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Abstract

In this paper, we investigate the optimal portfolio construction aiming at extract-

ing the most diversification benefit. We employ the diversification ratio based on the

Value-at-Risk as the measure of the diversification benefit. With modeling the depen-

dence of risk factors by the multivariate regularly variation model, the most diversified

portfolio is obtained by optimizing the asymptotic diversification ratio. Theoretically,

we show that the asymptotic solution is a good approximation to the finite-level so-

lution. Our theoretical results are supported by extensive numerical examples. By

applying our portfolio optimization strategy to real market data, we show that our

strategy provides a fast algorithm for handling a large portfolio, while outperforming

other peer strategies in out-of-sample risk analyses.

Keywords: Portfolio optimization, Diversification, Risk management, Multivari-

ate regularly variation

1 Introduction

In order to mitigating risks in portfolios of financial investment, a common tool is the

diversification strategy. Large insurance claims and asset returns have been empirically

shown to be heavy tailed, i.e. the tail exhibits power-law decay; see, e.g. Loretan and Phillips

[31], Gabaix et al. [23], Ibragimov et al. [28] and Hofert and Wüthrich [26]. Moreover,

dependence is known to widely exist in financial assets and insurance losses; see for example

Embrechts et al. [19] and Acharya et al. [1]. The benefit from a diversification strategy can

be reflected in the reduction of dependent tail risks in a diversified portfolio. Value-at-Risk
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(VaR) has been widely applied to capture market risk as it quantifies the quantile of a loss

for a given time horizon. In this paper, we investigate the optimal portfolio construction

aiming at extracting the most diversification benefit for dependent extreme risks based on

the VaR measure.

A key difficulty in evaluating the diversification benefit based on the VaR measure is

that there is often no explicit formula for calculating the portfolio VaR. Since a portfolio is a

linear combination of the underlying risky assets, only if the asset returns follow sum-stable

distributions such as the Gaussian distribution or the stable distributions, one can precisely

calculate the distribution of the portfolio return, and derive the VaR therefrom. As an

alternative, Extreme Value Theory (EVT), in particular, the multivariate regular variation

(MRV) model, may provide an explicit approximation to the tail of the distribution of

portfolio return; see e.g. Mainik and Rüchendorf [32], Mainik and Embrechts [33] and Zhou

[49]. By inverting the approximation formula on the tail of the distribution, one may get

an approximation for the VaR measure, when the probability level in VaR is considered

to be close to 1. Therefore, the EVT approach opens a new door for investigating the

diversification benefit based on the VaR measure.

Nevertheless, the approximation holds only in the limit when the probability level in

VaR tending to 1. The approximation nature leaves two difficulties to be handled. Firstly,

for heavy-tailed portfolio returns as assumed in the setup of the MRV, when the probability

level in VaR tends to 1, the VaR converges to infinity. Consequently, the goal of VaR

optimization turns to be minimizing “the VaR in the limit”, even if the limit is infinity. It is

difficult to provide an economic interpretation for such a mathematical exercise. Secondly,

the practical goal for risk managers is to minimize VaR at a given probability level, such as

99% (Basel II) or 99.5% (Solvency II), while “the VaR in the limit” is not of their concern.

And, it is not guaranteed that the optimal portfolio based on minimizing “ the VaR in the

limit” is also close to the practical goal.

The first difficulty can be overcome by proper normalization. For example, one may

compare the portfolio VaR to the VaRs of marginal risks. For that purpose, we employ the

measure diversification ratio (DR), or sometimes with its alternative name: the risk con-

centration based on VaR; see, for example Degen et al. [11] and Embrechts et al. [18]. The

diversification ratio is defined as follows. Let X := (X1, . . . Xd)
T be a nonnegative random

vector indicating the losses of d assets. The value of a portfolio is given by wTX, where the

weights satisfy w = (w1, w2, . . . , wd)
T ∈ Σd :=

{
x ∈ [0, 1]d : x1 + x2 + . . .+ xd = 1

}
. For

this portfolio, the diversification ratio (DR) based on VaR at level q ∈ (0, 1) is defined as

DRw,q =
VaRq(w

TX)∑d
i=1 wiVaRq(Xi)

. (1.1)

The DR is a measure of diversification benefit in the following sense. Consider the

comonotonic case where all assets are completely dependent. Then DR is a constant one

regardless how the portfolio is allocated. This is a special case in which any diversification

strategy would not reduce the portfolio risk. Consequently, in a general case, 1−DRw,q can
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be regarded as the diversification benefit. In Cui et al. [7], DR is applied to measure the

effect of diversification in catastrophe insurance markets.

The first result in this paper is to show that the DR converges to a finite value for

any portfolio as q → 1 under the MRV model. More specifically, by modeling the joint

distribution of the random vector X by MRV, we can derive an explicit formula for

DRw,1 := lim
q↑1

DRw,q

with respect to the weight w and the two key elements characterizing the MRV model: the

tail index of the marginals and the spectral measure for the tail dependence structure.1

This result overcomes the first difficulty regarding the interpretation: one may target

minimizing the DR in the limit, which is at a finite level. We show that there exists a unique

solution to the optimization problem

w∗ := argmin
w∈Σd

DRw,1.

A portfolio that minimizes the DR is consequently extracting the most diversification benefit

based on the VaR measure. It is also worth noticing that by taking the marginal VaRs in

the denominator, the optimal portfolio based on the DR is mainly driven by the dependence

structure across the risky assets, while is more robust to changes in marginal risks.

However, the second difficulty raised above remains valid after switching to minimizing

DRw,1. Is the optimal solution based on minimizing DRw,1 close to the practical goal of

minimizing DRw,q at a given probability level q? We formalize this question by the following

notation.

Practically, with introducing the DR, risk managers aim at solving the following opti-

mization problem:

argmin
w∈Σd

DRw,q. (1.2)

Denote the solution to (1.2) by wq. Solving (1.2) directly is computationally intensive.

With observations on the joint distribution of the random vector X, wq can be estimated

by conducting a numerical grid search. However, such a searching algorithm suffers from

the dimensionality curse: the computational burden increases exponentially with respect to

the dimension d.

The second main result of this paper is to show how close the solution w∗ is from the

solution of the original optimization problem wq. First, we show theoretically that

lim
q↑1

wq = w∗. (1.3)

The convergence in (1.3) ensures that one may use the solution to the optimization problem

in the limit as an approximation to the solution to the original problem with a finite level q

1As pointed out by Mainik and Embrechts [33], under the MRV structure, when the tail index is great

than 1, DRw,1 < 1. In other words, the VaR measure possesses subadditivity as q → 1. Hence, diversification

is always optimal in this situation and the optimization problem (1.2) is well defined.
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close to 1. Further, define the distance between wq and w∗, measured by ∥wq −w∗∥ with

respect to an arbitrary norm as Dq. In other words, given a finite level of q close to 1, the

solution wq is within an area defined as a Dq radius circle around w∗. For a special case of

MRV, the Farlie-Gumbel-Morgenstern (FGM) copula, we explicitly determine Dq.

Empirically, with observations on the joint distribution of the random vector X, one can

estimate the two main components for the MRV: the marginal tail index and the spectral

measure. By plugging in the estimates of these two elements, the solution w∗ can be

estimated using conventional convex optimization method. We show the consistency of the

estimator. Notice that the computational burden is much lower than the aforementioned

numerical approach for solving wq.

We use a few numerical examples to support our theoretical results and also apply our

method to empirical data. We find that portfolio constructed using our approach possess the

lowest DR and also suffers low losses in out-of-sample periods, compared to other portfolio

optimization strategies.

Our proposed portfolio optimization strategy is comparable to other strategies based

on tail risk. Mainik and Rüchendorf [32], proposed to minimize the so-called extreme risk

index (ERI),

ERI = argmin
w

lim
q↑1

VaRq(w
TX)

VaRq(||X||1)
,

which essentially is minimizing the portfolio VaR. This strategy is more sensitive to marginal

tail risks and consequently load high on marginals with a low VaR. On the contrary, min-

imizing DR in (1.1) scales off the effect of marginals and focuses more on the dependence

structure.

Another closely related strategy is the so called most diversified portfolio (MDP)

MDP = argmin
w

var(wTX)∑d
i=1 wivar(Xi)

,

proposed by Choueifaty and Coignard [6]. The MDP method shares the same structure

with our approach: it considers the ratio between portfolio risk and the sum of individual

risks measured by variances. Since variance is a measure of overall risk rather than focusing

on the tail region, the MDP method may fail to capture the extreme risks.

One possible drawback of our portfolio optimization strategy (1.2) is that it only mini-

mizes the risk without taking into account the upper side potential: portfolio returns. Given

that the limit of DR is a convex function, it is in fact straightforward to consider the re-

turn components simultaneously. For example, consider the “safety-first” criterion proposed

by Roy [44], which aims at first constraining the downside risk to a given level and then

maximizing the profit. This is equivalent to minimizing risk with a linear constraint on

the returns. Comparing this optimization problem with the aforementioned unconstrained

convex minimization problem, taking the return into consideration is just to impose an

additional linear constraint. It is straightforward to verify that our current results remain

valid for the constrained optimization problem. To avoid complicating the discussion, in
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this paper we opt to focusing on the optimization of DR without considering the return

side.

The paper is organized as follows. In Section 2, we provide our main results on the

convergence of optimal portfolios. Section 3 discusses the convergence rate of the optimal

portfolio. In Section 4, we demonstrate the empirical performance of our strategy based on

three numerical examples. Section 5 provides the application of our strategy to real market

data. Section 6 concludes the paper and some of the proofs are relegated to Appendix A.

2 Convergence of optimal portfolios

2.1 Preliminaries

2.1.1 The multivariate regular variation model

A nonnegative random vector X is said to be multivariate regularly varying (MRV), if

there exists a sequence bt → ∞ and a Radon measure ν on B
(
[0,∞]d \ {0}

)
such that

ν
(
[0,∞]d \Rd

+

)
= 0, and

νt = tPr

(
X

bt
∈ ·
)

v−→ ν(·), t → ∞, (2.1)

where
v−→ refers to the vague convergence. We additionally assume that the limit measure

ν is nondegenerate in the sense that

ν
({

x ∈ Rd
+ : xi > 1

})
> 0,

for all i = 1, 2, . . . , d. For a full account of technical details related to the notion of MRV,

the reader is referred to Resnick [43] and Kulik and Soulier [29].

For any arbitrary norm ∥·∥, let Sd−1
+ =

{
s ∈ Rd

+ : ∥s∥ = 1
}
be the unit sphere. Under

the polar transformation, it is equivalently to say that X is MRV if there exists a sequence

bt → ∞, a positive constant c and a probability measure Ψ on Sd−1
+ such that for all x > 0,

νt = tPr

(
∥X∥ > btx,

X

∥X∥
∈ ·
)

v−→ c · ρα((x,∞])×Ψ, t → ∞,

where the measure ρα((x,∞]) = x−α and the vague convergence holds on (0,∞) × Sd−1
+ .

