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This set of lecture notes summarizes the content that will be assessed on assignments and tests. The notes
include definitions, explanations and examples. The examples are boxed in grey and have typed or written
solutions in the space below. Some recommended homework problems are boxed in blue and are included at the
end of each chapter (week).

The harder problems boxed in red often combine multiple topics and have a link to a video solution and/or
written solution. Some of these problems are resources from the Centre for Education in Mathematics and
Computing in the Faculty of Mathematics at the University of Waterloo. In particular, some of these problems
are taken from past high school math contests such as the Euclid. The links to the written solutions will bring you
to the complete solution set for the contest this problem was taken from. These problems are meant to challenge
you and also to strengthen your problem solving skills that will help you to succeed in this course. Try thinking
about how you might solve the problem yourself before clicking on the solutions.

The table of contents can be used to navigate to a particular numbered section by clicking on its title. The
course formally begins with Week 1, but there is some review material in Chapter 0 that has some pre-calculus
topics that will be used throughout the course.
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0 Pre-Calculus Review

0.1 Notation, Absolute Value and Inequalities

0.1.1 Interval Notation: Video Lesson

Let a, b ∈ R with a < b. Then the intervals represent sets of real numbers as follows:

(a, b) = {x ∈ R|a < x < b}
(a, b] = {x ∈ R|a < x ≤ b}
[a, b) = {x ∈ R|a ≤ x < b}
[a, b] = {x ∈ R|a ≤ x ≤ b}
[a,∞) = {x ∈ R|a ≤ x}
(−∞, b] = {x ∈ R|x ≤ b}
(−∞,∞) = R
(a, a) = ∅, the empty set
[a, a] = {a}.

0.1.2 Rules for Inequalities: Video Lesson

1. If a < b, then a+ c < b+ c. 4. If a < b and c > 0, then ac < bc.

2. If a < b and c < d, then a+ c < b+ d 5. If a < b and c < 0, then ac > bc.

3. If 0 < a < b, then
√
a <

√
b and a2 < b2. 6. If 0 < a < b, then 1/a > 1/b.

0.1.3 Solving Inequalities

Example: Solve for x and express your answer using interval notation: x2 < 4.

Solution: Rearranging the inequality, we have x2 − 4 < 0
Factoring the left side gives (x− 2)(x+ 2) < 0
Expression changes sign at x = 2 and x = −2.
For x ∈ (−∞,−2), x− 2 < 0, x+ 2 < 0 so (x− 2)(x+ 2) > 0
For x ∈ (−2, 2), x− 2 < 0, x+ 2 > 0 so (x− 2)(x+ 2) < 0
For x ∈ (2,∞), x− 2 > 0, x+ 2 > 0 so (x− 2)(x+ 2) > 0.
Thus x2 − 4 < 0 for x ∈ (−2, 2).
Video Solution

Example: Solve for x and express your answer using interval notation: x2 + 6 ≤ 5x.
Video Solution

Harder Problem

Determine all values of x for which 0 <
x2 − 11

x+ 1
< 7.

Video Solution Written Solution

0.1.4 Absolute Value: Video Lesson

The absolute value of a number a, denoted |a|, is the distance from a to 0. Since distance is always positive
or zero, we have |a| ≥ 0 for all a. Note that if a is negative, then −a is positive. Thus, we have the following
definition:

|a| =

{
a if a ≥ 0

−a if a < 0
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Note:
√
a is defined to be the positive square root of a only and so we can also write |a| =

√
a2.

Suppose a > 0. Then

1. |x| = a iff x = ±a

2. |x| < a iff x > −a and x < a 3. |x| > a iff x > a or x < −a

0.1.5 Properties of Absolute Values: Video Lesson

If a and b are real numbers and n is an integer, then

1. |ab| = |a||b| 2.
∣∣∣a
b

∣∣∣ = |a|
|b|

, |b| ≠ 0

3. |an| = |a|n 4. |a+ b| ≤ |a|+ |b| (Triangle Inequality)

Example: Solve |3x+ 2| ≥ 4 for x and express your solution in interval notation.

Solution:

3x+ 2 ≥ 4 or 3x+ 2 ≤ −4

3x ≥ 2 or 3x ≤ −6

x ≥ 2

3
or x ≤ −2

x ∈ (−∞,−2] ∪
[
2

3
,∞

)
Video Solution

Example: Solve

∣∣∣∣3− 4

x

∣∣∣∣ < 2 for x and express your solution in interval notation.

Video Solution

Example: Solve x2 < 4 for x by taking the positive square root of both sides.
Video Solution

0.2 Points and Curves in the Plane

0.2.1 Cartesian Plane: Video Lesson

The Cartesian plane consists of a horizontal axis called the x-axis and vertical axis called the y-axis that intersect
at the origin. Any point in the plane can be located by an ordered pair of numbers depicting its distance from this
perpendicular pair of axis. If the coordinates of P are (a, b), then a is the x-coordinate of P and is the distance
from P to the y-axis and b is the y-coordinate of P and is the distance from P to the x-axis. The distance
between two points P1(x1, y1) and P2(x2, yx) is |P1P2| =

√
(x2 − x1)2 + (y2 − y1)2, the midpoint between P1

and P2 is

(
x1 + x2

2
,
y1 + y2

2

)
, and the slope of the line segment connecting P1 and P2 is m =

y2 − y1
x2 − x1

.

Lines

The point-slope form of the equation of a line passing through the point
(x1, y1) and having slope m is y − y1 = m(x− x1).
Two non-vertical lines are parallel iff they have the same slope.

Two lines with slopes m1 and m2 are perpendicular iff m2 = − 1

m1
.
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Example: If P (1, 4) and Q(2,−1) are two points in the plane,

(a) Find the distance between the points P and Q.

(b) Find the midpoint between P and Q.

(c) Find the point-slope form of the equation of the line through the points P and Q.

(d) Find the point-slope form of the equation of the line through P that is perpendicular to the line
found in part (c).

Solution:

(a) The distance between P and Q is |PQ| =
√
(2− 1)2 + (−1− 4)2 =

√
1 + 25 =

√
26.

(b) The midpoint between P and Q is

(
1 + 2

2
,
4 + (−1)

2

)
=

(
3

2
,
3

2

)
.

(c) Now to find the equation of the line through P and Q, we first find the slope m of the line segment

PQ. m =
−1− 4

2− 1
=

−5

1
= −5.

Using the point (1, 4) and the slope m = −5, we write the point-slope equation of the line y − 4 =
−5(x− 1).
Note that we could have alternatively used the point (2,−1) to obtain y− (−1) = −5(x− 2). Verify
that these equations are identical.

(d) A line perpendicular to the line found in (c) has slope equal to
−1

−5
=

1

5
.

Since the line we are looking for goes through P (1, 4), the point-slope form of the equation of the

line is y − 1 =
1

5
(x− 4).

Video Solution

0.2.2 Circles: Video Lesson

A circle with radius r and centre (h, k) has all its points (x, y) at a
distance of r from the point (h, k). Using the formula for distance
we find the equation of the circle is √

(x− h)2 + (y − k)2 = r

(x− h)2 + (y − k)2 = r2

Sometimes we need to use some algebra first to recognize the equation of a circle in its standard form. Completing
the square is useful here.

x2 + bx = x2 + bx+

(
b

2

)2

−
(
b

2

)2

=

(
x+

b

2

)2

−
(
b

2

)2

Example: Show that the graph of 2x2 + 2y2 − x+ y = 0 is a circle and find the radius and centre.

0.2.3 Parabolas: Video Lesson

The parabola y = ax2 opens upwards if a > 0 and downwards if a < 0.
The vertex (the origin in this case) is the point where the parabola changes direction.
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If we shift the graph of a parabola up k units and to the right h units, then the equation becomes

y − k = a(x− h)2 or y = a(x− h)2 + k

The shifted vertex now has coordinates (h, k).
We may need to complete the square to put the equation of a parabola into this form.

Example: Find the vertex of the parabola y = 2x2 − 3x+ 1.

0.2.4 Ellipses and Hyperbolas: Video Lesson

An ellipse is a set of points P (x, y) such that the sum of the distances to two fixed points is a constant. The
standard equation for an ellipse centred at the origin is

x2

a2
+

y2

b2
= 1

where a and b are positive numbers. Note that x = ±a and y = ±b represent the x- and y-intercepts.
A hyperbola is a set of points such that the difference of distance from two fixed points is a constant. The

standard equation for a hyperbola is

x2

a2
− y2

b2
= 1

Note that x = ±a represent the x-intercepts but there are no y-intercepts since x ≥ a or x ≤ −a. This gives the
two branches of the hyperbola. The asymptotes of the hyperbola are the lines y = (b/a)x and y = −(b/a)x.

Example: Sketch the curve 3y2 +4x2 = 12. Find the point(s), if any, where this curve intersects the line
y − x = 2.
Solution: We begin by dividing both sides by 12 to get a 1 on the right side of the equation to put it in
the form of a hyperbola.

3y2

12
+

4x2

12
=

12

12
y2

4
+

x2

3
= 1

To recognize the values of a and b, we write each denominator as a square

x2

√
3
2 +

y2

22
= 1

Substituting y = x+ 2 into the equation of the curve, we get

3(x+ 2)2 + 4x2 = 12

3(x2 + 4x+ 4) + 4x2 = 12

3x2 + 12x+ 12 + 4x2 = 12

7x2 + 12x = 0

x(7x+ 12) = 0

Therefore, we obtain x = 0 or x = − 12
7 .

Lyryx HW: 1.2.12, 1.2.14, 1.2.15, 1.1.5, 1.1.6, 1.1.7
Stewart HW: Appendix B #23, 33, 35, 58, Appendix C # 3, 5, 7, 1.1 # 32-35
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1 Week 1

1.1 Introduction to Calculus

Calculus helps us to understand how a quantity changes value. The advancement of modern science is due to
the development of calculus. Before calculus, math could be used for calculating properties of an object at rest
(areas, volume, distance etc). Calculus can be used to find how particles, cells, planets move. It was invented
by Leibniz and Newton in the 17th century and is now used in physics, engineering, economics, statistics and
medicine.

There are two types of calculus - differential and integral calculus. Differential calculus allows us to compute
the rate of change of a quantity. Looking at the graph of this quantity, the derivative gives us the slope of the
curve at any point. Integral calculus allows us to determines the quantity when we know its rate of change. An
integral allows us to find the area under the curve. We will learn about both branches of calculus in this course.
First we will look at how quantities can be measured. We will use functions to describe the relationships between
quantities. For example, we might be measuring the number of infected in a population, the amount of morphine
in the blood stream, temperature of solution, length of a bridge or the cost of producing materials. We will see
that functions are often described relative to time but can also be can be measured relative to an angle, distance,
cost, fuel or other amounts. In this course, we will be interested in the relationship between two quantities at a
time. We often use x to represent the quantity we are measuring relative to and call it the independent variable.
We use y to describe the quantity that is changing depending on the value of x. We call y the dependent variable.
We will introduce function notation and definitions in the next section.

