exists a66

column vector x such that Ax = 0, Cx 6= 0. Now we can add the column vector

[
Ax
Cx

]
=

[
0
Cx

]
67

to any column of

(
B
D

)
without changing the rank of M and we get a different D. So D is not68

unique.69

We now start with the simple case with only two bicliques.70

Corollary 3.4. Let Z, rank(Z) = r, be the following matrix with two intersecting bicliques and
corresponding submatrices X and Y which are fixed,

Z =

 Z1 X1 X2

Y1 Q X3

Y2 Y3 Z2

 , X =

[
X1 X2

Q X3

]
, Y =

[
Y1 Q
Y2 Y3

]
. (3.1)

submatrix Q is the part that lies in both X and Y . If rank(Q) = r, then Z is unique.71
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Proof. If Q has rank r, then the top left union of four blocks must also be rank r. Therefore,72

Theorem 3.3 implies Z1 is unique. Similarly, Z2 is unique by looking at the four blocks at the73

bottom right.74

However, the necessity may not be true. Consider the following example

Z =

 Z1 6 5 3
1 2 3 2
3 4 2 Z2

 , Q =
[

2 3
]
, (3.2)

Assume rank(Z) = 2 and rank(Q) = 1 < rank(Z). However, Z1 and Z2 are still unique and by75

basic linear algbera we have Z1 = 4 and Z2 = 1.76

From Theorem 3.3, if we have two bicliques such that their intersection has the target rank, we77

can now merge these two bicliques into one bigger biclique and recover the corresponding missing78

entries of Z. We can then use this bigger biclique to merge with other bicliques. This process can79

carry on until all the missing entries are recovered.80

We consider the following case.81

Theorem 3.5. Consider the partitioned matrix

M =

E F
A B
C D

 ∈ Rm×n,

where rank(M) = r, and the blocks A,B,C, F are fixed. Then M is unique if and only if rank(A) =82

r and rank(B) = r.83

Proof. Suppose rank(A) = rank(B) = r, then it is obvious that D,E are unique by Theorem 3.3.84

For necessity, without loss we assume rank(A) = r̄ < r. By a permutation, let

M =

A B
E F
C D

 .
If rank(

[
A
E

]
) < r, then by Therem 3.3, D is not unique so M is not unique.85

If rank(

[
A
E

]
) = r, then we have Range(B) ⊆ Range(A). Now we partition A,E,C such that

M =

A1 A2 B
E1 E2 F
C1 C2 D


where A1 has full column rank r̄. So we have Range(A1) = Range(A).86

Let M1,M2,M3,M4 be the four Schur complements corresponding to E2, F, C2, D such that
M1 = E2−E1A

†
1A2, M2 = F −E1A

†
1B, M3 = C2−C1A

†
1A2, M4 = D−C1A

†
1B. Since Range(A2) ⊆

Range(A1), Range(B) ⊆ Range(A1) and Range(ET1 ) ⊆ Range(AT1 ), Range(CT1 ) ⊆ Range(AT1 ), we
have

rank(M) = rank(A1) + rank(

[
M1 M2

M3 M4

]
) = r.
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Also

rank(

[
A
E

]
) = rank(A1) + rank(M1) = r.

Therefore rank(M1) = rank(

[
M1 M2

M3 M4

]
) = r − r̄ and we have

M4 = M3M
†
1M2. (3.3)

Now M1 6= 0, since rank(M1) = r − r̄ > 0, we can perturb E2 such that Ē2 = E2 + M1 and87

perturb D such that D̄ = D − 1
2M4 and the corresponding full perturbed matrix is M̄ . After88

similar arguments we can get89

rank(M̄) = rank(A1) + rank(

[
2M1 M2

M3
1
2M4

]
)

= rank(A1) + rank(2M1) + rank(
1

2
M4 −M3(2M1)

†M2)

= rank(A1) + rank(2M1) (due to (3.3))

= r̄ + r − r̄ = r.