The measure Ψ is often called the spectral or angular measure. Throughout the paper, we

denote that X is MRV with tail index α and spectral measure Ψ by X ∈ MRVα(Ψ). See

Section 6.5 of Resnick [43], Section 2.2 of Kulik and Soulier [29] and Soulier [46] for more

details on the spectral decomposition of MRV.

Theoretically, it does not matter which norm is chosen for the polar representation.

For simplicity, in this paper we consider the ℓ1-norm ∥·∥1. Then Sd−1
+ = Σd. Further, by

constraining the measures νt and ν to the set A1 :=
{
x ∈ Rd

+ : ∥x∥1 > 1
}
, the constant c
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is normalized to 1. With a proper choice of bt = F←R (1− 1/t) and R = ||X||1, the vague

convergence in (2.1) implies the weak convergence on B (A1), as

νt(·) =
P (t−1X ∈ ·)
P (∥X∥1 > t)

w−→ ν(·)|A1 , t → ∞, (2.2)

where ν|A1 is the restriction of ν to the set A1. Note that νt in (2.1) can also be rewritten

as a conditional probability P (t−1X ∈ · | ∥X∥1 > t).

On the one hand, MRV is a semi-parametric model by only assuming a limit relation

in the tail region, which allows for a flexible dependence structure across several heavy-

tailed random variables. For example, the multivariate student’s t-distributions, multivari-

ate α-stable distributions, elliptical distributions with a regularly varying radial component,

Archimedean copulas with regularly varying generator and marginals, among others. On

the other hand, the nondegenerate MRV model requires all the marginal distributions are of

the same level of heavy tailedness. This restriction challenges the application of the model

in practice.

2.1.2 Convergence of minimizers

In this subsection, we give a general result on the convergence of minimizers. This is the

foundation to prove the main result in this paper. Throughout the paper, for a function

g : S → R, we denote M(g) the set of all the minimizers of g. That is,

M(g) =

{
x ∈ S : g(x) = inf

y∈Z
g (y)

}
.

A minimizer of g is denoted by mg ∈ M(g).

The following result may be known in the literature but we cannot find a proper reference

for it. For completeness, we include the proof here.

Lemma 2.1 Suppose that {fn} is a sequence of lower semi-continuous functions from a

compact metric space S to R = [−∞,∞], and fn converges uniformly to a function f . If,

in addition, assume that f has a unique minimum point in Z, then

lim
n→∞

mfn = argmin f. (2.3)

Proof. On the compact metric space S, we have that the sequence {fn} is equi-coercive

and gamma-converges to f under the conditions of Lemma 2.1. The sequence {fn} is said

to be equi-coercive if for any a ∈ R, there exists a compact set Ka of S such that the subsets

{fn ≤ a} ⊆ Ka for all n. The sequence {fn} is said to gamma-converge to f with respect

to the topology of S if f+ = f−, where

f+(x) = sup
U∈N(x)

lim sup
n→∞

inf
y∈U

fn(y)
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and

f−(x) = sup
U∈N(x)

lim inf
n→∞

inf
y∈U

fn(y)

with N(x) being the set of all open neighborhoods of x in S. Then by Corollary 7.24 in Dal

Maso [8], the relation (2.3) holds.

2.2 Main results

The first result regards the weak convergence of DRw,q as q ↑ 1, which is a direct consequence

of known results in the literature.

Proposition 2.1 Suppose the nonnegative random vector X ∈ MRVα(Ψ) with α > 0.

Then for any w ∈ Σd, we have

lim
q↑1

DRw,q = DRw,1,

where

DRw,1 =
η
1/α
w∑d

i=1wiη
1/α
ei

with ηw =
∫
Σd(w

Ts)αΨ(ds) and ei = (0, ..., 1, ..., 0)T only the ith component being 1 for

i = 1, .., d.

Proof. Note that

DRw,q =
VaRq(w

TX)/VaRq(∥X∥1)∑d
i=1 wiVaRq(Xi)/VaRq(∥X∥1)

. (2.4)

For X ∈ MRVα(Ψ) with α > 0, it follows that

lim
q↑1

VaRq(u
TX)

VaRq(∥X∥1)
= η1/αu , u ∈ Σd, (2.5)

which can be found in e.g. Mainik and Rüchendorf [32], Mainik and Embrechts [33] and

Zhou [49]. The proposition can be proved by letting u = w and u = ei in (2.5).

In the following theorem, we develop the uniform convergence of DRw,q, which is essential

for proving the convergence of minimizers. It is also an interesting result on its own. The

proof is relegated to Appendix A.

Theorem 2.1 Suppose the nonnegative random vector X has a positive joint density func-

tion. Further assume that X ∈ MRVα(Ψ) with α > 0. Then

lim
q↑1

sup
w∈Σd

|DRw,q −DRw,1| = 0. (2.6)

The main result of this section, in the following theorem, shows that the convergence of

a sequence of optimal solutions of DRw,q to the unique minimizer of DRw,1.
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Theorem 2.2 Suppose the nonnegative random vector X has a positive joint density func-

tion. Further assume that X ∈ MRVα(Ψ) with α > 1, and Ψ
({

x : aTx = 0
})

= 0 for any

a ∈ Rd. Then w∗ = argminDRw,1 exists and is unique. Moreover,

lim
q↑1

wq = w∗, (2.7)

where wq is a solution of minw∈Σd DRw,q.

Proof. The existence w∗ is due to the continuity of DRw,1 and the compactness of Σd. To

show the uniqueness, first note that the minimization problem minw∈Σd DRw,1 is equivalent

to
min
w

η
1/α
w

s.t.
∑d

i=1wiη
1/α
ei = 1 with wi ≥ 0 for i = 1, 2, . . . , d.

(2.8)

Since the set of constraints in (2.8) is nonempty, closed and bounded, it is compact.

By Theorem 2.4 of Mainik and Embrechts [33], η
1/α
w is strictly convex when α > 1 and

Ψ
({

x : aTx = 0
})

= 0 for any a ∈ Rd. Suppose w1 and w2 are two different minimal

points of the optimization problem. Letw = (w1+w2)/2. From the strictly convexity of the

object function and compactness of the set of constraints, it follows that η
1/α
w < η

1/α
w1 = η

1/α
w2 ,

which yields a contradiction. Thus, w∗ is unique.

Now we prove (2.7). In the proof of Theorem A.2, we showed that VaRq(w
TX) is

continuous with respect to w ∈ Σd for q large. Then there exists q∗ > 0 such that DRw,q

is continuous with respect to w ∈ Σd for every q∗ < q < 1. The desired result follows from

Theorem 2.1, the uniqueness of w∗ and Lemma 2.1.

Remark 2.1 Assuming a positive joint density function for the random vector X is to

ensure the distribution is strictly increasing, which is a technical condition needed in the

proof.

A related problem to our setting is the utility maximization problem. By Berge’s Maxi-

mum Theorem, its maximizers are continuous on the parameters. However, this theorem is

not applicable to our problem as it requires that DRw,q is continuous on w and q jointly. In

fact, under the current conditions (see Theorem 2.2), the continuity of DRw,q on w and q

separately does not lead to the continuity of DRw,q on w and q simultaneously. Hence, in

the proof of Theorem 2.2, we need to rely on Lemma 2.1 to show the uniform convergence

of DRw,q to DRw,1 when q is close to 1 as in Theorem 2.1.

2.3 Beyond the main theorem

In our main result, Theorem 2.2, some restrictions are imposed on the index α and spectral

measure Ψ to make sure that the optimization problem is well defined. In fact, they are

not necessary conditions. In the following through several special cases, we show that the

conditions can be relaxed.
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The condition Ψ
({

x : aTx = 0
})

= 0 for any a ∈ Rd means that the spectral measure

Ψ does not concentrate on any linear subspace. It ensures the uniqueness of the solution

w∗ of the limiting problem DRw,1. But it excludes the special cases such as independent

or comonotonic structure of X. If X has independent structure with regularly varying

marginals, then it is not hard to show that

DRw,1 =
d∑

k=1

wα
k .

By Jensen’s inequality, DRw,1 is minimized when wk = 1/d for k = 1, 2, ..., d, which is

unique. Therefore, Theorem 2.2 holds for the independent case. If X is comonotonic, then

DRw,q = 1 for any w or q. There is no optimization problem to consider.

If we restrict ourselves to elliptical distributions, then Theorem 2.2 holds for any α ∈ R,
without any restriction on Ψ, or even without the MRV assumption. In the rest of the

section, we focus on this special case.

A random vector X in Rd is elliptically distributed if it satisfies

X
d
= µ+ Y BU , (2.9)

where µ ∈ Rd, B ∈ Rd×d, U = (U1, ..., Ud)
T is uniformly distributed on the Euclidean sphere

Sd
2, and Y is a nonnegative random variable that is independent ofU . The matrix C := BBT

is called ellipticity matrix of X. To avoid degenerate cases, we assume throughout the

following that C is positive definite.

It is well known that if X is elliptically distributed, then X ∈ MRVα(Ψ) if and only

if Y ∈ RV−α; for example, see Hult and Lindskog [27]. By Theorem 6.8 of McNeil et al.

[36], the subadditivity property of VaR always holds for 0.5 ≤ q < 1. It then follows that

DRw,q ≤ 1, which means that diversification is always optimal for 0.5 ≤ q < 1 no matter

what distribution Y follows and thus the optimization problem is well defined. In the general

MRV case, to have DRw,q ≤ 1 is ensured by restricting α > 1. In another word, if X is

elliptically distributed and Y ∈ RV−α, then Theorem 2.2 holds without any restriction on

α.

Actually, elliptical distributions lead to the explicit expressions of DRw,q and DRw,1.

This enables us to further relax the assumption of MRV. As long as Y is unbounded, we are

able to directly show the convergence of (2.7) without the assumption that Y is regularly

varying. A direct calculation yields that

VaRq

(
wTX

)
= wTµ+

∥∥BTw
∥∥
2
F←Z (q) , (2.10)

where Z
d
= Y U1. The diversification ratio for elliptical distributions can then be obtained

as

DRw,q =
wTµ+

∥∥BTw
∥∥
2
F←Z (q)

wTµ+
∑d

i=1wi ∥BTei∥2 F←Z (q)
. (2.11)
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If the random variable Y is unbounded, then by F←Z (q) → ∞ as q ↑ 1, we obtain

lim
q↑1

DRw,q =

∥∥BTw
∥∥
2∑d

i=1wi ∥BTei∥2
:= DRw,1. (2.12)

In the following lemma, we first show that the convergence in (2.12) is indeed uniform,

whose proof is postponed to the last section.