1.2 Representing Functions

1.2.1 Introduction to Functions: Video Lesson

A function is a rule that assigns to each element x ∈ A exactly one element called f(x) in a set B. The set A
is called the domain of the function. The set of all possible values of f(x) as x varies throughout the domain
is called the range of the function. If x denotes an arbitrary number in the domain of f , then x is called an
independent variable. An arbitrary number y in the range of f is called a dependent variable. If for each
value of x there corresponds exactly one value of y, we write y = f(x) and say that y is a function of x.

Example Determine whether y is a function of x and if it is, state the domain and range of the function.

(a) y2 + x2 = 2

(b) y =
√
4− x2

(c) x− 4− y2 = 0

The graph of a function f(x) is the set of points (x, y) in the xy-plane for which y = f(x). We can tell if a
curve in the xy-plane is a function or not by looking at its graph.

1.2.2 Vertical Line Test: Video Lesson

A curve in the xy-plane is the graph of a function of x iff no vertical line intersects the curve more than once.

Example

Use the Vertical Line Test to verify your answers in the example above.

1.2.3 Piecewise Defined Functions: Video Lesson

A piecewise function is defined by different formulas in different parts of their domains.
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Heaviside Function

A very useful piecewise function for engineering purposes is the Heaviside unit step function h(t). We can think
of this as an off-on function since it is off (or has a value of 0) for t < 0 and turns on (or has a value of 1) for
t > 0. It is used to model voltage switching on or off in an electrical circuit.

h(t) =

{
0, t < 0

1, t > 0

1.2.4 Piecewise Function Example

Express g(x) =
|x2 − 4|

x
as a piecewise function.

Video Solution

1.2.5 Floor and Ceiling Functions

These functions take as input a real number and output an integer.
The floor or greatest integer function is defined by f(x) = ⌊x⌋ and is the greatest integer that is not greater
than x. Think of rounding down. Our age is an example of a floor function.
The ceiling or least integer function is written g(x) = ⌈x⌉ and is defined to be the least integer that is not less
than x. Think of rounding up.
We can think of these as piecewise constant functions.

⌊x⌋ =



...

−2 −2 ≤ x < −1

−1, −1 ≤ x < 0

0, 0 ≤ x < 1

1, 1 ≤ x < 2

2, 2 ≤ x < 3
...

1.2.6 Symmetry: Video Lesson

Suppose D represents the domain of a function f .
If f satisfies f(−x) = f(x) ∀x ∈ D, then f is an even function. The graph of an even function is symmetric
about the y-axis. This means if we have the graph of f for x ≥ 0, we can obtain the entire graph by reflecting
this portion about the y-axis.
If f satisfies f(−x) = −f(x) ∀x ∈ D, then f is an odd function. The graph of an odd function is symmetric
about the origin. This means if we have the graph of f for x ≥ 0, we can obtain the entire graph by rotating this
portion through 180◦ about the origin.
If f satisfies f(x + p) = f(x) ∀x ∈ D, then f is a periodic function with period equal to p. The graph of f
repeats on intervals of length p.
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1.2.7 Example

Determine whether each of the following functions is even, odd or neither.

(a) g(x) = x4|4x| (b) f(x) =
|x2 − 4|

x
(c) h(x) = 2x− x3

Solution:

(a)

g(−x) = (−x)4|4(−x)|
= (−1)4x4| − 4x|
= x4|4x|
= g(x)

Thus, g is even.

1.3 Sequences

A sequence is an infinite list of numbers. The numbers in the list are called terms. In the sequence

a1, a2, a3, . . . , an, . . .

a1 is the first term, a2 is the second term and, in general, an is the nth term. We can think of a sequence as a
function where the domain is the set of positive integers.

Examples of Sequences: Write a formula for an for each of the following sequences:

1. the sequence of positive integers: {1, 2, 3, . . .}

2. a geometric sequence: {2, 4, 8, 16, . . .}

3. an arithmetic sequence: {3, 7, 11, 15, 19, . . .}

4. a decreasing sequence: {1, 1
2 ,

1
3 ,

1
4 . . .}

Harder Problem

Euclid 2020 4b Written Solution

A geometric sequence has first term 10 and common ratio 12. An arithmetic sequence has first term 10
and common difference d. The ratio of the 6th term in the geometric sequence to the 4th term in the
geometric sequence equals the ratio of the 6th term in the arithmetic sequence to the 4th term in the
arithmetic sequence. Determine all possible values of d.

Monotonic Sequences

A sequence {an} is increasing if a1 ≤ a2 ≤ a3 ≤ . . . ≤ an ≤ an+1 ≤ . . .

A sequence {an} is decreasing if a1 ≥ a2 ≥ a3 ≥ . . . ≥ an ≥ an+1 ≥ . . .

If the inequality signs are strict (< or >), then the sequence is strictly increasing or decreasing, respectively.
A sequence that is either increasing or decreasing is called monotonic.
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Harder Problem

Video Solution

Show that the sequence
n

n2 + 1
is decreasing.

1.4 A Catalog of Essential Functions

Linear Functions

The graph of a linear function is a line, so we can rewrite the point-slope form and obtain the slope-intercept
form of the equation of a line y = f(x) = mx+ b, where m is the slope of the line and b is the y-intercept.

Polynomials

A polynomial P is a function of the form P (x) = anx
n+an−1x

n−1+. . .+a2x
2+a1x+a0, where n is a non-negative

integer and the ai’s are constants called the coefficients of the polynomial. The domain of any polynomial is
(−∞,∞) and if an ̸= 0, the degree of the polynomial is n.

When a polynomial is in factored form, we can get useful information to help sketch the graph.
Note that a linear function is a polynomial of degree 1.
A polynomial of degree 2 is called a quadratic function and is of the form P (x) = ax2 + bx + c. Its graph is
always a parabola obtained by shifting the parabola y = ax2 as we have already seen.

Harder Problem

Euclid 2015 4a

Find the x and y intercepts of y = (x− 1)(x− 2)(x− 3)− (x− 2)(x− 3)(x− 4). Video Solution

Harder Problem

Euclid 2015 4b

The graphs of the equations y = x3 − x2 + 3x − 4 and y = ax2 − x − 4 intersect at exactly two points.
Determine all possible values of a. Video Solution Written Solution

Reciprocal Functions

A function of the form f(x) = x−1 = 1/x is called the reciprocal function.
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When looking at more general reciprocal functions of the form g(x) =
1

h(x)
, it can be useful to examine the zeros

of h(x) which lead to the asymptotes of g(x). We can also examine the end behaviour of g and h for very large
positive or negative values of x. We will explore this concept in more details in later sections when we discuss
function limits.

Power Functions

A function of the form f(x) = xa, where a is a constant is called a power function.

If a is an even positive integer, the graph of y = xa

is an even function and similar to the graph of
y = x2.

y = x2, y = x4, y = −x2, y = −x4

If a is an odd positive integer, the graph of y = xa

is an odd function and similar to the graph of y =
x3.

y = x3 y = x5

Root Functions

If n is even, the graph of y = n
√
x is similar to the

graph of y =
√
x, the upper half of the parabola

y2 = x.

y =
√
x, y = 4

√
x

If n is odd, the graph of y = n
√
x is similar to the

graph of y = 3
√
x, which is equivalent to the cubic

function x = y3.

y = 5
√
x, y = 7

√
x

Rational Functions

A rational function f is a ratio of polynomials.

f(x) =
x3 − 2x+ 1

2x7 − x6 + 4x2 − 9
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Algebraic Functions

A function that can be expressed using the operations addition, subtraction, multiplication, division, raising to a
power, and taking a root.

f(x) =
3
√
1− x2

x2/5 −
√
2x5

Transcendental Functions

A function that cannot be expressed as a finite combination of the algebraic operations of addition, subtraction,
multiplication, division, raising to a power, and taking a root. The next few function types are examples of
transcendental functions.

Exponential, Logarithmic and Trigonometric Functions

We will study these in greater depth over the next two weeks. For now, here are some basic graphs.

y = ex y = lnx

y = sinx y = cosx y = tanx

15



1.5 New Functions From Old

We can take some of the basic functions described above and obtain new functions by shifting, stretching, reflecting
as well as applying algebraic operations and composition.

Vertical and Horizontal Shifts

Suppose we know the graph of a function y = f(x) and c is a constant c > 0.
To obtain the graph of:

y = f(x) + c, shift the graph of y = f(x) up c units

y = f(x)− c, shift the graph of y = f(x) down c units

y = f(x+ c), shift the graph of y = f(x) to the left c units

y = f(x− c), shift the graph of y = f(x) to the right c units

Stretches and Reflections

Suppose we know the graph of a function y = f(x) and c is a constant c > 1.
To obtain the graph of:

y = cf(x), stretch the graph of y = f(x) vertically (away from x-axis) by a factor of c

y = (1/c)f(x), shrink the graph of y = f(x) vertically (towards x-axis) by a factor of c

y = f(cx), shrink the graph of y = f(x) horizontally (towards y-axis) by a factor of c

y = f(x/c), stretch the graph of y = f(x) horizontally (away from y-axis) by a factor of c

y = −f(x), reflect the graph of y = f(x) about the x-axis

y = f(−x), reflect the graph of y = f(x) about the y-axis

1.5.1 Find Graph from Basic Functions Example:

Sketch the graph of y = 2
√
−3x+ 9− 1.

The base function is f(x) =
√
x. We notice a vertical shift

of −1 and a vertical stretch by a factor of 2.
Let g(x) = 2f(x)− 1 = 2

√
x− 1.
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The negative sign under the square root is a reflection in
the y-axis.

Let h(x) = g(−x) = 2f(−x)−1 = 2
√
−x−1, the reflection

of g in the y-axis.

Now we deal with the factor of 3.

Let i(x) = h(3x) = 2f(−3x) − 1 = 2
√
−3x − 1, shrinking

h towards the y-axis by a factor of 3.

Finally we look at the +9 to identify the horizontal shift. Note that we do not have simply a shift to the left
of 9:
That is i(x+ 9) = h(3(x+ 9)) = g(−3(x+ 9)) = 2f(−3(x+ 9))− 1 = 2

√
−3x+ 27− 1 ̸= y.

Instead we need to look at what happened to x alone by noting that −3x+ 9 = −3(x− 3).
Let j(x) = i(x − 3) = h(3(x − 3)) = g(−3(x − 3)) = 2f(−3(x − 3)) − 1 = 2

√
−3(x− 3) − 1 = y shifts i to the

right 3 units.

Now we can see exactly what happened to f(x) =
√
x: a vertical shift of −1, a vertical stretch by a factor of 2, a

reflection in the y-axis, a shrink towards the y-axis by a factor of 3 and a shift to the right 3 units.

1.5.2 Domain and Range using Transformations

If we can obtain the graph of a function, we can use it to discover its domain and range.

17



Example

Sketch the graphs of the following functions and determine their domain and range.
(a) y = 3

√
x− 2− 1 (b) y(x− 2)2 + 4

3 Video Solution

1.5.3 Heaviside Example

Sketch the graph of h(t− 3), where h is the heaviside function. Geogebra Solution

Harder Problem

Sketch the graph of h(t− 3)− h(t− 5). Video Solution

1.5.4 Combinations and Composition of Functions

Two functions f with domain A and g with domain B can be combined to form new functions as follows:

(f + g)(x) = f(x) + g(x) ∀x ∈ A ∩B

(f − g)(x) = f(x)− g(x) ∀x ∈ A ∩B

(fg)(x) = f(x)g(x) ∀x ∈ A ∩B(
f

g

)
(x) =

f(x)

g(x)
∀x ∈ A ∩B | g(x) ̸= 0

(f ◦ g)(x) = f(g(x)) ∀x ∈ B | g(x) ∈ A

Combine Functions Example

If f(x) =
1

x+ 2
and g(x) =

x

x− 3
, find each function and its domain.