Therefore M is not unique.90

The more general case is also true:91

Theorem 3.6. Consider the partitioned matrix

M =

F H E
A G B
C K D

 ∈ Rm×n,

where rank(M) = r, and the blocks A,B,C,E,G are fixed. Then the matrix M is unique if and92

only if rank(A) = r and rank(B) = r.93

Proof. Without loss we assume rank(A) < r. Now let B = [G, B], E = [H, E], the result follows94

directly from Theorem 3.5.95

Theorem 3.7. Consider the partitioned matrix

M =

F H E
A G B
C K D

 ∈ Rm×n,

where rank(M) = r, and the blocks F,A,G,K,D are fixed. Then the matrix M is unique if and96

only if rank(A) = rank(G) = rank(K) = r.97

Proof. If rank(A) < r or rank(K) < r, then according to Theorem 3.5, M is not unique. Therefore98

we only need to consider the case when rank(G) < r.99

If rank(

[
H
G

]
) < r or rank(

[
G B

]
) < r, then again according to Theorem 3.5, M is not unique.100

Therefore we consider the case where rank(

[
H
G

]
) = r and rank(

[
G B

]
) = r.101
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By a permutation, let

M =

G B A
H E F
K D C

 ∈ Rm×n.

Let P =

[
G B
H E

]
, since rank(G) < r, by Theorem 3.3, there exists a different Ē and P̄ such that102

rank(P̄ ) = r, we let C̄ =
[
K D

]
P̄ †
[
A
F

]
), since Range(

[
A
F

]
) ⊆ Range(

[
G
H

]
) and Range(

[
KT

DT

]
) ⊆103

Range(

[
GT

BT

]
), we have rank(M̄) = rank(P̄ ) + rank(C̄ −

[
K D

]
P̄ †
[
A
F

]
) = rank(P̄ ) = r. The104

corresponding M̄ is different from M and the proof is finished.105

Theorem 3.8. Consider the partitioned matrix

M =


F H E
A G B
C K D
J I L

 ∈ Rm×n,

where rank(M) = r, and the blocks F,A,G,K,D,L are fixed. Then the matrix M is unique if and106

only if rank(A) = rank(G) = rank(K) = rank(D) = r.107

Proof. Direct consequences from Theorem 3.5 and Theorem 3.7.108

The above arguments can be extended into a more general case where we have a stair case of109

known block matrices. We conclude that the whole matrix is unique if and only if every “corner”110

matrix has rank r.111

Theorem 3.9. Given a low rank matrix Z ∈ Rm×n and a partial sampling PÊ(Z) = z. If by a112

permutation there exists a chain of bicliques α1, ..., αl with the corresponding edge sets E1, · · · , El.113

Assume ∪li=1Ei = Ê and for any i we have Ei ∩Ej = ∅ ∀j > i+ 2 mod l and the union of all the114

vertices of the bicliques satisfy ∪li=1αi = {1, ...,m} × {1, ..., n}. Then the matrix Z can be uniquely115

recovered if and only if rank(Xαi∩αi+1) = r, i = 1, ..., l − 1116

Proof. Suppose the bicliques satisfy rank(Xαi∩αi+1) = r, i = 1, ..., l − 1, then it is abvious to see117

the uniqueness of the completion by repeatedly using Theorem 3.3, Theorem 3.5, Theorem 3.6 and118

Corollary 3.4.119

For the other direction, suppose one of the bicluqes Xαi satisfies rank(Xαi) 6= r, then one can120

recover a different matrix Z̄ with the same rank and sampled data by reducing the problem to the121

sample cases as shown in Theorem 3.3 - 3.8.122

4 Graph Representation of the Problem123

Our sampling yields elements b = PÊ(Z). With the matrix Z and the sampled elements we can

associate a bipartite graph GZ = (Um, Vn, Ê), where

Um = {1, . . . ,m}, Vn = {1, . . . , n}.

6



For our needs we associate Z with the undirected graph, G = (V,E), with node set V = {1, . . . ,m,m+
1, . . . ,m+ n} and edge set E that satisfies{
{ij ∈ V × V : i < j ≤ m} ∪ {ij ∈ V × V : m+ 1 ≤ i < j ≤ m+ n}

}
⊆ E ⊆ {ij ∈ V × V : i < j}.