Lemma 2.2 For elliptically distributed X and w ∈ Σd, if ∥µ∥1 < ∞, the induced norm

∥B∥2 = sup
x ̸=0

∥Bx∥2
∥x∥2

< ∞ and random variable Y is unbounded, then the convergence in (2.12)

is uniform for w ∈ Σd. Moreover, the mapping w → DRw,1 is continuous.

Now we are ready to show that Theorem 2.2 holds in the most general setting of elliptical

distributions by dropping the MRV assumption.

Theorem 2.3 Under the conditions of Lemma 2.2, we have

lim
q↑1

argmin
w∈Σd

VaRq(w
TX)∑d

i=1wiVaRq(Xi)
= argmin

w∈Σd

∥∥BTw
∥∥
2∑d

i=1 wi ∥BTei∥2
. (2.13)

Proof. By Lemmas 2.1 and 2.2, we only need to show that the solutions of the minimization

problems on both sides of (2.13) exist and are unique. To achieve it, first note that the

minimization problem

min
w∈Σd

VaRq(w
TX)∑d

i=1 wiVaRq(Xi)

is equivalent to a convex optimization problem

min
w

wTµ+
∥∥BTw

∥∥
2
F←Z (q)

s.t. wTµ+
∑d

i=1wi

∥∥BTei

∥∥
2
F←Z (q) = 1 with wi ≥ 0 for i = 1, 2, . . . , d.

(2.14)

Similarly, the minimization problem

min
w∈Σd

∥∥BTw
∥∥
2∑d

i=1wi ∥BTei∥2

is equivalent to

min
w

∥∥BTw
∥∥
2

s.t.
∑d

i=1wi

∥∥BTei

∥∥
2
= 1 with wi ≥ 0 for i = 1, 2, . . . , d.

(2.15)

Denote the constraint sets in (2.14) and (2.15) by C1 and C2. It is obvious that C1 and C2

are nonempty, closed, convex and bounded. Hence, they are compact by the Heine-Borel

theorem. By the triangle inequality and positive homogeneity of ∥·∥2, the objective functions
in (2.14) and (2.15) are convex over Rd, and they are continuous over the constraint sets
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C1 and C2; see Rochafellar (2015). By the compactness of the constraint set and continuity

of the objective functions, the solutions to (2.14) and (2.15) exist due to the Weierstrass

extreme value theorem.

Next, we show the uniqueness of the solution to (2.15). Due to the convexity, we have

for any λ ∈ (0, 1),∥∥BT (λw1 + (1− λ)w2)
∥∥
2
≤ λ

∥∥BTw1

∥∥
2
+ (1− λ)

∥∥BTw2

∥∥
2
. (2.16)

The equality in (2.16) holds only when w1 = kw2 for k ∈ R+ and w1,w2 nonzero. If both

w1 and w2 belong to the constraint set C1 or C2, then k can only be 1. This means for any

w1 ̸= w2, the strictly inequality in (2.16) holds. Therefore, the objective function in (2.15)

is strictly convex. The uniqueness of the solution then follows from the similarly arguments

in the proof of Theorem 2.2.

3 The Rate of Convergence to the Optimal Portfolio:

An Example

In this section, we discuss how w∗ approximates wq by determining the convergence rate

of (2.7) under some special dependence structure, such as the FGM copula.

The FGM copula was originally introduced by Morgenstern [39] and investigated by

Gumbel [24] and Farlie [21]. The FGM copula is defined as

C(u, v) = uv(1 + θ(1− u)(1− v)), (u, v) ∈ [0, 1]2, (3.1)

where θ ∈ [−1, 1] is a dependence parameter. This model has been generalized in various

ways, for example, from two dimensions to higher dimensions or with more general form of

(1 − u)(1 − v) in (3.1); see Cambanis [5], Fischer and Klein [22], among others. Here we

focus on a high dimensional generalized FGM copula proposed by Cambanis [5], which is

defined as

C(u1, . . . , un) =
n∏

k=1

uk

(
1 +

∑
1≤i<j≤n

aij(1− ui)(1− uj)

)
, (u1, . . . , un) ∈ [0, 1]n. (3.2)

The constants ai,j, 1 ≤ i < j ≤ n, are so chosen that C(u1, . . . , un) is a proper copula. A

necessary and sufficient condition on ai,j’s is that they satisfy a set of 2n inequalities

1 +
∑

1≤i<j≤n

ϵiϵjaij ≥ 0 for all (ϵ1, . . . , ϵn) ∈ {−1, 1}n.

A FGM copula defined as in (3.2) is asymptotically independent.

We intend to consider the random vector X following FGM copula with identical regu-

larly varying marginals. For that purpose we need a second-order convergence in Proposition

11



2.1. This further requires the second-order expansion of tail probabilities of the weighted

sum

FwTX(t) = Pr
(
wTX > t

)
,

where FwTX = 1− FwTX is the distribution function of wTX. In the next subsection, we

present this result.

3.1 Tail expansion for the weighted sum

Assume that the random vector X has a common marginal distribution function G = 1−G.

Further, assume G to be second-order regularly varying (2RV), denoted by G ∈ 2RV−α,ρ.

That is, there exist some ρ ≤ 0 and a measurable function A(·), which does not change sign

eventually and converges to 0, such that, for all x > 0,

lim
t→∞

G(tx)/G(t)− x−α

A(t)
= x−α

xρ − 1

ρ
=: H−α,ρ(x). (3.3)

When ρ = 0, H−α,ρ(x) is understood as x−α log x.

To better understand the condition of 2RV, a simple example of G ∈ 2RV−α,ρ is G(x) =

Ax−α(1 + Bxρ), where A > 0 and B ∈ R. The smaller ρ means G(x) behaves more like a

power function Ax−α and hence the faster convergence rate in the asymptotic theory. This

also explains the faster convergence rate of the optimal portfolio in Theorem 3.1 for smaller

ρ.

For simplicity, here we only consider the case α > 1 which implies that X has a finite

mean. The results for 0 < α ≤ 1 can be obtained in a similar way. The proof of the next

lemma is collected in the appendix.

Lemma 3.1 Let X be a nonnegative random vector with identically distributed marginal

with common distribution function G satisfying that G ∈ 2RV−α,ρ with α > 1, ρ ≤ 0 and

auxiliary function A(·). Assume that X follows an n-dimensional generalized FGM copula

given by (3.2). Then as t → ∞, we have that

FwTX(t)

G(t)
−

d∑
k=1

wα
k

=

{
αt−1µ∗G(1 + o(1)), ρ < −1,

(1 +Qa)
∑d

k=1 H−α,ρ
(
w−1k

)
A(t)(1 + o(1)), ρ ≥ −1,

(3.4)

where H−α,ρ(·) is given in (3.3), Qa =
∑

1≤i<j≤n aij, µG =
∫∞
0

xdF (x), µG2 =
∫∞
0

xdF 2(x),

12



and

µ∗G =(1 +Qa)µG

∑
k ̸=l

wα
kwl

+
∑
i<j

ai,j

( ∑
k,l=i,j

(∑
l ̸=k

µG2wα
kwl − µGwk

∑
m ̸=i,j

wα
m − 2µGw

α
kwl − µGw

α
kwl

))
−
∑
i<j

ai,j
∑
k ̸=i,j

∑
l ̸=k,i,j

µGw
α
kwl.

Further, the convergence in (3.4) is uniform for all w ∈ Σd.

3.2 Convergence rate

We first show a general lemma regarding the convergence rate of minimizers under the setup

of Lemma 2.1. Define the distance between fn and f as Dn = ||fn−f ||∞, where || · ||∞ is the

supremum norm. The distance between mfn and argmin f is defined as ||mfn −argmin f ||□
for a norm ||·||□ on the space Z. Since Z is a metric space, all the norms on Z are equivalent

in the sense that there exist constants c1 and c2 such that

c1||x||□ ≤ ||x||♢ ≤ c2||x||□, x ∈ Z,

for any two norms || · ||□ and || · ||♢ on Z. In case no confusion arises, the norm index ∞ or

□ is dropped in the rest of the paper.

Lemma 3.2 Under the assumptions of Lemma 2.1, we have for n large

||mfn − argmin f || < C
√

Dn,

where Dn = ||fn − f ||∞ and C is a constant.

Lemma 2.1 shows that mfn , the minimizer of function fn, can be approximated by the

minimizer of the limiting function f , which is usually much easier to calculate. The result in

Lemma 3.2 further explores how good the approximation is. In practice, if we can determine

Dn, which is related to the second-order expansion of fn, then the error of the approximation

can be determined.

Now we are ready to determine the convergence rate of the optimal portfolio under the

FGM copula.

Theorem 3.1 Under the conditions of Lemma 3.1, we have that as q ↑ 1,

(1− q)(−1∨ρ)/α
∥∥wq − d−1

∥∥ = O(1),

where wq is a solution of minw∈Σd DRw,q, and d−1 = (1/d, ..., 1/d)T .

13



Proof. In this proof, all the limits are taken as q ↑ 1. We first derive the second-order

expansion of DRw,q. Similar to the proof of Theorem 4.6 in Mao and Yang [35], we have

that

U

(
1

FwTX(F←
wTX

(q))

)
= G←(q) + o(A(G←(q))),

where U(·) is the tail quantile function of G defined as U(·) = (1/G)←(·) = G←(1 − 1/·).
For simplicity, denote t = F←wTX(q). It is easy to see that t → ∞ as q ↑ 1. Then noting that

U(1/G(t)) = t+ o(A(t)) and by the uniform convergence of (3.3), it follows that

DRw,q =
F←wTX(q)

G←(q)
=

U(1/G(t))

U(1/FwTX(t))
+ o(A(t))

=

(
FwTX(t)

G(t)

)1/α

+H1/α,ρ/α

(
FwTX(t)

G(t)

)
α−2A(U(1/FwTX(t)))(1 + o(1))

=


(∑d

k=1w
α
k

)1/α(
1 + µ∗G

(∑d
k=1w

α
k

)−1/α−1
(G←(q))−1 (1 + o(1))

)
, ρ < −1,(∑d

k=1w
α
k

)1/α
(1 + ταA(G

←(q))(1 + o(1))) , ρ > −1.

(3.5)

where

τα =
(1 +Qa)

∑d
k=1H−α,ρ

(
w−1k

)
α
∑d

k=1 w
α
k

+

(∑d
k=1 w

α
k

)ρ/α
ρα

.

This gives the second-order expansion of DRw,q.

Immediately from (3.5), the limiting function is

lim
q↑1

DRw,q =

(
d∑

k=1

wα
k

)1/α

= DRw,1.