(a) f + g (b) f − g (c) fg (d) f/g (e) f ◦ g (f) g ◦ f (g) f ◦ f (h) g ◦ g

Solution

(b)

(f − g)(x) = f(x)− g(x) =
1

x+ 2
− x

x− 3

Domain of f − g is x ̸= −2 and x ̸= 3.
In interval notation, x ∈ (−∞,−2) ∪ (−2, 3) ∪ (3,∞).

(g)

(f ◦ f)(x) = f(f(x)) = f

(
1

x+ 2

)
=

1
1

x+ 2
+ 2

=
1

1 + 2(x+ 2)

x+ 2

=
x+ 2

1 + 2x+ 4
=

x+ 2

2x+ 5

Domain of f ◦ f : x ̸= −2 (domain of f) and x ̸= − 5
2 . (so that f(x) is in the domain of f .)

Alternatively we could note that for x to be in the domain of f we need x ̸= −2 and for f(x) to be in the

domain of f , we need
1

x+ 2
̸= −2 or 1 ̸= −2x− 4 or x ̸= − 5

2 .

In interval notation, x ∈ (−∞,− 5
2 ) ∪ (− 5

2 ,−2) ∪ (−2,∞)

18

https://www.loom.com/share/12db57dc4cd045debe5ba027bcc70838
https://www.geogebra.org/graphing/kcndywyn
https://www.loom.com/share/4e38ea4b5327454799c8d65c121c9089


(h)

g(g(x)) = g

(
x

x− 3

)
=

x

x− 3
x

x− 3
− 3

=

x

x− 3
x− 3(x− 3)

x− 3

=
x

x− 3

(
x− 3

x− 3x+ 9

)
=

x

9− 2x

Domain of g ◦ g: x ̸= 3 (domain of g) and x ̸= 9
2 (so g(x) is in the domain of g.)

Alternatively we could note that for x to be in the domain of g we need x ̸= 3 and for g(x) to be in the

domain of g, we need
x

x− 3
̸= 3 or x ̸= 3x− 9 or x ̸= 9

2 .

In interval notation, x ∈ (−∞, 3) ∪ (3, 9
2 ) ∪ ( 92 ,∞)

Decompose Function Example

Write the function f(x) = 2x2
√
4x4 + 5 as the composition of two functions g and h. Video Solution

1.5.5 Composite Functions in Science

Composite functions are useful in many applications when a first quantity depends on a second quantity that in
turn depends on a third quantity. Forming the composite function allows us to see how the first quantity behaves
relative to the third quantity.

Example

In fish, brain weight B is a function of body weight W in fish according to the model B = 0.007W 2/3.
A model for body weight as a function of body length L is found to be W = 0.12L2.53. Find the composite
function B ◦W and state what it represents.

Solution: Since B is a function of W , we can write B(W ) = 0.007W 2/3 and since W is a function of L,
we can write W (L) = 0.12L2.53. Then the composite function

B ◦W = B(W (L)) = B(0.12L2.53)

= 0.007(0.12L2.53)2/3

= 0.00084L5.06/3

Since B ◦W is a function of L, this gives us the relationship between brain weight and body length.

Stewart HW: 1.1 #7 -10, 14, 22, 25, 31, 33, 35, 37, 47, 50, 69, 73 1.2 #1, 2, 3 ,4, 8, 1.3 #2, 3, 4, 8
Geogebra: Experiment with Graphs

2 Week 2

2.1 Inverse Functions

2.1.1 One-to-One

A function is called one-to-one if it never takes on the same value twice. More precisely, f is one-to-one iff

f(x1) = f(x2) =⇒ x1 = x2

Equivalently, x1 ̸= x2 =⇒ f(x1) ̸= f(x2)

We can examine the graph of a function to see whether or not it is one-to-one.
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2.1.2 Horizontal Line Test

A function is one-to-one iff no horizontal line intersects its graph more than once.

Example

Sketch the graph of each given function, then determine if it is one-to-one using the Horizontal Line Test.

(a) f(x) =


3x x < −1

−3 −1 ≤ x ≤ 3√
x− 3 x > 3

Video Solution

(b) y = 2x2 + 4x− 1, x ≥ −1
Video Solution

(c) g(x) = |6−x|
Video Solution

One-to-one functions are important because they are the only functions that have an inverse function.

Definition

Let f be a one-to-one function with domain D and range R. Then its inverse function f−1 has domain R and
range D and is defined by

f−1(y) = x ⇐⇒ f(x) = y ∀y ∈ R

Note that if f were not one-to-one, there would exist two x values for a single y and so f−1 would not be defined
uniquely, and as such would not be a function.
Note that when we compose a function and its inverse we get back our original input.

f−1(f(x)) = x

Example: If f(x) = 3x+ x2 − 3 for x ≥ 0, determine f−1(1). Video Solution

2.1.3 Finding the Inverse Function

When we focus on the inverse function, we often reverse the roles of x and y since we are used to x being the
independent variable. This is done in step 3 below in finding the inverse of a one-to-one function:

1. Write y as a function of x, y = f(x).

2. Solve this equation for x in terms of y. (This is already the inverse function, but as we mentioned we would
like to express the inverse as a function of x.)

3. To express f−1 as a function of x, interchange x and y so the resulting equation is y = f−1(x).

Note: To graph f−1 as a function of x, we simply interchange x and y in the graph of f or reflect the graph of
f about the line y = x.

Example

Find the inverse of f(x) = x3 + 2 and sketch the graph of f−1(x). Video Solution

2.1.4 Domain and Range of Inverse Functions

We noted above that the domain and range are reversed in the inverse function. This is because of the step where
we swap the roles of x and y when finding the inverse. Sometimes it is easier to find the range of a function
indirectly by finding the domain of the inverse.
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Example

Find the domain and range of the following functions and their inverse: (a) y =
7x

3− 2x
(b) y = 3

√
x− 2−1

Video Solution

Harder Problem

Source: Euclid 7a 2020 Video Solution Written Solution

Suppose that the function g satisfies g(x) = 2x − 4 for all real numbers x and that g−1 is the inverse
function of g. Suppose that the function f satisfies g(f(g−1(x))) = 2x2 + 16x+ 26 for all real numbers x.
What is the value of f(π)?

Stewart HW: 1.4 #1, 3, 13, 15 1.5 #5, 6, 8, 9, 12, 15, 17, 18
Lyryx HW: 2.3.1 - 2.3.4, 2.4.1 - 2.4.3

2.2 Exponential Functions

In general, an exponential function is of the form f(x) = ax, where a is a positive constant. We examine the
graphs of some exponential functions for different values of the base a. The base e ≈ 2.71828 is an important
base in calculus and we will discuss this in more detail as we move through the course.

y = 10x, y = ex, y = 2x y =
(

1
10

)x
, y =

(
1
e

)x
, y =

(
1
2

)x
Note the following:

• y = ax is always positive for all a > 0

• all graphs pass through the point (0, 1) since 1 = a0

• y =
(
1
a

)x
= a−x is the reflection of y = ax about the y-axis

• y = −ax is the reflection of y = ax about the x-axis

Example:

Sketch the graph of y = 3− 2x+5 and state the domain and range. Video Solution

21

https://www.loom.com/share/1899a7cdf0934a3480d084eecaa58853?sharedAppSource=personal_library
https://www.loom.com/share/f1bd46963717452db09f41cbf3db726c
https://cemc.uwaterloo.ca/contests/past_contests/2020/2020EuclidSolution.pdf
https://www.loom.com/share/7a9a95446af44e8ca3f0e319f57376de


2.2.1 Spread of Infection

The early stages of a disease outbreak can be modelled by exponential growth. The more infected people we
have, the more people they will infect and the more the cases will rise. This means that as the number of infected
people increases so does the rate of infection. This growth cannot be maintained indefinitely as those infected
are not infected again and either recover or die from their illness.

Example:

Without intervention, the COVID-19 virus doubles every 5 days. Assuming the outbreak starts with 10
infected individuals, write a mathematical model for this scenario. Construct a table of values that gives
the number of infected individuals after t = 0, 1, 2 . . . , 10 days. Solution

3 Week 3

3.1 Logarithms

If a > 0 and a ̸= 1, f(x) = ax is either increasing or decreasing and is one-to-one by the horizontal line test. Thus
it has an inverse function f−1 which is called the logarithm function with base a and is denoted loga. If we
use the definition of inverses we have

loga x = y ⇐⇒ ay = x

3.1.1 Cancellation Properties of Logs and Exponents

loga a
x = x

aloga x = x

Proof:

Let y = ax. Then loga y = x. Sub in y = ax to obtain loga(a
x) = x.

Let y = loga x. Then ay = x. Sub in y = loga x to obtain aloga x = x.

Examples:

Use the relationship between exponentials and logs and the cancellation properties to do the following:

(a) Simplify log2
1

16
(b) Solve: loge(x+ 1) = 7 (c) Solve: e5x = 4

Video Solution

Note: We give loge a special notation ln and we call it the natural logarithm.

3.1.2 Algebraic Properties of Logarithms

1. loga m+ loga n = loga(mn) 2. loga m− loga n = loga

(m
n

)
3.

loga m

loga n
= logn m (*Change of Base Formula) 4. loga m

r = r loga m

Proof:

1. We will show aloga m+loga n = aloga(mn)

aloga m+loga n = aloga maloga n

= mn

= aloga(mn)
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Therefore, since the exponential is a one-to-one function, loga m+ loga n = loga(mn).

2. Next we will show aloga m−loga n=aloga(mn)

aloga m−loga n =
aloga m

aloga n

=
m

n

= aloga(
m
n )

Since the exponential ax is one-to-one, then loga m− loga n = loga(
m
n ).

3. To prove the Change of Base formula, we first multiply both of the equation by loga n and instead prove

loga m = loga n logn m

Again we will show aloga n logn m = aloga m.

aloga n logn m =
(
aloga n

)logn m

= nlogn m

= m

= aloga m

4. Finally we will show aloga mr

= ar loga m.

arlogam =
(
aloga m

)r
= mr

= aloga mr

Note: Base 10 is used often so we often write log10 as simply log.

3.1.3 Solving Equations Involving Logarithms and Exponentials

In solving equations involving logarithms, it is helpful to note that the function y = logb m is one-to-one which
means that if logb m = logb n, then m = n. The exponential function is also one-to-one meaning if bx = by, then
x = y for any base b.

Examples

Solve for x in each of the following equations:

(a) 25x+2 = 53x−4 (b) 5 + 3 · 4x−1 = 12

Video Solution

Harder Problem

Solve for x given ln(x− 2e) + ln(x− 3e) = 2. Video Solution

Harder Problem

Euclid 2019 3b

If 1615/x = 324/3, what is the value of x? Video Solution
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Harder Problem

Euclid 2019 3c

Suppose that
22022 + 2a

22019
= 72. Determine the value of a. Video Solution

3.2 Modelling with Logarithms

Logarithms tell us something about the magnitude of an amount. During the pandemic, a logarithmic scale was
often used to model the number of people infected in a population. The logarithmic scale shows us clearly if the
rate of change is constant, increasing or decreasing.