Note that as above, Ē is the set of edges excluding the trivial ones, that is,

Ē = E\
{
{ij ∈ V × V : i ≤ j ≤ m} ∪ {ij ∈ V × V : m+ 1 ≤ i ≤ j ≤ m+ n}

}
.

Recall that a biclique α in the graph GZ is a complete bipartite subgraph in GZ with corre-
sponding complete submatrix z[α]. q This corresponds to a nontrivial1 clique in the graph G, a
complete subgraph in G. The cliques of interest are C = {i1, . . . , ik} with cardinalities

|C ∩ {1, . . . ,m}| = p 6= 0, |C ∩ {m+ 1, . . . ,m+ n}| = q 6= 0. (4.1)

The submatrix z[α] of Z for the corresponding biclique from the clique C is

z[α] ≡ X ≡ {Zi(j−m) : ij ∈ C}, sampled p× q rectangular submatrix. (4.2)

These non-trivial cliques in G that correspond to bicliques of GZ are at the center of our algorithm.124

4.1 Chordal graphs125

Chordal graph is a special graph with a chordless structure. An undirected graph is chordal if every126

cycle of length greater than three has a chord.127

A clique tree of a graph G = (V,E) is a tree which has the cliques of G as its vertices. A128

clique tree T has the induced subtree property if for every v ∈ V , the cliques that contain v form129

a subtree (connected subgraph) of T . Buneman [4, Theorem 2.7] and Gavril [1, Theorem 3] it has130

been shown that chordal graphs are exactly the graphs for which a clique tree with the induced131

subtree property exists.132

We show the graph Ê in Theorem 3.9 has a unique clique tree with the induced subtree property.133

Therefore it is chordal. In addition, we show this tree is actually a path.134

Theorem 4.1. Given a graph Ê, if by a permutation there exists a chain of bicliques α1, ..., αl with135

the corresponding edge sets E1, · · · , El. Assume ∪li=1Ei = Ê and for any i we have Ei∩Ej = ∅ ∀j >136

i+ 2 mod l and the union of all the vertices of the bicliques satisfy ∪li=1αi = {1, ...,m}×{1, ..., n}.137

Then the graph Ê is chordal and it has a unique clique tree with the induced subtree property. In138

addition, this tree is a path.139

Proof. Consider the set of bicliques α1, · · · , αl, each clique αi is a node and connect αi and αi+1140

by an edge, then it forms a clique tree. For any vertex v in Ê, it either belongs to αi or belongs to141

αi ∩ αi + 1 therefore the set of cliques containing v is connected. Hence it has the induced subtree142

property. Therefore by Theorem 3 in [1] it is a chordal graph. Now consider a different clique tree,143

then there exists αi which is not connected αi+1, but there exists v ∈ αi ∩ αi + 1, therefore the144

induced subtree property is not satisfied.145

1For G we have the additional trivial cliques of size k, C = {i1, . . . , ik} ⊂ {1, . . . ,m} and C = {j1, . . . , jk} ⊂
{m+ 1, . . . ,m+ n}, that are not of interest to our algorithm.
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Theorem 4.2. Given a graph Ê, if Ê has a unique clique path with the induced subtree property,146

then there exists a polynomial algorithm to determine if the correponding low rank matrix completion147

problem 2.1 has a unique solution.148

Proof.149

Algorithm:
(1) Find a clique path of the graph Ê with the induced subtree property.
(2) Check if the intersection of two neighbouring clique has rank r

5 Generalization to Completions of Positive Semidefinite Matrices150

We recall the following theorem about symmetric matrix:151

Theorem 5.1. Suppose M is symmetric and partitioned as

M =

[
A B
B∗ C

]
,

in which A and C are square. Then M � 0 if and only if A � 0,Range(B) ⊆ Range(A), and152

M/A � 0.153

Theorem 5.2. Consider the partitioned matrix

M =

[
A B
BT C

]
∈ Rm×n,

where rank(M) = r and M � 0 in which A, C are square, and the blocks A,B are fixed. Then154

there exists a unique positive semidefinite matrix M if and only if rank(A) = r.155

Proof. First assume rank(A) = r. Let M/A = C − BTA†B be the generalized Schur comple-156

ment, where A† denotes the Moore-Penrose generalized inverse. The existence of M � 0 ensures157