By Jensen’s inequality, DRw,1 is uniquely minimized at d−1 = (1/d, ..., 1/d)T . If ρ < −1,

then

DRw,q −

(
d∑

k=1

wα
k

)1/α

= µ∗G

(
d∑

k=1

wα
k

)−1
(G←(q))−1 (1 + o(1)).

By Lemma 3.1, the above convergence is uniform. Hence, we have that for some constant

C > 0 ∣∣∣∣∣∣DRw,q −

(
d∑

k=1

wα
k

)1/α
∣∣∣∣∣∣ < C (G←(q))−1 .

By Lemma 3.2, we get that

(1− q)−1/α
∥∥wq − d−1

∥∥ = O(1).
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Similarly, if ρ > −1, then

DRw,q −

(
d∑

k=1

wα
k

)1/α

=

(
d∑

k=1

wα
k

)1/α

ταA(G
←(q))(1 + o(1)).

Since for any w ∈ Σd

τα ≤ (1 +Qa) ρd
(α−1)2/α + dρ(1−α)/α

ρα
,

we obtain that for some constant C > 0∣∣∣∣∣∣DRw,q −

(
d∑

k=1

wα
k

)1/α
∣∣∣∣∣∣ < CA(G←(q)).

By Lemma 3.2 we get that

(1− q)ρ/α
∥∥wq − d−1

∥∥ = O(1).

This completes the proof.

4 Numerical examples

In this section, we conduct three numerical examples to examine our theoretical results.

The first two examples are elliptical distributions involving 2- and 3-dimensional Student’s

t-distributions, while the third one is a non-elliptical distribution.

Consider X follows a bivariate Student’s t-distribution2 tα(µ,Σ), where µ = (1, 2)T and

the scale matrix Σ is

(
1 r

r 1

)
. Then both marginals follow Student’s t-distribution with

the degree of freedom α but with different shifts 1 and 2.

We construct portfolios as a linear combination of the two risk factors from X defined

above. As discussed in Section 2.3, both DRw,q and DRw,1 can be explicitly expressed for

elliptical distributions as in (2.11) and (2.12), which are used in this example. In Figure 1,

we plot the diversification ratio of such portfolios for various values of q against the weight

w1. For the parameters, we choose α and r at α = 2, 4 and r = 0.3, 0.7, and plot the results

for different pairs of (α, r) in the four subfigures in Figure 1. The level of q is set to 0.95,

0.99, 0.999 and 0.9999. For each q level, we indicate the optimal portfolio weight on w1 by

a vertical line, which is given at the lowest point of the convex diversification ratio curve.

Notice that due to the different shifts, the optimal portfolio at a finite q level tends to load

higher on the first dimension with a lower mean. However, as q → 1, the difference in the

mean plays no role in the limit of the diversification ratio. Therefore, due to symmetry,

the optimal portfolio for q = 1 load equal weights on the two dimensions. We indicate this

optimal solution for the limit diversification ratio by a thick vertical line located at 0.5.

2The left tail of a Student’s t-distribution does not play a role in our analysis. It can be understood as

a truncated Student’s t-distribution with a mass point at 0.
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(a) α = 2, r = 0.3 (b) α = 2, r = 0.7

(c) α = 4, r = 0.3 (d) α = 4, r = 0.7

Figure 1: Optimal portfolio based on 2-d elliptical distribution risk factors. The portfolios are

constructed as a linear combination of two risk factors from a bivariate Student’s t-distribution tα(µ,Σ)

with µ = (1, 2)T and Σ is

(
1 r

r 1

)
. The DRw,q of such portfolios for various values of q against the weight

w1 are plotted for different pairs of (α, r) with α = 2, 4 and r = 0.3, 0.7 in the four subfigures. The levels of

q are set to 0.95, 0.99, 0.999 and 0.9999. For each q level, the optimal portfolio weight on w1 is indicated

by a vertical line of different style. The optimal solution for DRw,1 is indicated by a thick vertical line.
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First, we observe that wq converges to w1 as q ↑ 1. This verifies our theoretical result as

established in Theorem 2.2. Second, the absolute difference between wq and w1 remains at

a low level across all subfigures. For example, when focusing on approximating the optimal

portfolio based on diversification ratio at q = 0.99 level, if one takes the optimal weight for

the limit diversification ratio 0.5 as an approximation, then she makes an error for loading

2% less on the first dimension. Third, given the level of dependence (r), the heavier the

marginal tails reflected in a lower α, the faster the convergence rate. This is in line with

Theorem 3.1’s finding: α plays a role in the speed of convergence, the higher the α, the

slower the speed of convergence. Lastly, when fixing the level of heavy-tailedness (α), the

more dependence reflected in a higher r, the slower the convergence rate in the limit relation

wq → w1. Nevertheless, the slow convergence is not of a concern in practice. With a strong

dependence in the first place, the room for diversification benefit is limited. As a result, the

diversification ratio is in general at a high level and is less sensitive to the variation of the

weights. Therefore, with a strong dependence, although the solution in the limit (0.5, 0.5)T

might not be close to the optimal solution at a finite q, investing in the portfolio (0.5, 0.5)T

would not result in a large increase in diversification ratio at a finite q level, compared to

the actual optimal portfolio.

We now proceed to a 3-dimensional example with the portfolio constructed as a lin-

ear combination of the three risk factors from X following a 3-dimensional Student’s t-

distribution tα(µ,Σ), where µ = (1, 2, 3)T and the scale matrix Σ is

 1 r r

r 1 r

r r 1

. We

choose the same parameters as above, that is α = 2, 4 and r = 0.3, 0.7. Figure 2 shows

the contour plots of DR of such portfolios for various values of q and weights w1 and w2.

More specifically, in the uppermost graph of Figure 2a, the circles represent the contours of

DRw,q having the same value as DRw0.95,0.95. The location of w0.95 is marked by the “cross”

sign and w1 = (1/3, 1/3, 1/3)T is marked by the “star” sign in the graph. The values of

DRw0.95,0.95 and DRw1,0.95 are reported in the legend. In the remaining graphs of Figure 2a,

the contours are plotted at DRw0.99,0.99, DRw0.999,0.999 and DRw0.9999,0.9999, respectively. The

shaded bar on the right of Figure 2a shows the values of DR represented by different shades.

Similar conclusions can be obtained for the 3-d example. Comparing with the 2-d example,

the convergence speed of the 3-d case is not significantly slower.

Next, we study a different numerical example based on a non-elliptical distribution.

We construct the example using linear combinations of heavy-tailed random variables. Let

Y1 and Y2 be two i.i.d. random variables with regularly varying tails. A random vector

X = (X1, X2)
T is then defined as

X = AY , A :=

(
1 0

r
√
1− r2

)
, (4.1)

where r ∈ (−1, 1). Such random vector follows a non-elliptical distribution. In the case

that the variance of Y1 and Y2 exists, r is the correlation coefficient between X1 and X2

Under this structure, the diversification ratio DRw,1 can be explicitly calculated. Following
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(a) α = 2, r = 0.3 (b) α = 2, r = 0.7

(c) α = 4, r = 0.3 (d) α = 4, r = 0.7

Figure 2: Optimal portfolio based on 3-d elliptical distribution risk factors. The portfolios

are constructed as a linear combination of three risk factors from a 3-dimensional Student’s t-distribution

tα(µ,Σ) with µ = (1, 2, 3)T and Σ is

 1 r r

r 1 r

r r 1

. Contours of DR at DRwq,q of q = 0.95, 0.99, 0.999

and 0.9999 are plotted for different pairs of (α, r) with α = 2, 4 and r = 0.3, 0.7 in the four subfigures. The

location of wq is marked by the “cross” sign and w1 is marked by the “star” sign. The values of DRwq,q

and DRw1,q are reported in the legend. The shaded bar on the right of each subfigure shows the values of

DR represented by different shades.
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Mainik and Embrechts [33], we have that

ηw
ηe1

= (w1 + w2r)
α +

(
w2

√
1− r2

)α
,

and
ηw
ηe2

=
(w1 + w2r)

α +
(
w2

√
1− r2

)α
rα +

√
1− r2

α .

Hence,

DRw,1 =

w1

(
(w1 + w2r)

α +
(
w2

√
1− r2

)α)− 1
α

+ w2

(
(w1 + w2r)

α +
(
w2

√
1− r2

)α
rα +

√
1− r2

α

)− 1
α

−1 .
We use this formula to determine DRw,1. Since the expression for DRw,q is less explicit, its

calculation is based on simulations.

Consider a special case where Y1 and Y2 follow a standard Student’s t-distribution with

degree of freedom α > 1. By choosing α = 2, 4 and r = 0.3, 0.7, in Figure 3 we plot the

calculated diversification ratios DRw,q against the loading on X1, w1 for various values of

q: 0.95, 0.99, 0.999 and 0.9999. The optimal weight for each q level is again marked by

a corresponding vertical line, with thick vertical line indicating the optimal weight for the

limit case q = 1.

All four observations in the elliptical case remain qualitatively valid for the non-elliptical

case. Quantitatively, the distance between the optimal solutions for finite q and the limit

case can be far apart. For example, in the worst case scenario when the lower tail index

meets the stronger dependence (right bottom subfigure), the distance between the optimal

weight for q = 0.99 and that for q = 1 is around 0.25. In this case, the optimal portfolio

in the limit is not a good approximation for that based on a finite q. To summarize, we

recommend using the optimal portfolio based on the limit diversification ratio particularly

for the case with low cross-sectional dependence and heavy marginal tails.

5 Empirical study

In the numerical examples, the limit diversification ratio DRw,1 can be calculated explicitly.

With real data application, we need to estimate this function using historical data, and then

consider the optimal portfolio based on the estimated diversification ratio. Next, we first

discuss the estimation methodology for DRw,1. Then we apply our estimation method and

the optimal portfolio construction procedure to real market data.

5.1 Estimation of the diversification ratio

When the DR optimization strategy with MRV structure is applied in practice, the es-

timations of MRV structure and DRw,1 are required. In this subsection, we propose an
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(a) α = 2, r = 0.3 (b) α = 2, r = 0.7

(c) α = 4, r = 0.3 (d) α = 4, r = 0.7

Figure 3: Optimal portfolio from non-elliptical distribution risk factors. The portfolios are

constructed as a linear combination of two risk factors from a vector X defined in (4.1) with Y1 and Y2

following a standard Student’s t-distribution with degree of freedom α > 1. The DRw,q of such portfolios

for various values of q against the weight w1 are plotted for different pairs of (α, r) with α = 2, 4 and

r = 0.3, 0.7 in the four subfigures. The levels of q are set to 0.95, 0.99, 0.999 and 0.9999. For each q level,

the optimal portfolio weight on w1 is indicated by a vertical line of different style. The optimal solution for

DRw,1 is indicated by a thick vertical line.
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estimation procedure and show the consistency of the estimators. Our estimation method

is also consistent with that of Mainik and Rüchendorf [32].