3.2.1 Spread of Infection Example Part 2:

Use the table of values you constructed in the Example in Section 2.1.1 and create a 3rd column with
log2(y). Plot this data with time in days as the horizontal axis and the values of log2 y as the vertical axis.
This is an example of a logarithmic scale. Another way to do this is by Solution

3.3 Trigonometry

Angles and Arcs: Video Lesson

The measure of an angle is an amount of rotation, where one complete revolution is divided into 360 equal parts
called degrees. One revolution is equivalent to 360 degrees or 360◦. We do not use degrees in calculus. Instead
we use radians because they have no units so we can manipulate their value with other expressions through
multiplication, division etc, without worrying about units of measurement.

number of radians =
a

r
=

arc length of sector

radius

We often use θ to denote the number of radians. Since the circumference (or arc length) of a circle is 2πr, the

number of radians in an entire circle is θ =
2πr

r
= 2π. Since 2π radians = 360◦, we have π radians = 180◦. We

can use this to convert between degrees and radians.

rad× 180◦

π rad
= ◦

An angle is in standard position if it is drawn in the xy-plane with its vertex at the origin and its initial
arm on the positive x-axis. Angles are coterminal if their terminal arms coincide. We measure an angle in the
positive direction by travelling counterclockwise from the positive x-axis to its terminal arm.

3.3.1 Trig Ratios: Video Lesson

Let P (x, y) be a point on a circle of radius r and let θ be the angle made by P with the x-axis. Then

sin θ =
y

r
cos θ =

x

r
tan θ =

y

x

csc θ =
r

y
sec θ =

r

x
cot θ =

x

y

3.3.2 Special Triangles: Video Lesson

Example

Find the trig ratios of
2π

3
and

7π

6
.
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3.3.3 Trig Identities: Video Lesson

The following identities are valid for any angle θ. You should familiarize yourself with this list.

csc θ =
1

sin θ
sec θ =

1

cos θ
cot θ =

1

tan θ
tan θ =

sin θ

cos θ
cot θ =

cos θ

sin θ

sin2 θ + cos2 θ = 1

tan2 θ + 1 = sec2 θ

cot2 θ + 1 = csc2 θ

sin(x± y) = sinx cos y ± cosx sin y

cos(x± y) = cosx cos y ∓ sinx sin y

tan(x± y) =
tanx± tan y

1∓ tanx tan y

sin 2x = 2 sinx cosx

cos 2x = cos2 x− sin2 x

= 2 cos2 x− 1

= 1− 2 sin2 x

sin(−θ) = − sin θ cos(−θ) = cos θ tan(−θ) = − tan θ

3.3.4 Graphs of Trig Functions: Video Lesson

By examining the graphs of trig functions, we see that y = sinx repeats the same values every 2π radians. We
say that sin has period 2π. Note that cos has period 2π and tan has period π. We will note here that these three
trig functions are certainly not one-to-one.

y = sinx y = cosx y = tanx

Example:

Sketch the graph of 3 sin
(
2x− π

4

)
. Video Solution

Example

Suppose we have data that can be modelled by a trig function of the form y = A cos(B(t + C)) + D,
where A,B,C,D are constants. The maximum point occurs at (7, 23) and the minimum occurs at (2, 7).
Determine the cosine function that fits the data. Video Solution
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3.4 Solving Trig Equations

When solving equations involving trig ratios, we need to remember that within 0 and 2π, there are two angles
that produce the same trig ratio. The period of the trig ratio tells us how often each of these angles repeats when
the domain is unrestricted.

Examples:

Solve the following equations for the angle θ.

(a) sin 2θ − cos θ = 0. (b) 2 cos2 θ − 7 cos θ + 3 = 0, θ ∈ [0, 2π]

(a) Video Solution (b) Video Solution
cos θ(2 sin θ − 1) = 0

cos θ = 0 or sin θ =
1

2

From cos θ = 0, we find θ =
π

2
+ 2kπ or θ =

3π

2
+ 2kπ.

From sin θ =
1

2
, we find θ =

π

6
+ 2kπ or θ =

5π

6
+ 2kπ.

(where k ∈ Z)

Harder Problem

Euclid 2020 7b Written Solution Video Solution

Determine all pairs of angles (x, y) with 0 ≤ x < π that satisfy the following system of equations:

log2(sinx cos y) = −3

2

log2

(
sinx

cos y

)
=

1

2

3.5 Inverse Trig Functions

3.5.1 Introduction to Inverse Trig Functions: Video Lesson

As we mentioned above, trig functions are not one-to-one since they do not pass the horizontal line test. However,
if we restrict their domains so that the functions only attain each function value exactly once, we will have a
one-to-one function that will thus have an inverse.

Let’s look first at the sine function y = sinx. If
we restrict the domain so that −π

2 ≤ x ≤ π
2 , then

there are no two values of x within this interval
that give the same value of sinx. Thus, on this
interval, y = sinx is one-to-one.

Swapping the roles of x and y so we can
graph the inverse trig function, we have
y = sin−1 x, y ∈

[
−π

2 ,
π
2

]
. Note that [−π

2 ,
π
2 ]

is the domain of y = sinx and the range of
y = sin−1 x. Also [−1, 1] is the range of y = sinx
and the domain of y = sin−1 x.
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3.5.2 Graphs of Trig and Inverse Trig: Video Lesson

There are lots of different ways we could restrict the domain so that our trig functions will have an inverse. We
will follow the convention of the text and define the six inverse trig functions with restricted domain as below.

y = cosx, x ∈ [0, π] y = cos−1 x, y ∈ [0, π]

y = tanx, x ∈
(
−π

2 ,
π
2

)
y = tan−1 x, y ∈

(
−π

2 ,
π
2

)
y = secx, x ∈

[
0, π

2

)
∪
[
π, 3π

2

)
y = sec−1 x, y ∈

[
0, π

2

)
∪
[
π, 3π

2

)
y = cscx, x ∈

(
0, π

2

]
∪
(
π, 3π

2

]
y = csc−1 x, y ∈

(
0, π

2

]
∪
(
π, 3π

2

]
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y = cotx, x ∈ (0, π) y = cot−1 x, y ∈ (0, π)

Example: Simplify the following expressions:

(a) sec(cot−1 7
5 ) (b) cos(arctanx) (c) csc−1

(
csc

3π

4

)
Video Solutions

Stewart HW: 1.5 #21, 25, 35(b), 37, 39, 53, 55, 57, 63, 64, 66, 68, 71, Appendix D #23, 29, 45, 46,
53, 65, 78, 79
Lyryx HW: 1.3.1 - 1.3.4, 1.3.10, 1.3.11, 2.5.1 - 2.5.6, 2.6.1-2.6.3, 2.8.10, 2.8.13

4 Week 4

4.1 Limits of Sequence

With some sequences, it is possible to write a formula for the nth term as a function of n. For example, the
sequence of positive integers {1, 2, 3, . . . , n . . .} has nth term equal to n. Since an = n, we can write the sequence
of positive integers as {n}∞n=1 or simply {n}. In general, a sequence whose nth term is an can be referred to as
{an}.

We will be interested in the long term behaviour of a sequence, or the value of the nth term for very large
values of n. We write this limit as lim

n→∞
an.

If the sequence {an} has a limit L, written lim
n→∞

an = L, we say that {an} converges to L or simply say the

sequence is convergent. If this limit does not exist, we say the sequence is divergent. Some of these sequences
diverge to infinity. That is, as n becomes large, the terms an become larger without bound. In this case, we
sometimes write lim

n→∞
an = ∞.

4.1.1 Simple Sequence Limits

• The constant sequence {a} has limit L = a.

• If c > 0, then

{
1

nc

}
has limit L = 0.

• If c > 0, then { n
√
c} has limit L = 1.

• If |c| < 1, then {cn} has limit L = 0.

4.1.2 Sequence Limit Properties

If lim
n→∞

an = P and lim
n→∞

bn = Q, then

1. lim
n→∞

an + bn = P +Q (Addition formula)

2. lim
n→∞

an − bn = P −Q (Subtraction formula)

3. lim
n→∞

anbn = PQ (Multiplication formula)

4. lim
n→∞

an
bn

=
P

Q
, as long as bn ̸= 0 and Q ̸= 0. (Division formula)
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Example: Evaluate lim
n→∞

(
1

2

)n

+ n
√
5− 1

n7

3
. Video Solution

Example: Evaluate lim
n→∞

7n3 − 3n+ 5

2n3 + 4n− 1
. Video Solution

4.2 Instantaneous Velocity

How does a speedometer calculate how fast your car is moving at any given point in time? Certainly, we can
calculate an average velocity as the change in position over the time elapsed. If we make the time elapsed interval
very small, we get closer to the instantaneous velocity.

Example:

Suppose that a ball is dropped from the top of the CN tower in Toronto. The distance in metres fallen
after t seconds is given by s(t) = 4.9t2 and the average velocity of the ball can be calculated as

average velocity =
change in position

time period

(a) Find the average velocity of the ball over the following time intervals in the table below.

Time Interval Average Velocity (m/s)
5 ≤ t ≤ 6
5 ≤ t ≤ 5.1
5 ≤ t ≤ 5.05
5 ≤ t ≤ 5.01
5 ≤ t ≤ 5.001

(b) The instantaneous velocity at t = a is defined to be the limiting value of the average velocities over
shorter and shorter time periods that that at t = a. What does the instantaneous velocity at t = 5 appear
to be using the table above?
Written Solution

The tangent line to a curve is a line that touches the curve having the same direction as the curve at the point
of contact. Finding the slope of the tangent line will tell us the slope of the curve. We know how to find the slope
of a line given two points so we will construct a line segment called the secant line that touches the curve at two
points. As we move the second point closer to the first point, the secant line becomes closer to the tangent line.

Try experimenting with dragging two points closer together in this demonstration (Created with Geogebra by
author mckaysm).

Both the tangent and instantaneous velocity problem involve the notion of a limit. We will study limits in
further detail in the next few sections.

4.3 Limit of a Function at a Point

4.3.1 Definition

Suppose f(x) is defined when x is near a. Then we say “the limit of f(x) as x approaches a equals L”, and we
write

lim
x→a

f(x) = L

if the values of f(x) get closer to L as x gets closer to a on either side of a, but x ̸= a.
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Sometimes a limit oscillates forever as x approaches a or the limit may take on different values when x
approaches a from different directions. In each of these cases, since a single limiting value L cannot be attained,
we say the limit does not exist.

4.3.2 One Sided Limits

We say the limit of f(x) as x approaches a from the left is equal to L and write

lim
x→a−

f(x) = L

if the values of f(x) get closer to L as x gets closer to a where x < a.
We say the limit of f(x) as x approaches a from the right is equal to L and write

lim
x→a+

f(x) = L

if the values of f(x) get closer to L as x gets closer to a where x > a.
Note that

lim
x→a

f(x) = L ⇐⇒ lim
x→a−

f(x) = L and lim
x→a+

f(x) = L

Example:

Evaluate lim
x→1

H(x− 1)− ⌊x⌋
1− x

where H(x) is the Heaviside step function.