Range(B) ⊆ Range(A) and A � 0, therefore M/A is well-defined. We then have rank(M/A) +158

rank(A) = rank(M). Hence rank(M/A) = 0 and C = BTA†B � 0 is unique.159

For necessity, assume rank(A) < r, the existence of M � 0 ensures Range(B) ⊆ Range(A) and
A � 0, therefore M/A is well-defined and

rank(M/A) + rank(A) = rank(M)

Since rank(A) < r and rank(M) = r, we have rank(C − BTA†B) = rank(M) − rank(A) = r̄ > 0.
We can then let C = BTA†B + E where E is an arbitrary positive semidefinite matrix of rank r̄.
Hence by Theorem 5.1

M̄ =

[
A B
BT BTA†B + E

]
� 0.

Therefore M is not unique.160
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Theorem 5.3. Consider the partitioned matrix

M =

 A B D
BT C E
DT ET F

 ∈ Rm×n,

M is symmetric and positive semidefinite and the diagonal elements of M are all nonzeros. Sup-161

pose A,B,C,E, F are fixed and rank(M) = r. Then M can be uniquely completed if and only if162

rank(C) = r.163

Proof. The if part is obvious, now we prove the only if part.164

Let H =

[
A B
BT C

]
and assume rank(

[
C
]
) < r and rank(H) = r.165

Let D̃ = D +X , then by Schur complement, X = 0 is a solution of the equation

F − [D̃T , ET ]H†
[
D̃
E

]
= 0. (5.1)

Therefore this equation is homogeneous and we can assume (5.1) has the following form:

[XT , 0](
1

2
H†
[
X
0

]
+H†

[
D
E

]
) + ([XT , 0]

1

2
H† +

[
DT ET

]
H†)

[
X
0

]
(5.2)

Let H† =

[
A† B†

(B†)T C†

]
and consider H†

[
X
0

]
+ 2H†

[
D
E

]
. Clearly we only need to require A†X −166

2(A†D+B̄E) = 0 such that equation (5.2) holds true. Note that A†D+B̄E = 0 implies D = E = 0167

since
[
D E

]
∈ Range(H) = Range(H†). But that would imply F = 0 since rank(H) = rank(M) =168

r which contradicts our assumption that the diagonal elements are all nonzeros. Therefore Let169

2(A†D + B†E) = G, then G 6= 0 and X = AG 6= 0 is a solution since RangeG ⊆ RangeA†.170

Now we need to show that

[
X
0

]
∈ Range(H) = Range(H†). Note this is true if Range(

[
A
BT

]
) ∩171

Range(

[
B
C

]
) = {0}. Although this assumption may not hold in general, however, since rank(C) <172

rank(H), we can always perform symmetrical row and column elementary operations (adding a173

multiple of rows from [BE , C,E] to [A,B,D] and correspondingly symmetric operations of columns)174

such that this assumption holds. After it is done and a nonzero X is found, we can do reverse175

operations such that the fixed elements of M stay the same.176

Now consider the case where rank(C) < rank(H) < r, this can be reduced to the previous case177

by adding one row and one column to H each time such that rank(H) is increased by one until178

rank(H) = r. Note that the rank of C can be increased by at most one in this case since M is a179

psd matrix. Therefore, we can guarantee rank(C) < r when rank(H) hits r.180

At last we consider the case where rank(C) = rank(H) < r. Suppose rank(C) = rank(H) =181

s < r. Then we must have rank(

[
C E
ET F

]
) > s which is reduced to the previous cases. Otherwise,182

we conclude rank(M) = r which is a contradiction.183

6 Conclusion184

In this paper, we derived sufficient and necessary conditions for generical matrices and positive185

semidefinite matrices to be uniquely completable.186

9



Acknowledgment187

The author thanks Henry Wolkowicz and Anders Forsgren for the very helpful discussion during188

this work.189

References190
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Ê, indices of sampled entries of Z, 2203

z[α], complete submatrix, 7204

biclique, 7205

clique, 7206

complete submatrix, z[α], 7207

generalized Schur complement, M/A, 3208

indices of sampled entries of Z, Ê, 2209
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