Assume X ∈ MRVα(Ψ) with α > 1. Let X1, . . .Xn be an i.i.d. sample of X. By

Theorem 2.1, we propose the following estimation procedure.

1. Estimate the tail index α by an estimator α̂.

2. Estimate the spectral measure Ψ by an estimator Ψ̂.

3. Estimate ηw by

η̂w =

∫
Σd

(wTs)α̂Ψ̂(ds).

4. Estimate DRw,1 by

D̂Rw,1 =
η̂
1/α
w∑d

i=1 wiη̂
1/α
ei

.

With the estimated diversification ratio, we can obtain an optimal portfolio by minimiz-

ing D̂Rw,1. Denote the optimal portfolio weights following this procedure as ŵ∗.

More specifically, in the first two steps, we use standard estimators for α and Ψ as

follows. Let (R, S) and (Ri, Si) denote the polar coordinates of X and X i with respect to

|| · ||1. That is,

(R, S) =

(
||X||1,

X

||X||1

)
. (5.1)

Assume in this section that the distribution function of R is continuous. Choose an inter-

mediate sequence k such that

k (n) → ∞,
k (n)

n
→ 0.

We use the observations corresponding to the top k order statistics of R1, . . . , Rn for esti-

mating α and Ψ. Denote the k upper order statistics of R1, . . . , Rn by R(1) ≥ . . . ≥ R(k).

The tail index α is estimated by some usual estimator as a function of these order statistics:

α̂ = α̂
(
R(1), . . . , R(k)

)
.

When α > 0, many estimators can be applied here such as Hill estimator (Hill [25]), Pickands

estimator (Pickands [41]), the maximum likelihood estimator (e.g. Smith [45]), and the

moment estimator (Dekkers et al. [12]). Improvements of the aforementioned standard

estimators have been proposed to be better applied in practice, for example bias-reduced

Hill estimator (e.g. Peng [40] and Caeiro et al. [4]), estimation for tail index with covariates

(e.g. Wang and Tsai [48] and Daouia et al. [9]), estimation of tail index for non-iid samples

(e.g. Drees [13] and Einmahl et al. [15]), among others. They all possess consistency and

asymptotic normality.
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Next, let π (1) , . . . , π (k) denote the indices corresponding to R(1), . . . , R(k) in the original

sequence R1, . . . , Rn. These indices are used to identify each “angle” Sπ(j) corresponding to

R(j). The spectral measure Ψ is estimated by the empirical measure of the angular parts

Sπ(1), . . . , Sπ(k),

Ψ̂ =
1

k

k∑
j=1

δSπ(j)
, (5.2)

where δ
π(j)

(·) is the Dirac measure. See Chapter 9 of Resnick [43] for more details. Other

estimation methods of the spectral measure, especially for the bivariate case, can be found

in e.g. Einmahl et al. [16], and Chapter 9 of Beirlant et al. [3], Chapter 7 of de Haan and

Ferreira [10], Einmahl and Segers [17], and Eastoe et al. [14].

Lemma 5.1 Let X1, . . . ,Xn be an i.i.d. sample of X ∈ MRVα(Ψ) with α > 1. Assume

that the distribution function FR of R in (5.1) is continuous. If the estimator α̂ is consistent

almost surely, then the estimator D̂Rw,1 is consistent uniformly in w ∈ Σd, i.e.,

sup
w∈Σd

∣∣∣D̂Rw,1 −DRw,1

∣∣∣→ 0, a.s. (5.3)

Combining Theorem 2.1 and Lemma 5.1, we obtain the consistency in the optimal port-

folio weights in the following theorem.

Theorem 5.1 Under the conditions of Theorem 5.1 and Ψ
({

x : aTx = 0
})

= 0 for any

a ∈ Rd, the estimator ŵ∗ and the estimated value D̂Rw∗,1 are consistent almost surely, i.e.,

ŵ∗ → w∗, a.s.; D̂Rw∗,1 → DRw∗,1, a.s.

Here we only established consistency. Under some additional conditions, further asymp-

totic properties for the estimator of DRw,1 can be established in a straightforward way. For

example, Theorem 4.5 of Mainik and Rüchendorf [32] shows that, under some additional

conditions, for any w ∈ Σd,
√
k (η̂w − ηw) converges to a multivariate Gaussian distribution

Gw. Then by the functional delta method (e.g. Theorem 20.8 in Van der Vaart [47]), it is

easy to show that
√
k
(
D̂Rw,1 −DRw,1

)
converges to a Gaussian distribution as well. How-

ever, to establish the convergence in an uniform way is difficult and may be left for future

research. Without a uniform asymptotic property on D̂Rw,1 we cannot further investigate

the asymptotic property of the optimal portfolio weights.

5.2 Real data analysis

The dataset consists of underlying stocks in the S&P 500 index that have a full trading

history throughout the period from January 2, 2002 to December 31, 2015. This results in

425 stocks. We construct the continuously compounded loss returns of these stocks. That
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is, if the price of asset i at time t is denoted by Pi(t), then the log loss at time t for asset i,

denoted by Xi(t) is given by

Xi(t) = − log

(
Pi(t)

Pi(t− 1)

)
.

We conduct three empirical studies. Firstly, we demonstrate the difference between the

optimal portfolio constructed based on minimizing a diversification ratio at a finite q level

and that based on minimizing the limit diversification ratio. Secondly, we show that our

proposed methodology has the advantage of bearing less computational burden. Lastly, we

evaluate the out-of-sample performance between our portfolio optimization procedure and

those existing in the literature.

The first empirical study is set up as follows. To avoid dimensional curse in the numerical

search strategy (see below), we select 10 stocks from the dataset that share a similar level

of tail index. Notice that having the same marginal tail index is a necessary condition for

MRV. We estimate the tail indices of the 425 stocks using the Hill estimator (Hill [25]) as

α̂ =
k∑k

n=1 log
(
R(n)/R(k+1)

) .
We select 10 stocks with the lowest estimates that are not significantly different from each

other. Here, to test whether the 10 stocks have significantly different tail indices, we employ

the test constructed in Moore et al. [38] for testing tail index equivalence. In other words, we

select 10 stocks with the lowest estimates while not being rejected by this test. The reason

for selecting stocks with lower α follows from the numerical example: the approximation

works better when α is lower. The selected stocks are given in Table 1, where the estimate

of α and its standard deviation (std) for each stock are provided. From Table 1, we observe

that the point estimates of the tail index range from 1.989 to 2.040.

Table 1: Tail index estimates for the 10 selected stocks

Stock C FRT HST LM L RF TMK VTR VNO XEL

α̂ 1.989 2.000 2.002 2.007 2.012 2.014 2.019 2.036 2.036 2.040

std 0.168 0.169 0.169 0.170 0.170 0.170 0.171 0.172 0.172 0.172

Note: The table shows the tail index estimates for 10 selected stocks within the S&P 500 index based on

their daily returns in the period from January 2, 2002 to December 31, 2015. The tail indices are estimated

using the Hill estimator (Hill [25]). The second row reports the standard deviations of the estimates.

Our empirical analysis is based on daily data in each five-year window, namely, 2002–

2006, 2003–2007, etc. Within each window, for a given q level, we first construct the optimal

portfolio that minimizes DRw,q by a numerical search. This is achieved by assigning weights

to the 10 stocks on a grid spanning the set Σ10, evaluating DRw,q at each grid point and
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(a) Hill plots for all 10 stocks (b) DR against Ψ̂ estimated at various k

Figure 4: The impact of k on estimating the tail index α and the diversifcation ratio Ψ

taking the weights that corresponds to the minimum diversification ratio. Then we construct

the optimal portfolio based on minimizing the estimated DRw,1 using the procedure laid

out in Section 5.1.

The numerical search strategy gives a numerical optimal while our portfolio optimization

strategy gives an approximation to that. To evaluate the difference between the two optimal

portfolios, we use ||wq − w∗||1/10. This distance indicates the average error made on the

weight for one stock. We conduct this analysis for nine different windows and four different

levels of q: 0.95, 0.975, 0.99 and 0.999.

In the estimation procedure, we need to select the intermediate sequence k. It should

be chosen by balancing the bias and variance of the estimation. In Figure 4a the tail index

estimated by the Hill estimator for each of the selected 10 stocks are plotted against various

k. When k = 4%, the estimations of the tail indices are the closest to each other. Hence, we

choose k to be 4% for estimating α. In Figure 4b, by having α being estimated at 4%, the

values of DRw,1 is plotted against various k at which the spectral measure Ψ is estimated.

We choose k to be 10% for estimating the spectral measure Ψ̂. Moreover, since we only

consider the loss, the estimator for ηw is slightly modified to

η̂w =
1

k

∑(
wTSπ(j)

)α̂
.

Table 2 shows the results on the error made using our optimization procedure. We

observe that the distance is decreasing as q increases. This is in line with our theoretical

result.

Next, we turn to analyzing the computation time for obtaining the optimal portfolio. For

this analysis, we use only data in the most recent six windows and only consider q = 0.95.

To show that the computational burden for the numerical search strategy largely depends on

the number of stocks, we also perform the numerical search when using fewer stocks, namely

the first 3, 5, and 8 stocks in Table 1. In contrast, we perform our portfolio optimization

strategy always based on 10 stocks. The computation time of all the experiments run in
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Table 2: Average error made on the weight for each stock

q 02-06 03-07 04-08 05-09 06-10 07-11 08-12 09-13 10-14

95% 0.1348 0.1091 0.125 0.0673 0.0868 0.0967 0.1447 0.1426 0.0941

97.50% 0.0838 0.0978 0.0967 0.0638 0.0795 0.0663 0.0985 0.0668 0.0802

99% 0.0837 0.0861 0.0858 0.0573 0.0636 0.0476 0.0834 0.0642 0.0731

99.9% 0.0442 0.0582 0.0688 0.0444 0.0397 0.0435 0.0435 0.0538 0.044

Note: Within in each five-year window, for a given q level, two portfolios are constructed. The numerical

search strategy provides the first optimal portfolio that minimizes DRw,q. This is achieved by assigning

weights to the 10 stocks on a grid spanning the set Σ10, evaluating DRw,q at each grid point and taking

the weights that corresponds to the minimum diversification ratio. The second optimal portfolio minimizes

the estimated DRw,1 using the procedure laid out in Section 5.1. The numbers reported are the distance

calculated by ||wq −w∗||1/10 between the two portfolios.

Matlab 2013a on a Thinkpad T430 (dual core, 2.6GHz CPU, 4GB of memory) computer is

reported in Table 3. We observe that as the number of stocks increasing, the computation

time for w95% increases significantly. On the contrary, our portfolio optimization strategy

for 10 stocks takes even less time than that using the numerical search for 3 stocks.