Written Solution

4.3.3 Removable and Jump Discontinuity

A function f has a jump discontinuity at x = a when both one-sided limits at a exist, but have different values.
That is, f has a jump discontinuity at x = a if limx→a− f(x) and limx→a+ f(x) exists but

lim
x→a−

f(x) ̸= lim
x→a+

f(x)

A function f has a removable discontinuity at x = a when the limit exists but it is different from the
function value. That is, f has a removable discontinuity at x = a when

lim
x→a

f(x) ̸= f(a)

Example: Suppose g(x) =


x, if x < 1

3, if x = 1

2− x2 if 1 < x ≤ 2

x− 3 if x > 2

Evaluate each of the following if it exists:

(a) lim
x→1−

g(x) (b) lim
x→1

g(x) (c) g(1)

(d) lim
x→2−

g(x) (e) lim
x→2+

g(x) (f) lim
x→2

g(x)

Video Solution 1 (with mistake) Video Solution 2 (with discontinuity discussion)
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4.3.4 Infinite Limits

Let f be a function defined on both sides of a. Then we say the limit of f(x) as x approaches a approaches
infinity and we write

lim
x→a

f(x) = ∞

if the values of f(x) increase without bound as x approaches a from either side of a, but not equal to a.
We say the limit of f(x) as x approaches a approaches negative infinity and we write

lim
x→a

f(x) = −∞

if the values of f(x) decrease without bound as x approaches a.
Note that even though we we write “= ∞” or “ = −∞”, this does not imply that infinity is a number or even
that the limit exists. We symbolically write lim

x→a
f(x) = ∞ or lim

x→a
f(x) = −∞ to indicate the particular way in

which the limit does not exist.

Definition

The line x = a is called a vertical asymptote of the curve y = f(x) if at least one of the following statements
is true:

lim
x→a

f(x) = ∞ lim
x→a−

f(x) = ∞ lim
x→a+

f(x) = ∞
lim
x→a

f(x) = −∞ lim
x→a−

f(x) = −∞ lim
x→a+

f(x) = −∞

Example:

Find the vertical asymptotes of the function y =
x2 + 1

3x− 2x2
and check your answer by graphing the function

using Geogebra. Video Solution

4.3.5 Infinite Discontinuity

A function has an infinite discontinuity at x = a when both one-sided limits are infinite. That is, f has an
infinite discontinuity at x = a when

lim
x→a−

f(x) = ±∞ and lim
x→a+

f(x) = ±∞

Here we used the notation ±∞ to mean plus or minus infinity to save from writing out each of the two cases
separately.

4.4 Calculating Limits Using Limit Laws

In order to evaluate limits, we will use the following list of limit laws. Suppose c is a constant and the limits
lim
x→a

f(x) and lim
x→a

g(x) exist. Then

1. lim
x→a

[f(x) + g(x)] = lim
x→a

f(x) + lim
x→a

g(x)

2. lim
x→a

[f(x)− g(x)] = lim
x→a

f(x)− lim
x→a

g(x)

3. lim
x→a

[cf(x)] = c lim
x→a

f(x)

4. lim
x→a

[f(x)g(x)] = lim
x→a

f(x) lim
x→a

g(x)

5. lim
x→a

f(x)

g(x)
=

lim
x→a

f(x)

lim
x→a

g(x)
, if lim

x→a
g(x) ̸= 0.
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6. lim
x→a

[f(x)]n = [ lim
x→a

f(x)]n, where n is a positive integer.

7. lim
x→a

c = c

8. lim
x→a

x = a

9. lim
x→a

xn = an, where n is a positive integer.

10. lim
x→a

n
√
x = n

√
a, where n is a positive integer (and a > 0 if n is even).

11. lim
x→a

n
√

f(x) = n

√
lim
x→a

f(x), where n is a positive integer (and lim
x→a

f(x) > 0 if n is even).

4.4.1 Direct Substitution

If f is a polynomial or rational function and a is in the domain of f , then

lim
x→a

f(x) = f(a)

This fact arises from the fact that a polynomial or rational function is simply a combination of operations in the
above limit laws.

Example: Evaluate lim
x→2

1− x√
x− 1 + 1

. Video Solution

4.4.2 Simplifying Before Substituting

If we would like to evaluate lim
x→a

f(x), but f is a polynomial or rational function where a is NOT in the domain

of f , we can use factoring, rationalizing denominator, or other algebra tricks to get a simpler function. Note that
this new function will be equal to f everywhere except possibly at a itself.

Example: Determine lim
x→1

f(x) given the function f(x) =


|x2 + 2x− 3|

x− 1
, if x < 1

4(1−
√
2− x)

x− 1
, if 1 < x ≤ 2

Video Solution

4.4.3 Squeeze Theorem

If f(x) ≤ g(x) ≤ h(x) when x is near a, (except possibly at a), and lim
x→a

f(x) = lim
x→a

h(x) = L then lim
x→a

g(x) = L.

Example: If 4x− 9 ≤ f(x) ≤ x2 − 4x+ 7 for x ≥ 0, find lim
x→4

f(x). Video Solution

Harder Problem

Use the squeeze theorem to determine lim
t→2−

f(t) given that − 1

t3
≤ f(t) ≤

√
t+ 2−

√
2t

t2 − 2t
on the interval

(0, 2). Video Solution

Stewart HW: 2.1 #2, 5, 2.2 # 5, 11, 2.3 #15, 21, 27, 45
Lyryx HW: 3.5.1(adefgjo) 3.3.1, 3.4.1, 3.5.2, 3.5.4, 3.5.6(abc)
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5 Week 5

5.1 Continuity

Definition

A function is continuous at x = a if all three of the following conditions are met:

1. f(a) is defined 2. lim
x→a

f(x) exists 3. lim
x→a

f(x) = f(a)

If one or more of these is false, f is discontinuous at x = a.
Geometrically, a function is continuous if its graph can be drawn without lifting your pen from the page.
A function f is continuous from the right at x = a if

lim
x→a+

f(x) = f(a)

and f is continuous from the left at x = a if

lim
x→a−

f(x) = f(a)

A function f is continuous on an interval [a, b] if it is continuous at every number in the interval and is
continuous from the right at the start of the interval, a, and continuous from the left at the end of the interval, b.

5.1.1 Example:

Discuss where the function f(x) in the graph below is continuous.

Video Solution

Theorem

The following types of functions are continuous at every number in their domain:

polynomials, trig functions, exponential functions
rational functions, root functions, log functions

This tells us that when searching for discontinuities, we should look at places where the function is undefined.
A type of function that is not always continuous is a piecewise function. When searching for discontinuities, we
should check at “meeting points” of each piece of the function.

This theorem also tells us that we can use direct substitution when evaluating limits for any of the above
functions as long as we are substituting a value in the domain of the function. (See how condition 3 of continuity
is precisely the definition of direct substitution).
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Theorem

If f and g are continuous at a, then so are the functions f + g, f − g, cf , fg and f
g if g(a) ̸= 0.

5.1.2 Example:

Show that the function g(x) =

√
x2 − 9

x2 − 2
is continuous on its domain and state its domain. Video Solution

Theorem

If g(x) is continuous at a and f(x) is continuous at g(a), then f ◦ g is continuous at a.

5.1.3 Example

Evaluate lim
x→2

arctan

(
x2 − 4

3x2 − 6x

)
. Video Solution

5.1.4 Example

The gravitational force exerted by the planet Earth on a unit mass at a distance r from the centre of the
planet is

F (r) =


GMr

R3
, r < R

GM

r2
, r ≥ R

,

where M is the mass of the Earth, R is its radius, and G is the gravitational constant. Is F a continuous
function of r? Video Solution

5.1.5 Intermediate Value Theorem

Suppose f is continuous on the closed interval [a, b] and let N be any number between f(a) and f(b) where
f(a) ̸= f(b). Then there exists a number c in (a, b) such that f(c) = N .

We can use IVT to locate roots of a function. Recall that a root of a function f is a value of x that makes
f(x) = 0.

Example: Use the Intermediate Value Theorem to show that the equation 2
√
x2 + 1 = x2 − 1 has a

solution in (
√
3,
√
8). Video Solution

5.1.6 Bisection Algorithm

The bisection method for finding a root r such that f(r) ≈ 0 is as follows:

1. Choose an interval [a, b] such that f(a) and f(b) have opposite signs

2. Find the midpoint of [a, b], M =
a+ b

2
.

3. Determine whether the root lies in [a,M ] or [M, b].

Using this new interval, repeat the steps until the interval is sufficiently small.
An approximation for r will then be the midpoint of the final interval with margin of error equal to half

the width of the final interval.
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In other words, if we find that r lies in the interval [x1, x2], an approximation for r is x1+x2

2 with margin of error
(or precision) 1

2 (x2 − x1).

Example: Approximate the solution to x3 + 2x2 − 3x = 1 with a precision of 0.125 using the Bisection
method.
Solution: The solution to the equation is the same as the solution to the equation x3 +2x2 − 3x− 1 = 0.
If we define the function f(x) = x3 + 2x2 − 3x− 1, then we are looking for r such that f(r) = 0.
Let’s try to find an interval that a root r could lie in.
Note that f(0) = −1 < 0 and f(2) = 8 + 8− 6− 1 = 9 > 0.
Since f is a continuous function (polynomial), then by the Intermediate Value Theorem, there exists a
value r between 0 and 2 so that f(r) = 0. We will take the midpoint m1 of this first interval [0, 1] and
test the value of f here.

m1 =
0 + 2

2
= 1

Now f(1) = 1 + 2− 3 = −1 < 0.
Since f(2) > 0 and f(1) < 0, we will choose [1, 2] for our next interval. Taking the midpoint, we obtain

m2 =
1 + 2

2
=

3

2

Now f( 32 ) = 2.375 > 0.
Since f( 32 ) > 0 and f(1) < 0, we will choose [1, 3

2 ] for our next interval. Taking the midpoint, we obtain

m3 =
1 + 3

2

2
=

5
2

2
=

5

4

Now f( 54 ) ≈ 0.328 > 0 and f(1) < 0 so we will choose [1, 5
4 ] as our next interval.

Note that the width of this interval is 5
4 − 1 = 0.25 and half this interval is 0.125 so we are within the

desired margin of error.

Our approximation for r is the midpoint of this interval or
5
4 + 1

2
=

9
4

2
= 9

8 = 1.125± 0.125.

5.2 Limits at Infinity; Horizontal Asymptotes

We have already looked at vertical asymptotes of a function. That is lim
x→a

f(x) = ±∞ tells us there is a vertical

asymptote at x = a. Now we are going to let x become arbitrarily large or small (approach ±∞) and see what
happens to the function value. That is, lim

x→±∞
f(x).

Definition

The line y = L is called a horizontal asymptote of the curve y = f(x) if either

lim
x→∞

f(x) = L or lim
x→−∞

f(x) = L

Example: Evaluate lim
x→−∞

2 arctan(x)

π
.

Solution: Since arctan(x) is continuous everywhere and that tan(x) → −∞ as x → −π
2 . Therefore

lim
x→−∞

2 arctan(x)

π
=

2(−π
2 )

π
= −1
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Theorem

If r > 0 is a rational number then lim
x→∞

1

xr
= 0, and lim

x→−∞

1

xr
= 0 as long as xr is defined for all x.