Table 3: Computation time

Strategy 05-09 06-10 07-11 08-12 09-13 10-14

Numerical search 3 Stocks 0.350s 0.310s 0.261s 0.249s 0.231s 0.235s

Numerical search 5 Stocks 0.483s 0.402s 0.417s 0.391s 0.570s 0.612s

Numerical search 8 Stocks 1.226s 1.265s 1.594s 0.861s 1.463s 1.397s

Numerical search 10 Stocks 2.418s 2.799s 3.673s 2.022s 2.016s 2.383s

Minimizing DRw,1 10 Stocks 0.218s 0.189s 0.164s 0.175s 0.304s 0.166s

Note: Within each five-year window, the numerical search strategy is performed for minimizing the DR

with q = 0.95 based on 3, 5, 8 and 10 stocks. The computation time are reported in the first four rows.

The last row reports the computation time when performing the portfolio optimization strategy minimizing

DRw,1 based on 10 stocks.

Finally, we perform an out-of-sample analysis comparing our portfolio optimization strat-

egy with those in the literature. Within each five-year window, we perform our strategy to

construct the optimal portfolio based on the 10 selected stocks in Table 1. Then we hold

this portfolio for one year, and calculate the diversification ratio at 95% and the 95% VaR

using the one-year out-of-sample data. We focus on q = 95% here because one-year loss data

(roughly 250 daily observations) do not permit an accurate estimation of tail risk measures

with a higher probability level. With a similar setup, we also apply the numerical search
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Figure 5: Out-of-sample diversification ratio. Within each five-year window, the optimal portfolio

based on the 10 selected stocks in Table 1 is constructed by minimizing DRw,1. These weights are held for

one year. The diversification ratio at 95% is reported using the one-year out-of-sample data and named as

DR(Limit) in the figure. The same procedures are repeated for five other strategies, the numerical search

strategy for minimizing DRw,95% (DR(NS)), global minimum variance (GMV; see, e.g. Merton [37]), the

MDP, the ERI, and equal weight strategy (Equal).

strategy laid out in the first empirical study which minimizes the DRw,95% within each five-

year window, and evaluates the out-of-sample performance of this strategy. In addition, we

apply four other strategies as competitors for out-of-sample performance, namely, the ERI,

the MDP, global minimum variance (see, e.g. Merton [37]), and lastly a simple equal weight

strategy.

Figure 5 shows the results on the out-of-sample diversification ratios. Our strategy

produces consistently the lowest diversification ratio only except in 2009, where our strategy

yields a diversification ratio slightly above that derived from the MDP, and in 2010 slightly

higher than that derived from the numerical research strategy. This shows that our strategy

is stable to achieve the tail diversification benefit in the out-of-sample experiments.

Figure 6 shows the results on the out-of-sample VaR. Our portfolio optimization strategy

produces the lowest VaR in 2007 and 2008, but not in the other years. Nevertheless, the VaR

of the optimal portfolio from our strategy is never largely above ERI, which minimizes VaR

among the six strategies. Furthermore, it matters the most to get an optimal portfolio with

the lowest risk in the period ahead of the crisis. Therefore, we conclude that our strategy

also achieves good out-of-sample performance in terms of low portfolio risk, especially during

the crisis period.

From all three empirical studies, we conclude that the computation burden of our port-

folio optimization strategy is much lower than the numerical search. Although there is a

moderate discrepancy between the optimal portfolios obtained from our limit DR optimiza-
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Figure 6: Comparison of portfolio risks. Within each five-year window, the optimal portfolio based

on the 10 selected stocks in Table 1 is constructed by minimizing DRw,1. These weights are held for one

year. The 95% VaR is reported using the one-year out-of-sample data and named as DR(Limit) in the figure.

The same procedures are repeated for five other strategies, the numerical search strategy for minimizing

DRw,95% (DR(NS)), global minimum variance (GMV; see, e.g. Merton [37]), the MDP, the ERI, and equal

weight strategy (Equal).

tion strategy and the numerical search strategy, it turns out in the out-of-sample analysis

that our strategy outperforms. It is therefore worth bearing the errors on the weights while

using the faster and better performed algorithm derived from our limit DR optimization

strategy.

6 Conclusion

This paper aims at constructing optimal portfolios by extracting the most diversification

benefit, measured by the DR measure based on the VaR. Practically, risk manager is in-

terested in an optimal portfolio weights wq = argmin
w∈Σd

DRw,q. Recognizing it was compu-

tationally intensive to solve this problem directly, we proposed to approximate the optimal

portfolio by seeking w∗ = argmin
w∈Σd

DRw,1. When the underlying loss vector X followed

MRV, we theoretically shown that limq↑1wq = w∗, in which the convergence ensures that

one may use w∗ as an approximation to wq with a finite level q close to 1. Moreover, for

a special case of MRV, the FGM copula, we explicitly determined the distance between

wq and w∗. Numerically, through 2-d and 3-d Student’s t-distributions, we examined the

theoretical results that wq indeed converges to w∗ as q getting close to 1. Using observed

stock data, we empirically examined the out-of-sample performance of our optimal portfolio
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and compared it with other portfolio optimization strategies such as optimizing ERI, MDP,

global minimum variance and equal weight strategies. Our DR strategy has much lower

computation burden than the numerical search and it outperforms other strategies during

the crisis period by producing the lowest loss. Possible future work includes adding the

profit component to the DR strategy, which only takes the downside risk into consideration

in the current form.

A Appendix

In this section, we first prove Theorem 2.1, which is the key and the most difficult part in

the proof of Theorem 2.2, in two steps as Sections A.1 and A.2. Then the very last section

contains all the proofs of lemmas from previous sections.

A.1 Uniform convergence in Radon measures

Define a family of mappings from A1 =
{
x ∈ Rd

+ : ∥x∥1 > 1
}
to R+ as

M =

{
fw(x) =

1

1 +wTx
: w ∈ Σd, x ∈ A1

}
. (A.1)

Note that the construction of the mappings in M is not unique. Let Aw,1 denote the events

where the portfolio loss wTX exceeds 1, namely for w ∈ Σd,

Aw,1 =
{
x ∈ Rd

+ : wTx > 1,
}
.

Theorem A.1 If X ∈ MRVα(Ψ) with α > 0, then

lim
t→∞

sup
w∈Σd

|νt (Aw,1)− ν (Aw,1)| = 0, (A.2)

where νt and ν are defined in (2.2).

Proof. Since Aw,1 ∈ B (A1), by (2.2) we have that νt (Aw,1) converges weakly to ν (Aw,1).

To further show the uniform convergence, we apply Theorem 3.4 of Rao [42]. That is we

need to verify the following three conditions. (1) The mappings in M defined in (A.1) are

continuous mappings from a separable metric space to R+. (2) The family M is relative

compact; that is every sequence in M on a compact subset of A1 has a subsequence that

converges uniformly. (3) vf−1w has a continuous marginal distribution for each fw ∈ M ,

where vf−1w is a measure on B(R+) such that vf−1w (E) = v (f−1w (E)) for any E ∈ B(R+).

Next, we prove them separately.

(1) By Theorem 1.5 of Lindskog [30], there exists a metric ρ such that (A1, ρ) is a locally

compact, complete and separable metric space. It is easy to see that each fw ∈ M is

continuous.

28



(2) Note that for x,y ∈ A1, we have wTx,wTy > 0. Then, by Cauchy-Schwarz in-

equality,

|fw(x)− fw(y)| =
∣∣∣∣ wT (x− y)

(1 +wTx)(1 +wTy)

∣∣∣∣ ≤ √
d ∥x− y∥2 .

For arbitrary ε > 0, we can choose δ < ε/
√
d, which is independent of f , x and y, such that

when ∥x− y∥2 < δ, we have |fw(x)− fw(y)| < ε. This shows that M is equicontinuous at

each x ∈ A1. Moreover, M is uniformly bounded as for each x ∈ A1,

sup
fw∈M

{fw(x)} = sup
w∈Σd

{
1

1 +wTx

}
<

1

2
.

Therefore, from the Arzelà-Ascoli theorem, we know M is relatively compact.

(3) From (2), fw < 1
2
for any fw ∈ M . Then for any 0 < y < 1/2, we have

vf−1w ((0, y)) =

∫
Σd

∫
R+

1{rwT s> 1
y
−1}ρα(dr)Ψ(ds)

=

(
1

y
− 1

)−α ∫
Σd

(
wTs

)α
Ψ(ds),

which is obviously continuous for any 0 < y < 1/2. Furthermore, by definition we have

ν(A1) = 1.

So far, we have verified the three conditions. By the weak convergence in (2.2) and

Theorem 3.4 of Rao [42], we obtain

lim
t→∞

sup
w∈Σd

|νt (Aw,1)− ν (Aw,1)| = 0,

where the supremum is taken over all sets Aw,1 of the form Aw,1 =
{
x ∈ Rd

+ : fw(x) <
1
2

}
={

x ∈ Rd
+ : wTx > 1

}
with w ∈ Σd.

Next corollary is a natural rewriting of relation (A.2). It yields a uniform convergence

of the ratio Pr
(
wTX > t

)
/Pr (∥X∥1 > t) to ηw. However, only the weak convergence of

it is known in the literature.

Corollary A.1

lim
t→∞

sup
w∈Σd

∣∣∣∣∣Pr
(
wTX > t

)
Pr (∥X∥1 > t)

− ηw

∣∣∣∣∣ = 0, (A.3)

where

ηw =

∫
Σd

(wTs)αΨ(ds).

Further, the mapping w 7→ ηw : Σd → (0, 1) is uniform continuous.
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Proof. First note that Aw,t = tAw,1. Since Aw,1 ⊂ B (A1) for w ∈ Σd, we have that

νt (Aw,1) =
Pr
(
X
t
∈ Aw,1

)
Pr (∥X∥1 > t)

=
Pr (X ∈ Aw,t)

Pr (∥X∥1 > t)
.

Moreover ν (Aw,1) is actually

ν (Aw,1) =

∫
Σd

(wTs)αΨ(ds) = ηw.

The desired result (A.3) then follows. Lastly, since ηw is continuous on the compact set Σd,

it implies the uniform continuity of ηw on Σd.

A.2 Uniform convergence in quantiles

In order to show that the convergence in (2.5) is indeed uniform, we first prepare a key

lemma. For notational simplicity, we denote

l(w, q) :=
VaRq(w

TX)

VaRq(∥X∥1)
=

F←wTX(q)

F←∥X∥1
(q)

, (A.4)

where FwTX is the distribution function of wTX and F←wTX(q) = VaRq(w
TX).