Example: Evaluate lim
x→∞

3x2 − x− 2

5x2 + 4x+ 1
.

Note that as x becomes large, both the numerator and denominator become large, so it is not obvious
what happens to their ratio. To evaluate the limit at infinity of any rational function, we first divide the
numerator and denominator by the highest power of x that occurs in the denominator. (We can assume
x ̸= 0 since we are interested in values of x very far away from 0).
Video Solution

Example

Evaluate lim
x→∞

(
√
x2 + 1− x). Hint: Multiply numerator and denominator by conjugate. Video Solution

5.2.1 Infinite Limits at Infinity

If one of the following occurs,

lim
x→∞

f(x) = ∞ or lim
x→−∞

f(x) = ∞

lim
x→∞

f(x) = −∞ or lim
x→−∞

f(x) = −∞

we have an infinite limit at infinity. We do not have a vertical or horizontal asymptote, but we still get useful
information about the graph of f(x).

Harder Problem

Find vertical and horizontal asymptotes of f(x) =

√
2x2 + 1

3x− 5
. Video Solution

5.2.2 Limits of Logs and Exponentials

The following limits are useful to remember and can be verified by examining the graphs of the exponential and
logarithmic functions.

lim
x→∞

ex = ∞ lim
x→∞

lnx = ∞

lim
x→−∞

ex = 0 lim
x→0+

lnx = −∞

Examples

Determine the following limits.

1. (a) lim
x→0−

5

log4(1− 31/x)
Video Solution (b) lim

x→∞

3 lnx+ 2 ln2 x

3 ln2 x− 2 lnx
Video Solution

Stewart HW: 2.5# 18, 21, 25, 29, 36, 43, 55, 2.6 #15, 17, 23, 24, 28, 31
Lyryx HW: 3.7.1-3.7.4
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5.3 Derivatives and Rates of Change

Recall that the tangent one to a curve is a line that touches the curve having the same slope as the curve at
the point of contact and a secant line is a line between two points of a curve. As the two points on the secant
line approach one another, we get closer to the tangent line to the curve at a single point. Recall this Geogebra
demonstration that explores Secant and Tangent lines. We are interested in finding the slope of the tangent line
at a point P (a, f(a)) of a curve with equation y = f(x).

Definition

The tangent line to a curve y = f(x) at the point P (a, f(a)) is the line through P with slope

m = lim
x→a

f(x)− f(a)

x− a

as long as this limit exists.
Another way of writing this definition is if we let h = x−a and so x = a+h. Then as x → a, h → 0, and we have

m = lim
h→0

f(a+ h)− f(a)

h

This is the precise definition of the derivative of f at x = a, denoted f ′(a).

Example

Find the derivative of f(x) = x2 − 8x+ 9 at a using the precise definition of a derivative. Video Solution

Recall that the point-slope form of the equation of a line through the point P (x0, y0) with slope m is y − y0 =
m(x− x0). Here we can write the equation of the tangent one to the curve y = f(x) at the point (a, f(a)) with
slope f ′(a) is

y − f(a) = f ′(a)(x− a)

Example

Find an equation of the tangent line to the parabola y = x2 − 8x+ 9 at the point (3,−6). Video Solution

5.4 The Derivative as a Function

We have looked at the derivative of a function f at a point a, now we will let a vary by replacing it by x. Then
f ′ is a new function called the derivative of f defined by

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

How does the graph of this new function f ′ compare to the graph of the original function f?
This activity (created in GeoGebra by Author Tim Brzezinski) allows you to move the tangent line along the
curve graphing its slope at each point. This produces the graph of f ′ by moving the tangent line along the curve
of f .

5.4.1 A Note about Notation

If y = f(x) is a differentiable function, we can write its derivative as f ′(x) or y′ or
dy

dx
or

d

dx
(f(x)).

If we are finding the derivative of f at a point x = a, we can write f ′(a) or
dy

dx

∣∣∣∣
x=a

.
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Harder Problem

Use the limit definition of the derivative to find g′(3), where g(x) =
1√
x+ 1

. Video Solution

5.4.2 Differentiability

Definition

A function f is differentiable at a if f ′(a) exists. It is differentiable on an open interval (a, b) if it is
differentiable at every number in that interval.

Differentiable and Continuous

If f is differentiable at a then f is also continuous at a. However, if f is continuous at a, it may or may not be
differentiable at a.

There are three ways for a function to fail to be differentiable at x = a: a corner/cusp, a discontinuity or a
vertical tangent at x = a.

Example

Graph the following functions and determine where they are (i) continuous (ii) differentiable. If there
are places where the function fails to be differentiable, determine whether it is due to a corner/cusp, a
discontinuity or a vertical tangent.

(a) h(x) =

{
0, x < 0

1, x > 1
(b) g(x) = (x− 1)2/3 (c) f(x) = |x− 2| (d) j(x) = lnx

Video Solution

Harder Problem

Consider the function f(x) =

{
8
√
2 + x− 10, x < 2

2|x− 5|, x ≥ 2
. Determine if f is differentiable at x = 2. Video

Solution

6 Week 6

6.1 Derivatives of Polynomials and Exponentials

We will use the limit definition of the derivative to come up with some simple differentiation rules that can be
applied to functions that we would like to differentiate quickly. In solving examples with derivatives, you may
use the rules for differentiation without proving them.

6.1.1 Simple Differentiation Rules

Constant Function

If f(x) = c, then f ′(x) = 0.

Power Functions

If f(x) = xn, where n is any real number, then f ′(x) = nxn−1.
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Constant Multiple Rule

If c is a constant and f is a differentiable function, then

d

dx
(cf(x)) = c

d

dx
(f(x))

Sum/Difference Rule

If f and g are both differentiable, then

d

dx
(f(x)± g(x)) =

d

dx
(f(x))± d

dx
(g(x))

6.1.2 Proofs of Simple Differentiation Rules

Here are the proofs of the simple rules for differentiation so you can see that all these rules come from the limit
definition of the derivative. You will not be responsible for memorizing or presenting proofs in this course.

Proof of Constant Rule

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

c− c

h
= lim

h→0

0

h
= 0

Proof of Power Rule

We will prove the Power Rule for n a positive integer only. We will prove this in general next week.
Here we use the Binomial Theorem which gives the expansion of

(x+ h)n = xn + nxn−1h+
n(n− 1)

2
xn−2h2 + . . .+ nxhn−1 + hn

where n is a positive integer.
Now suppose f(x) = xn. Then

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

(x+ h)n − xn

h

= lim
h→0

xn + nxn−1h+
n(n− 1)

2
xn−2h2 + . . .+ nxhn−1 + hn − xn

h

= lim
h→0

nxn−1h+
n(n− 1)

2
xn−2h2 + . . .+ nxhn−1 + hn

h
(the xn terms cancel out)

= lim
h→0

h
nxn−1 +

n(n− 1)

2
xn−2h+ . . .+ nxhn−2 + hn−1

h
(factoring out h)

= lim
h→0

[nxn−1 +
n(n− 1)

2
xn−2h+ . . .+ nxhn−2 + hn−1] (cancel the h ̸= 0)

= nxn−1

Proof of Constant Multiple Rule:

Let g(x) = cf(x).

g′(x) = lim
h→0

g(x+ h)− g(x)

h
= lim

h→0

cf(x+ h)− cf(x)

h

= lim
h→0

c
f(x+ h)− f(x)

h
= c lim

h→0

f(x+ h)− f(x)

h

= cf ′(x)
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Proof of Sum/Difference Rule:

We will prove the difference rule. The proof for the sum rule is similar.
Let F (x) = f(x)− g(x). Then

F ′(x) = lim
h→0

F (x+ h)− F (x)

h

= lim
h→0

f(x+ h)− g(x+ h)− (f(x)− g(x))

h

= lim
h→0

f(x+ h)− f(x)− (g(x+ h)− g(x))

h

= lim
h→0

f(x+ h)− f(x)

h
− lim

h→0

g(x+ h)− g(x)

h

= f ′(x)− g′(x)

Example

Find the points on the curve y = x4 − 6x2 + 4 where the tangent line is horizontal.

Solution

Using the 4 rules above, we have y′ = 4x3 − 6(2x) + 0
Tangent line is horizontal when y′ = 0 so 4x3 − 12x = 0 or 4x(x2 − 3) = 0 or 4x(x−

√
3)(x+

√
3) = 0.

This is true when x = 0 or x = ±
√
3.

When x = 0, y = 4. When x = ±
√
3, y = −5.

Points are (0, 4), (
√
3,−5), (−

√
3,−5).

6.2 Higher Derivatives

If f is a differentiable function, then its derivative f ′ is also a function so f ′ may have a derivative of its own,
denoted (f ′)′ = f ′′. This new function is called the second derivative of f . We could also express the second

derivative of y = f(x) as
d

dx

(
dy

dx

)
=

d2y

dx2
. This process can be continued. That is, the third derivative of f is

the derivative of the second derivative and so on. In general, the nth derivative of f is denoted f (n) for n ≥ 4

and we write f (n)(x) =
dny

dxn
.

Example

In the previous example, y = x4 − 6x2 + 4 and y′ = 4x3 − 12x. We can also find higher derivatives:
y′′ = 12x2 − 12, y′′′ = 24x and y(4) = 24. Note that y(n) = 0 for n ≥ 5.

6.3 The Product and Quotient Rules

Even though the derivative of a sum or difference is equal to the sum or difference of the derivatives, the same is
NOT true for derivatives of products and quotients.

6.3.1 Product Rule

If f and g are differentiable functions, then

d

dx
[f(x)g(x)] = f(x)

d

dx
(g(x)) + g(x)

d

dx
(f(x))
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6.3.2 Quotient Rule

If f and g are differentiable functions, then

d

dx

[
f(x)

g(x)

]
=

g(x)
d

dx
[f(x)]− f(x)

d

dx
[g(x)]

[g(x)]
2

6.3.3 Proofs of Product and Quotient Rules

Proof of Product Rule:

Let F (x) = f(x)g(x). Then,

F ′(x) = lim
h→0

F (x+ h)− F (x)

h

= lim
h→0

f(x+ h)g(x+ h)− f(x)g(x)

h

Next we will add and subtract f(x)g(x+ h) so that we can regroup and factor in the next step.