Lemma A.1 Suppose the nonnegative random vector X is continuously distributed with a

positive joint density function. Further assume that X ∈ MRVα(Ψ) with α > 0. Given

w ∈ Σd, for any ε > 0 there exist 0 < q̃ < 1 and δ such that for all q̃ < q < 1 and z ∈ Σd

satisfying ∥w − z∥ < δ, we have

|l(w, q)− l(z, q)| < ε. (A.5)

Proof. We start by showing that for any ε1 > 0, there exist t0(ε1) and δ(ε1) such that for

all t > t0 and all w, z ∈ Σd with ∥w − z∥ < δ, we have∣∣FwTX(t)− F zTX(t)
∣∣ < ε1FwTX(t). (A.6)

Note that ηw > 0 for every w ∈ Σd. Since Σd is compact, there exists η > 0 such that

ηw > η > 0. Further, ηw is uniform continuous on Σd by Corollary A.1. That is, for any

ε1 > 0, there exists δ(ε1) such that for all w, z ∈ Σd with ∥w − z∥ < δ, we have

|ηw − ηz| <
η

6
ε1. (A.7)

Again, by Corollary A.1, there exists t0(ε1) such that for all t > t0 and all w ∈ Σd∣∣∣∣∣FwTX(t)

F ∥X∥1(t)
− ηw

∣∣∣∣∣ < η

6
ε1 ∧

η

2
, (A.8)
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which implies that
FwTX(t)

F ∥X∥1(t)
> ηw −

η

2
>

η

2
. (A.9)

Then, combing (A.7), (A.8) and (A.9), for all t > t0 and all w, z ∈ Σd with ∥w − z∥ < δ,∣∣∣∣FwTX(t)− F zTX(t)

FwTX(t)

∣∣∣∣ =
∣∣∣∣∣FwTX(t)− F zTX(t)

F ∥X∥1(t)

∣∣∣∣∣ · F ∥X∥1(t)FwTX(t)

≤

(∣∣∣∣∣FwTX(t)

F ∥X∥1(t)
− ηw

∣∣∣∣∣+ |ηw − ηz|+

∣∣∣∣∣ηz − F zTX(t)

F ∥X∥1(t)

∣∣∣∣∣
)

·
F ∥X∥1(t)

FwTX(t)

<
(η
6
ε1 +

η

6
ε1 +

η

6
ε1

) 2

η
= ε1,

which yields (A.6).

Next, for the chosen t0(ε1), denote q0 = supz∈Σd FzTX(t0(ε1)). Then for any q0 < q < 1

and all z ∈ Σd,

F←zTX(q) ≥ F←zTX(q0) ≥ t0. (A.10)

By (A.6) and (A.10), it leads to that for all q > q0 and ∥w − z∥ < δ,∣∣FwTX(F←zTX(q))− (1− q)
∣∣ < ε1(1− q).

By the monotonicity of F←wTX(q), we obtain

F←wTX (q(1 + ε1)− ε1) < F←zTX(q) < F←wTX (q(1− ε1) + ε1) . (A.11)

Finally we handle |l(w, q)− l(z, q)| in (A.5). We only discuss the upper bound of

l(w, q)− l(z, q) in this step as the lower bound can be derived in a similar way. By (A.11),

l(w, q)− l(z, q)

≤
F←wTX(q)

F←∥X∥1
(q)

−
F←wTX (q(1 + ε1)− ε1)

F←∥X∥1
(q)

=

(
F←wTX(q)

F←∥X∥1
(q)

−
F←wTX (q(1 + ε1)− ε1)

F←∥X∥1
(q(1 + ε1)− ε1)

)
+

F←wTX (q(1 + ε1)− ε1)

F←∥X∥1
(q(1 + ε1)− ε1)

(
1−

F←∥X∥1
(q(1 + ε1)− ε1)

F←∥X∥1
(q)

)
:=I1 + I2,

where

I1 = l(w, q)− l(w, q(1 + ε1)− ε1),

and

I2 = l(w, q(1 + ε1)− ε1)

(
1−

F←∥X∥1
(q(1 + ε1)− ε1)

F←∥X∥1
(q)

)
.

We show that I1 < ε/2 and I2 < ε/2.
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For I1, note the random vectorX is continuously distributed with a positive joint density

function. By using the change of variables, the density functions for random variables ∥X∥1
and wTX can be shown to be positive as well, which implies that F∥X∥1(t) and FwTX(t)

are strictly increasing in t. By Proposition 1 (7) in Embrechts and Hofert [20], we have

that F←∥X∥1
(q) and F←wTX(q) are both continuous in q for any fixed w. Moreover, from (2.5),

l(w, 1) can be continuously defined as η
1/α
w . Thus, given w, l(w, q) is uniformly continuous

in q when q ∈ [1/2, 1]. That is, there exists λ1(w, ε) such that when 1/2 ≤ p, q ≤ 1 and

|p− q| < λ1, we have

|l(w, q)− l(w, p)| < ε

2
.

Then, for |q − (q(1 + ε1)− ε1)| < λ1 or q > 1− λ1/ε1, we obtain that I1 < ε/2.

For I2, we first show that l(w, q(1+ ε1)− ε1) is bounded. Since limq→1 l(w, q) = l(w, 1),

there exists λ2(w) such that when 1− (q(1 + ε1)− ε1) < λ2 or 1 > q > 1− λ2/(1 + ε1), we

have

|l(w, q(1 + ε1)− ε1)− l(w, 1)| < 1.

Denote M0 = supw∈Σd l(w, 1). We obtain

l(w, q(1 + ε1)− ε1) < M0 + 1, for q > 1− λ2/(1 + ε1). (A.12)

Finally, we consider 1−
F←∥X∥1

(q(1+ε1)−ε1)
F←∥X∥1

(q)
in term I2. It is known that if X ∈ MRVα(Ψ) then

∥X∥1 ∈ RV−α; e.g. see Basrak et al. [2]. Thus,

lim
q→1

F←∥X∥1
(q(1 + ε1)− ε1)

F←∥X∥1
(q)

= (1 + ε1)
1/α.

By Proposition B.1.10 of de Haan and Ferreira [10], there exists q3(ε) < 1 such that for all

q > q3(ε) we have ∣∣∣∣∣F
←
∥X∥1

(q(1 + ε1)− ε1)

F←∥X∥1
(q)

− (1 + ε1)
1/α

∣∣∣∣∣ < 1

M0 + 1

ε

4
.

Moreover, when ε1 is so chosen that∣∣1− (1 + ε1)
1/α
∣∣ < 1

M0 + 1

ε

4
, (A.13)

it leads to that ∣∣∣∣∣F
←
∥X∥1

(q(1 + ε1)− ε1)

F←∥X∥1
(q)

− 1

∣∣∣∣∣ < ε

2 (M0 + 1)
, for q > q3(ε). (A.14)

Combining (A.12) and (A.14), I2 < ε/2 for q > 1− λ2/(1 + ε1) ∨ q3(ε).
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To sum up, given w, for arbitrary ε > 0, and for any ε1 so chosen that (A.13) holds,

there exist δ, q0, λ1, λ2, and q3 such that for all z ∈ Σd with ∥w − z∥ < δ and for all q

satisfying that

1 > q > q0 ∨
(
1− λ1

ε1

)
∨
(
1− λ2

1 + ε1

)
∨ q3,

we have l(w, q)− l(z, q) < ε. The other side of the inequality can be derived similarly.

Now we are ready to show that the convergence in (2.5) is uniform.

Theorem A.2 Suppose the nonnegative random vector X is continuously distributed with

a positive joint density function. Further assume that X ∈ MRV−α(Ψ) with α > 0. Then

lim
q↑1

sup
w∈Σd

∣∣∣∣VaRq(w
TX)

VaRq(∥X∥1)
− η1/αw

∣∣∣∣ = 0. (A.15)

Proof. Consider the decomposition for some v ∈ Σd∣∣l(w, q)− η1/αw

∣∣ ≤ |l(w, q)− l (v, q)|+
∣∣l(v, q)− η1/αv

∣∣+ ∣∣η1/αv − η1/αw

∣∣ , (A.16)

where l(w, q) is defined as in (A.4). By properly choosing v, if the three terms can be

shown to be arbitrarily small for any w ∈ Σd as q close to 1, then (A.15) is proved. In the

following we show how v can be determined.

By Lemma A.1 and the uniform continuity of ηw on Σd, for any ε > 0, there exist

δ(w) > 0 and 0 < q̃(w) < 1 such that for any w, z ∈ Σd satisfying ∥w − z∥ < δ(w) and all

q ≥ q̃(w), we have

|l(w, q)− l(z, q)| < ε. (A.17)

and ∣∣η1/αw − η1/αz

∣∣ < ε. (A.18)

That is, δ(w) is so chosen that both (A.17) and (A.18) hold. Now we are ready to determine

v in (A.16) by constructing open coverings. Let Bw,δ(w) denote the open ball of w; that is

Bw,δ(w) = {z ∈ Σd : ∥w − z∥ < δ(w)}. Then the collection of all the sets Bw,δ(w) for each

w is an open cover of Σd. By the compactness, there exists a finite subcover denoted by

Bw1,δ(w1), . . . , Bwm,δ(wm). For each selected wi, by the limit relation in (2.5), there exists

0 < qi < 1 such that ∣∣l(wi, q)− η1/αwi

∣∣ < ε,

for all qi ≤ q < 1. Let q∗ = max {q̃(w1), . . . , q̃(wm), q1, . . . , qm}. For any w ∈ Σd, one can

find i such that w ∈ Bwi,δ(wi), which means ∥w − wi∥ < δ(wi). This wi is the proper

choice of v in (A.16) since each term on the right-hand side of (A.16) is smaller than ε for

all q∗ ≤ q < 1. This completes the proof.

Now we are ready to prove Theorem 2.1.

Proof of Theorem 2.1. Since the convergence limq↑1VaRq(Xi)/VaRq(∥X∥1) = η
1/α
ei is

independent of w, applying Theorem A.2 to the rewriting in (2.4) we obtain the desired

result.
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A.3 Proofs of lemmas

Lastly, we present the proofs of lemmas from previous sections.

Proof of Lemma 2.2. To prove DRw,q
unif−→ DRw,1, we need to show for any given ε > 0,

there exists a number q0 such that |DRw,q −DRw,1| < ε for every q > q0 and for every w

in Σd. Note the rewriting

|DRw,q −DRw,1| =

∣∣∣∣∣∣
wTµ

(∑d
i=1 wi

∥∥BTei

∥∥
2
−
∥∥BTw

∥∥
2

)
(
wTµ+

∑d
i=1 wi ∥BTei∥2 F←Z (q)

)∑d
i=1wi ∥BTei∥2

∣∣∣∣∣∣ .
For every w ∈ Σd, since ∥µ∥1 < ∞, there exists N1 > 0 such that wTµ < ∥µ∥1 < N1. Since

∥B∥2 < ∞, there exists N2, N3 > 0 such that

0 <
d∑

i=1

wi

∥∥eTi B∥∥2 < d∑
i=1

∥∥BTei

∥∥
2
< d ∥B∥2 < N2,

and ∥∥BTw
∥∥
2
< ∥B∥2 < N3.