= lim
h→0

f(x+ h)g(x+ h)− f(x)g(x) + f(x)g(x+ h)− f(x)g(x+ h)

h

= lim
h→0

g(x+ h)[f(x+ h)− f(x)] + f(x)[g(x+ h)− g(x)]

h

= lim
h→0

g(x+ h)[f(x+ h)− f(x)]

h
+ lim

h→0

f(x)[g(x+ h)− g(x)]

h

= lim
h→0

g(x+ h) lim
h→0

f(x+ h)− f(x)

h
+ f(x) lim

h→0

g(x+ h)− g(x)

h

= g(x)f ′(x) + f(x)g′(x)

Proof of Quotient Rule

Let F (x) =
f(x)

g(x)
. We want to find F ′(x). Instead of applying the definition of the derivative to the quotient

directly, we will cross multiply to obtain f(x) = F (x)g(x). Now we can use the Product Rule instead.

f ′(x) = F (x)g′(x) + F ′(x)g(x)

Solving for F ′(x), we get

F ′(x) =
f ′(x)− F (x)g′(x)

g(x)

Substituting in F (x) =
f(x)

g(x)
, we have

F ′(x) =

f ′(x)− f(x)

g(x)
g′(x)

g(x)

Finally we multiply by
g(x)

g(x)
to clear the fraction in the numerator:

F ′(x) =
f ′(x)g(x)− f(x)g′(x)

(g(x))2
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Examples

Find
dy

dx
if y =

4x2 + 3

2x− 1
.

dy

dx
=

(2x− 1)(8x)− (4x2 + 3)(2)

(2x− 1)2

=
16x2 − 8x− 8x2 − 6

(2x− 1)2

=
2(4x2 − 4x− 3)

(2x− 1)2

=
2(2x+ 1)(2x− 3)

(2x− 1)2

Example: Show that
d

dx

(
xe + 5x2

x
√
x

)
=

(2e− 3)xe−2 + 5

2
√
x

.

First we will write the denominator as a single power of x: x
√
x = x(x

1
2 ) = x

3
2

d

dx

(
xe + 5x2

x
3
2

)
=

x
3
2 (exe−1 + 10x)− (xe + 5x2) 32x

1
2

x3

=
exe+ 1

2 + 10x
5
2 − 3

2x
e+ 1

2 − 15
2 x

5
2

x3

=
(e− 3

2 )x
e+ 1

2 + (10− 15
2 )x

5
2

x3

=
(2e− 3)xe+ 1

2 + 5x
5
2

2x3

=
x

5
2 ((2e− 3)xe−2 + 5)

2x3

=
(2e− 3)xe−2 + 5

2x
1
2

6.3.4 Derivatives of Exponential Functions

We will attempt to differentiate f(x) = ax using the precise definition of a limit.

f ′(x) = lim
h→0

ax+h − ax

h

= lim
h→0

axah − ax

h

= lim
h→0

ax(ah − 1)

h

= lim
h→0

ax lim
h→0

ah − 1

h

= ax lim
h→0

ah − 1

h

If we try different bases, we note that for a between 2 and 3, this limit is close to 1. The value of a that makes
this limit exactly 1 is an irrational number around 2.71828.... We denote it by e and conclude that it is the base
for which the exponential function has derivative equal to itself:

d

dx
ex = ex
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We will come back to differentiating the general exponential function y = ax for any base after we learn the Chain
Rule.

Example

If f(x) = (3ex + 2)(3x2 + 2x), find f ′(1). Video Solution

6.4 Derivatives of Trigonometric Functions

If f(x) = sinx, what is f ′(x)? We will use the definition of a derivative.

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

sin(x+ h)− sinx

h

= lim
h→0

sinx cosh+ cosx sinh− sinx

h

= lim
h→0

[
sinx

(
cosh− 1

h

)
+ cosx

(
sinh

h

)]
Note:

lim
θ→0

cos θ − 1

θ
= 0 and lim

θ→0

sin θ

θ
= 1

Putting this information back into the equation above, we have

f ′(x) = sinx(0) + cosx(1)

= cosx

The two special limits we noted above can be used to help us evaluate related limits.

Harder Problem

Find lim
h→0

1− cos(5h)

sin(4h)
. Video Solution

One can find the derivatives of the rest of the trig functions using the limit definition of the derivative. We
will list them all here.

d

dx
sinx = cosx

d

dx
cscx = − cscx cotx

d

dx
cosx = − sinx

d

dx
secx = secx tanx

d

dx
tanx = sec2 x

d

dx
cotx = − csc2 x

Example

If y =
3 cosx

3x− 2 sinx
, find

dy

dx

∣∣∣∣
x=π

3

. Video Solution
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6.5 Chain Rule

Suppose we want to differentiate F (x) =
√
x2 + 1.

Note that F (x) is equivalent to a composite function f ◦ g(x), where f(u) =
√
u and g(x) = x2 + 1.

The derivative of F (x) = f(g(x)) is F ′(x) = f ′(g(x))g′(x).

If we let y = f(u) and u = g(x), then we can write this as
dy

dx
=

dy

du

du

dx
.

Examples

If y = sin(cscx− tan(
√
π + 2x)), find y′. Solution:

y′ = cos(cscx− tan(
√
π + 2x))

d

dx
(cscx− tan(

√
π + 2x))

= cos(cscx− tan(
√
π + 2x))

(
− cscx cotx− sec2(

√
π + 2x)

d

dx
(
√
π + 2x)

)
= cos(cscx− tan(

√
π + 2x))

(
− cscx cotx− sec2(

√
π + 2x)

1

2
(π + 2x)−1/2 d

dx
(π + 2x)

)
= cos(cscx− tan(

√
π + 2x))

(
− cscx cotx− sec2(

√
π + 2x)

1

2
(π + 2x)−1/2(2)

)

6.5.1 Derivative of ax

Recall that
d

dx
ex = ex. What if we have a different base a > 0?

We can write a = eln a so then ax =
(
eln a

)x
= e(ln a)x.

We differentiate using the Chain Rule as follows:

d

dx
ax =

d

dx
e(ln a)x = e(ln a)x d

dx
(ln a)x

= e(ln a)x(ln a) = ax ln a

Example

If f(x) = 2sin(πx), find f ′(x) and f ′′(x).

Solution

f ′(x) = 2sin(πx) ln 2
d

dx
(sin(πx))

= 2sin(πx) ln 2 cos(πx)
d

dx
(πx)

= 2sin(πx) ln 2 cos(πx)(π)

Stewart HW: 2.7#5, 13, 17, 31, 33, 35, 59 2.8 #5,7,11,25,29 3.1 # 7, 9, 15, 23, 26-32, 3.2#1, 2, 15,
17, 19, 21, 27, 29, 54, 3.3 #1-15(odd), 23, 39, 41, 43, 3.4 #1, 7, 11, 21, 25, 37, 47
Lyryx HW: 4.1.4, 4.1.6, 4.2.1(b,c), 4.2.4, 4.2.5, 4.3.1, 4.3.2, 4.3.3, 4.3.4, 4.4.1, 4.4.2, 4.5.all, 4.6.all

6.6 Implicit Differentiation

So far we have looked at differentiating functions, where one variable can be expressed in terms of another as
in y = f(x) or x = g(y). We would like to be able to differentiate non-functions as well as functions that are
defined implicitly by a relationship between x and y. It is possible to do this without having to solve for y as
an explicit function of x or x as an explicit function of y. We can accomplish this using the method of implicit
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differentiation. If we would like to find
dy

dx
, we simply differentiate both sides of the equation with respect to x

and then solve the equation for
dy

dx
. We must remember to use the chain rule when we see a function of y since

this is a function of y which is in turn a function of x (composite function).

Examples

If x3 + y3 = 6xy, find
d2y

dx2
(or y′′).

Solution

First we differentiate both sides with respect to x:

3x2 + 3y2y′ = 6y + 6xy′ (1)

y′(3y2 − 6x) = 6y − 3x2

y′ =
6y − 3x2

3y2 − 6x
=

2y − x2

y2 − 2x

To find the second derivative (which we will write as y′′ here), we will go back to equation (1) above and
differentiate implicitly once again:

6x+ 6yy′y′ + 3y2y′′ = 6y′ + 6y′ + 6xy′′

y′′(3y2 − 6x) = 12y′ − 6x− 6y(y′)2

y′′ =
12y′ − 6x− 6y(y′)2

3y2 − 6x
=

4y′ − 2x− 2y(y′)2

y2 − 2x

We will sub our expression for the first derivative in to this equation and clear the denominator:

y′′ =

4

(
2y − x2

y2 − 2x

)
− 2x− 2y

(
2y − x2

y2 − 2x

)2

y2 − 2x
× (y2 − 2x)2

(y2 − 2x)2

=
4(2y − x2)(y2 − 2x))− 2x(y4 − 4xy2 + 4x2)− 2y(4y2 − 4x2y + x4)

(y2 − 2x)3

=
8y3 − 16xy − 4x2y2 + 8x3 − 2xy4 + 8x2y2 − 8x3 − 8y3 + 8x2y2 − 2x4y

(y2 − 2x)3

=
−16xy + 12x2y2 − 2xy(y3 + x3)

(y2 − 2x)3

=
−16xy + 12x2y2 − 2xy(6xy)

(y2 − 2x)3

=
−16xy

(y2 − 2x)3
=

16xy

(2x− y2)3

6.6.1 Derivatives of Inverse Trig Functions

We can use implicit differentiation to find the derivatives of the inverse trig functions. Recall the inverse sine
function is sin−1 with domain [−1, 1] and range [−π/2, π/2] defined by sin−1 x = y ⇐⇒ sin y = x. We will
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differentiate both sides of sin y = x implicitly with respect to x:

cos y
dy

dx
= 1

dy

dx
=

1

cos y

Now since −π

2
≤ y ≤ π

2
, we have cos y ≥ 0 and using the trig identity cos2 y = 1 − sin2 y, we can conclude

cos y =
√

1− sin2 y. Substituting this into the equation for
dy

dx
above we have

dy

dx
=

1√
1− sin2 y

=
1√

1− x2

d

dx
sin−1 x =

1√
1− x2

Recall that the inverse cosine function is cos−1 with domain [−1, 1] and range [0, π] defined by cos−1 x = y ⇐⇒
cos y = x. Differentiate both sides of cos y = x implicitly with respect to x:

− sin y
dy

dx
= 1

dy

dx
=

1

− sin y

Now since 0 ≤ y ≤ π, we have sin y ≥ 0 and using the trig identity sin2 y = 1 − cos2 y, we can conclude

sin y =
√

1− cos2 y. Substituting this into the equation for
dy

dx
above we have

dy

dx
=

1

−
√
1− cos2 y

=
1

−
√
1− x2

d

dx
cos−1 x =

−1√
1− x2

Recall that the inverse tangent function is tan−1 with domain [−∞,∞] and range (−π

2
,
π

2
) defined by tan−1 x =

y ⇐⇒ tan y = x. Differentiate both sides of tan y = x implicitly with respect to x:

sec2 y
dy

dx
= 1

dy

dx
=

1

sec2 y

Using the trig identity sec2 y = 1 + tan2 y, we substitute this into the equation for
dy

dx
to obtain

dy

dx
=

1

1 + tan2 y

=
1

1 + x2

d

dx
tan−1 x =

1

1 + x2
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The remaining inverse trig functions can be differentiated in the same way and the results are summarized
below.

Function Domain Range Derivative

y = csc−1 x ⇐⇒ x = csc y (−∞,−1] ∪ [1,∞)
(
0,

π

2

]
∪
(
π,

3π

2

]
dy

dx
=

−1

x
√
x2 − 1

y = sec−1 x ⇐⇒ x = sec y (−∞,−1] ∪ [1,∞)
[
0,

π

2

)
∪
[
π,

3π

2

)
dy

dx
=

1

x
√
x2 − 1

y = cot−1 x ⇐⇒ x = cot y (−∞,∞) (0, π)
dy

dx
=

−1

1 + x2

Examples

Differentiate the function f(x) = cos(sin−1(x2 + 3x)). Video Solution

Harder Problem

Find
dy

dx
if 2y = cos−1(ex

2

tanx − sin(x3)). Hint: Use the inverse to rewrite the given relation and then

use implicit differentiation. Express your final answer in terms of x only. Video Solution

6.6.2 Derivatives of Logarithmic Functions

We can use implicit differentiation to find the derivative of logarithmic functions.
Suppose y = loga x. Rewrite this as an exponential ay = x and differentiate both sides implicitly with respect to
x.

d

dx
ay =

d

dx
x

ay ln a
dy

dx
= 1

dy

dx
=

1

ay ln a

=
1

x ln a

d

dx
loga x =

1

x ln a

Note that when a = e, we have
d

dx
lnx =

1

x
.