Since Y is unbounded, there exists 0 < q0 < 1 such that

F←Z (q) >
N1 (N2 +N3)

N2
2 ε

− N1

N2

,

for every q > q0. Combining the above analysis, the desired result |DRw,q −DRw,1| < ε for

every q > q0 and for every w in Σd follows.

Next, we show that DRw,1 is continuous. For w,v ∈ Σd, we have that

|DRw,1 −DRv,1|

≤

∣∣∣∣∣∣
∥∥BT (w − v)

∥∥
2

∑d
i=1 vi

∥∥BTei

∥∥
2
+
∥∥BTv

∥∥
2

(∑d
i=1 vi

∥∥BTei

∥∥
2
−
∑d

i=1 wi

∥∥BTei

∥∥
2

)
(
∑d

i=1wi ∥BTei∥2)
(∑d

i=1 vi ∥BTei∥2
)

∣∣∣∣∣∣
≤

∥B∥2 ∥w − v∥1
∑d

i=1 vi
∥∥BTei

∥∥
2

(
∑d

i=1wi ∥BTei∥2)
(∑d

i=1 vi ∥BTei∥2
) +

∥∥BTv
∥∥
2
∥w − v∥1 max

1≤i≤d

∥∥BTei

∥∥
2

(
∑d

i=1wi ∥BTei∥2)
(∑d

i=1 vi ∥BTei∥2
)

= ∥w − v∥1
∥B∥2

∑d
i=1 vi

∥∥BTei

∥∥
2
+
∥∥BTv

∥∥
2
max
1≤i≤d

∥∥BTei

∥∥
2

(
∑d

i=1 wi ∥BTei∥2)
(∑d

i=1 vi ∥BTei∥2
) .

Since ∥B∥2 < ∞ and BBT is positive definite, the fraction in the last step is bounded.

Therefore for fixed w, when ∥w − v∥1 is small enough, we have |DRw,1 −DRv,1| < ε. This

proves the mapping w → DRw,1 is continuous.
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Proof of Lemma 5.1. First note that

sup
w∈Σd

∣∣∣D̂Rw,1 −DRw,1

∣∣∣
= sup

w∈Σd

∣∣∣∣∣∣ η̂
1/α
w

∑d
i=1wiη

1/α
ei − η

1/α
w

∑d
i=1wiη̂

1/α
ei(∑d

i=1wiη̂
1/α
ei

)(∑d
i=1wiη

1/α
ei

)
∣∣∣∣∣∣

≤ sup
w∈Σd

∣∣∣∣∣∣
(
η̂
1/α
w − η

1/α
w

)∑d
i=1wiη

1/α
ei(∑d

i=1 wiη̂
1/α
ei

)(∑d
i=1wiη

1/α
ei

)
∣∣∣∣∣∣+ sup

w∈Σd

∣∣∣∣∣∣
η
1/α
w

(∑d
i=1 wiη

1/α
ei −

∑d
i=1wiη̂

1/α
ei

)
(∑d

i=1wiη̂
1/α
ei

)(∑d
i=1wiη

1/α
ei

)
∣∣∣∣∣∣ .

(A.19)

Thus, to show that (A.19) converges to 0 almost surely, the key is the strong consistency of

η̂w uniformly in w. This is ensured by Theorem 4.1(a) of Mainik and Rüchendorf [32] if

lim
q↑1

sup
w∈Σd

|Ψqfw,α −Ψfw,α| = 0, (A.20)

where Ψq is the conditional angular distribution of S|FR(R) > q for q ∈ (0, 1) and fw,α(s) =

(wTs)α. Now we show that (A.20) holds under the current conditions. Note that for any

s ∈ Σd, we have

0 < (wTs)α ≤ wTs ≤ wT1 = 1.

For any s1, s2 ∈ Σd, it follows that

|fw,α(s1)− fw,α(s2)| = |(wTs1)
α − (wTs2)

α|
≤ |(wTs1)− (wTs2)|d
≤ d|s1 − s2|,

where in the second step we used the polynomial expansion formula. This means that the

function class
{
fw,α :w ∈ Σd

}
is uniformly Lipschitz for any α > 1. Then by Remark

A.5 of Mainik and Rüchendorf [32], the uniform convergence in (A.20) holds. Hence, η̂w
converges to ηw uniformly in w ∈ Σd almost surely. Further, by the continuity of the

mapping η̂w 7−→ η̂
1/α
w , we have

sup
w∈Σd

∣∣η̂1/αw − η1/αw

∣∣→ 0, a.s.,

and

sup
w∈Σd

∣∣∣∣∣
d∑

i=1

wiη
1/α
ei

−
d∑

i=1

wiη̂
1/α
ei

∣∣∣∣∣ = sup
w∈Σd

∣∣∣∣∣
d∑

i=1

wi

(
η1/αei

− η̂1/αei

)∣∣∣∣∣→ 0, a.s.

Further notice that
∑d

i=1wiη
1/α
ei and

∑d
i=1wiη̂

1/α
ei are uniformly bounded away from 0 be-

cause both the empirical measure Ψ̂ and the limit measure Ψ are non-degenerated. Com-

bining all these, we obtain that (A.19) converges to 0 almost surely, which yields the desired

result.
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Proof of Lemma 3.1. In this proof the limit is taken as t → ∞. For t > 0, denote the

region St = {(x1, . . . , xd) ∈ Rd
+ :
∑d

i=1 wixi ≥ t}. We can split FwTX(t) as

FwTX(t) =

∫
St

d

(
d∏

k=1

Gk(xk)

)
+
∑
i<j

ai,j

∫
St

d

(
(1−Gi(xi)) (1−Gj(xj))

d∏
k=1

Gk(xk)

)

= I(t) +
∑
i<j

ai,jJi,j(t),

where Gk(x) = G(x/wk) for k = 1, ..., d. The term I(t) can be understood as the survival

distribution function of w1X
∗
1 + · · · + wdX

∗
d , where X∗1 , . . . , X

∗
d are i.i.d. with common

distribution function G. For I(t), it follows from Theorems 4.7 of Mao and Ng [34] that,

I(t)

G(t)
=

d∑
k=1

wα
k +

d∑
k=1

H−α,ρ
(
w−1k

)
A(t)(1 + o(1)) + αt−1µG

∑
k ̸=l

wα
kwl(1 + o(1)).

For Ji,j(t)’s, note that it suffices to study J1,2(t) by symmetry. Then we have

J1,2(t)=I(t)−
∫
St

d

(
G2

1(x1)
d∏

k=2

Gk(xk)

)
−
∫
St

d

(
G2

2(x2)
∏
k ̸=2

Gk(xk)

)

+

∫
St

d

(
G2

1(x1)G
2
2(x2)

n∏
k=3

Gk(xk)

)
=I(t)− J

(1)
1,2 (t)− J

(2)
1,2 (t) + J

(3)
1,2 (t).

Note that Gk(x) = G(x/wk) ∼ wα
kG(t) and G2

1(t)/G1(t) → 2. Since α ≥ 1, by regarding

G2
1(·) as a distribution function, Proposition 3.7 of Mao and Ng [34] leads to

J
(1)
1,2 (t)

= (2wα
1 + wα

2 + · · ·+ wα
d )G(t) + o

(
G(t)A(t)

)
+ αt−1

(
2wα

1

d∑
k=2

wkµG + w1µG2

d∑
k=2

wα
k +

∑
k,l≥2,k ̸=l

wα
kwlµG

)
G(t)(1 + o(1)).

Similarly,

J
(2)
1,2 (t)

= (wα
1 + 2wα

2 + · · ·+ wα
d )G(t) + o

(
G(t)A(t)

)
.

+ αt−1

(
2wα

2

∑
k ̸=2

wkµG + w2µG2

∑
k ̸=2

wα
k +

∑
k,l ̸=2,k ̸=l

wα
kwlµG

)
G(t)(1 + o(1)).
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and

J
(3)
1,2 (t) = (2wα

1 + 2wα
2 + · · ·+ wα

d )G(t) + o
(
G(t)A(t)

)
+ αt−1

(
2

2∑
l=1

∑
k ̸=l

wα
l wkµG2 + 2

2∑
l=1

d∑
k=3

wα
l wkµG

)
G(t)(1 + o(1))

+ αt−1

(
2∑

l=1

d∑
k=3

wα
kwlµG2 +

∑
k,l≥3,k ̸=l

wα
kwlµG

)
G(t)(1 + o(1)).

Combining all the asymptotics for I(t), J1(t), J2(t) and J3(t) yields that

FwTX(t)

G(t)
−

d∑
k=1

wα
k = (1 +Qa)

I(t)

G(t)
+

∑
i<j ai,j

(
−J

(1)
ij (t)− J

(2)
ij (t) + J

(3)
ij (t)

)
G(t)

−
d∑

k=1

wα
k

=

{
αt−1µ∗G(1 + o(1)), ρ < −1,

(1 +Qa)
∑d

k=1H−α,ρ
(
w−1k

)
A(t)(1 + o(1)), ρ ≥ −1.

This completes the proof of (3.4).

The uniform convergence of (3.4) follows immediately from checking that for the limit

relations in Proposition 3.7 and Theorems 4.7 of Mao and Ng [34]. The details are omitted

here but are available upon request.

Proof of Lemma 3.2. In this proof we denote argmin f by mf for notational simplicity.

By the definition of Dn, for any n, |fn(mf )− f(mf )| < Dn. It follows that

fn(mfn) ≤ fn(mf ) < f(mf ) +Dn.

Again, by |fn(mfn)− f(mfn)| < Dn we have

f(mfn) < fn(mfn) +Dn < f(mf ) + 2Dn.

Deriving the similar inequalities for the other side yields that

|f(mfn)− f(mf )| < 2Dn. (A.21)

By the Taylor’s theorem, for any x in a small neighborhood of mf we obtain that

f(x) = f(mf ) +
1

2
(x−mf )

T∇2f(mf )(x−mf ) + o
(
||x−mf ||22

)
, (A.22)

where we used the multi-index notation and ∇2f(mf ) is the Hessian matrix of f at mf .

Since Dn → 0 as n → ∞ by Lemma 2.1, mfn is in a small neighborhood of mf for large n.

It then follows from the expansion in (A.22) that

|f(mfn)− f(mf )| >
c

2
||mfn −mf ||22, (A.23)

where c is the smallest eigenvalue of ∇2f(mf ). Combining (A.21) and (A.23) leads to the

desired result.
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