In fact, we have
d

dx
ln |x| = 1

x
, for x ̸= 0. This is because

d

dx
ln |x| =

{
d
dx (lnx) x > 0
d
dx (ln(−x)) x > 0

=

{
1
x x > 0
1
−x (−1) x < 0

=
1

x
, x ̸= 0

Example

Simplify before differentiating: f(x) = ln

(
3− 2x√
3x2 + 5

)
. Video Solution
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Make sure you can also distinguish between constants and variables when differentiating exponential functions.
If a and b are constants,

d

dx
(ab) = 0

d

dx
[ag(x)] = ag(x)(ln a)g′(x)

d

dx
(f(x))b = b[f(x)]b−1f ′(x)

Example

Find the derivatives of the following functions: (a) f(x) = 4
√
1−x2

(b) g(x) = (
√
1− x2)4. Video Solution

Interesting Limit

lim
x→0

(1 + x)1/x = lim
n→∞

(
1 +

1

n

)n

= e

Proof:

Let f(x) = lnx. Then f ′(x) =
1

x
and f ′(1) = 1.

Also,

f ′(1) = lim
h→0

f(1 + h)− f(1)

h

= lim
x→0

f(1 + x)− f(1)

x

= lim
x→0

ln(1 + x)− ln 1

x

= lim
x→0

1

x
ln(1 + x)

= lim
x→0

ln(1 + x)1/x

= ln[ lim
x→0

(1 + x)1/x]

= 1

But ln e = 1, so lim
x→0

(1 + x)1/x = e.

If we let n =
1

x
, then as x → 0+, n → ∞ and this limit can be rewritten as lim

n→∞

(
1 +

1

n

)n

= e.

Harder Problem

Evaluate lim
x→∞

ln

[(
1 +

2

x

)5x
]
by making an appropriate substitution. Video Solution

7 Week 7

7.1 Related Rates

The following strategy may be helpful in solving problems that ask you to compute the rate of change of a quantity
in terms of the rate of change of another quantity.

1. Draw a diagram if possible.

2. Assign variables to all quantities that are functions of time.
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3. Express the given information and the required rate in terms of derivatives.

4. Write an equation that relates the various quantities of the problem. You may be able to eliminate one
of the variables by substituting known relationship between the variables. (ie. a formula for equation of a
triangle, volume of cylinder, Pythagorean Theorem etc.)

5. Use the Chain Rule to differentiate both sides of the equation with respect to t.

6. Substitute the given information into the resulting equation and solve for the unknown rate.

Examples

A water tank has the shape of an inverted circular cone with base radius 2 m and height 4m. If water is being
pumped into the tank at a rate of 5m3/min and is begin pumped into the tank at a rate of 5m3/min, find the
rate at which the water level is rising when the water is 3m deep.

Solution

Let V (t) be the volume of water in the tank at time t.

Then
dV

dt
=Rate of water in - Rate of water out = 5m3/min−3m3/min= 2m3/min. Also V =

1

3
πr2h. We are

asked to find
dh

dt
when h = 3.

We can eliminate the variable r from our equation for V using similar triangles and the given radius and height

of the tank.
r

h
=

2

4
so r =

h

2
.

Substituting this into our equation for V we have V =
1

3
π(

h

2
)2h =

1

12
πh3.

Now we differentiate both sides with respect to t and then substitute in
dV

dt
= 2 and h = 3:

dV

dt
=

π

12
3h2 dh

dt

2 =
π

12
3(3)2

dh

dt
dh

dt
=

8

9π

7.2 Rates of Change

If s(t) = f(t) is the position function of a particle, then v =
ds

dt
represents the instantaneous velocity and

a =
d2s

dt2
= v′(t) is the particle’s acceleration at time t.

Example

The position of a particle is given by the equation s = f(t) = t3 − 6t2 +9t, where t is measured in seconds
and s in meters.

(a) Find the velocity after 4 s.

(b) When is the particle at rest?

(c) When is the particle moving forward?

(d) Find the total distance travelled by the particle during the first five seconds.

(e) When is the particle speeding up?

Graphs in GeoGebra
Video Solution
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7.3 Exponential Growth and Decay

The Number e

As we have learned, the most convenient base for the purpose of calculus is the value e ≈ 2.71828 since this is
the base for which the exponential function is equal to its rate of change. There are applications of an amount
growing or decaying exponentially such as population growth, radioactive decay and compound interest.

Suppose we have the function y = ekt.

Since
d

dt
et = et, then by the Chain Rule

d

dt
(ekt) = kekt, where k is a constant.

Now if y = ekt, then
dy

dt
= ky.

If we think of t as time and y as an amount of some quantity present at time t, we can interpret this equation as
the rate of change of an amount is proportional to the amount present. In general we will be solving problems
whose growth/decay can be described by the equation y = y0e

kt, where y0 is the initial amount present (at time
t = 0). The constant k will vary in each example and we will often have to use some given information to uncover
its value.

7.3.1 Radioactive Decay Problem

If m(t) is the mass of a radioactive substance remaining after time t, it has been found experimentally to satisfy
dm

dt
= km, where k < 0. The rate of decay can be determined by the half-life of the substance, which is the

amount of time it takes for any given amount to decay to half its size. As we have already seen, the solution to
this differential equation is m(t) = m0e

kt, where m0 is the initial amount.

Example

The half-life of 14C is 5730 years. Carbon 14 is an unstable element in the atmosphere that is ingested by
plants and animals. When an organism dies, 14C starts to decay to 12C. Suppose a piece of parchment is
found and has 90% the 14C content compared with paper today. What is the age of the artifact? Video
Solution

7.3.2 Newton’s Law of Cooling/Warming

The rate of cooling of an object is proportional to the temperature difference between the object and its surround-
ings. If we let T (t) be the temperature of the object at time t and let Ts be the temperature of the surroundings
(a constant). Then we have

dT

dt
= k(T (t)− Ts)

Note that k < 0. If T0 < Ts, then the object is warming up in its particular surroundings and if T0 > Ts, the
object is cooling down.

If we let y(t) = T (t) − Ts, note that y′(t) = T ′(t) − 0 (since Ts is a constant) so we have that y′(t) = T ′(t).
Then the equation

dT

dt
= k(T (t)− Ts)

y′(t) = ky(t)

As we have seen before, the solution to y′(t) = ky(t) is y(t) = y0e
kt.

In terms of T (t), we can write this as T (t)− Ts = (T (0)− Ts)e
kt or T (t) = Ts + (T0 − Ts)e

kt.
We can use this as our model in solving warming and cooling problems.

7.3.3 Cooling Example

A bottle of pop at room temperature of 72◦F is placed in a fridge where the temperature is 44◦F. After
half an hour, the pop has cooled to 61◦F. What is the temperature of the pop after another half hour and
how long will it take for it to cool to 50◦F? Video Solution
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7.3.4 Logistic Model for Population Growth Video Lesson

The equation
dP

dt
= kP is a simple model for population growth. In reality, due to limited resources and

environmental conditions, the population levels off eventually rather than continuing to increase exponentially
forever. If we let M denote the carrying capacity of a population (determined experimentally), then a more
realistic model is the Logistic Model

dP

dt
= kP

(
1− P

M

)
Notes:

• If P << M ,
P

M
→ 0, so

dP

dt
= kP .

• As P → M ,
dP

dt
→ 0.

• If P > M ,
dP

dt
< 0 and P → M+.

Stewart HW: 3.5 #5, 7, 9, 19, 27, 29, 49, 51, 57, 3.6 # 5, 13, 15, 19, 3.7 #1(a-f), 5, 7, 23, 3.8 #1,
5, 9, 3.9 #3, 5, 17, 21, 25
Lyryx HW: 4.7.1, 4.8.6, 4.8.7, 4.9.5, 4.9.6(a,c)

7.4 Linear Approximations and Differentials

Recall that f ′(a) is the slope of the tangent line to the curve y = f(x) at the point x = a, and so (a, f(a)) is a
point on the curve and on the tangent line.
Therefore, f(a) can be calculated from the equation of the curve f(x) or the equation of the tangent line at a.
We will call the equation of the tangent line L(x) and note that the equation of L(x) is
L(x) = f(a) + f ′(a)(x− a). Clearly f(a) satisfies this equation.
Now, suppose we would like to find an approximation for f(x) when x is near a. If we have a complicated function
for our curve f , it will be easier to approximate f(x) from the equation of the tangent line L(x).
We are approximating

f(x) ≈ L(x) = f ′(a)(x− a) + f(a)

Approximating f(x) by L(x) is called the linear approximation of f at a and L(x) is called the linearization
of f at a. This activity (created with GeoGebra, by Tim Brzezinski) shows the linearization of a function.

Example

Find the linearization of f(x) =
√
x+ 3 at a = 1 and use it to approximate the numbers

√
3.98 and

√
4.05.

Video Solution

7.4.1 Differentials

We will examine the Leipniz notation
dy

dx
. We can think of dy and dx as variables making up the fraction

dy

dx
.

To express this, we rewrite f ′(x) =
dy

dx
as

dy = f ′(x)dx

We call dy the differential of y. It is a dependent variable, depending on the values of x and the differential dx.
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7.4.2 Geometric Meaning of dy and dx

Let P = (x, f(x)) and L(x) be the tangent line at P .
Suppose we introduce a small change in x, ∆x = dx.
The corresponding change in y is ∆y = f(x+ dx)− f(x).
If f(x+ dx) is difficult to evaluate, we can approximate ∆y by dy = f ′(x)dx.
Note that ∆y is the amount the curve rises/falls when x changes by ∆x = dx and dy is the amount the tangent
line rises or falls when x changes by dx = ∆x.
When dx is very small, the approximation ∆y ≈ dy is fairly accurate.
In terms of differentials, we could rewrite our linear approximation for f(x) near a as f(x) ≈ L(x) = f(a) + dy
or f(a+ dx) ≈ L(a+ dx) = f(a) + dy.

Example

Compare the values of dy and ∆y for y =
16

x
, taking ∆x = 0.1 = dx, for the following values of x:

x 4 2 1 0.5
∆y
dy

Video Solution

We can also think of the differential dx = ∆x as an error in measurement and ∆y as the associated error in a
computed formula y = f(x+ dx). We can approximate the associated error ∆y by the differential dy.

The relative error in y = f(x+ dx) can be estimated by
∆y

y
≈ dy

y
, where dx is a measurement error, ∆y is the

error in the calculated value of y, and dy = f ′(x)dx.
The percentage error is the relative error × 100%.

Example

A window has the shape of a square topped by a semicircle. The width of the window is measured to be
80 cm, accurate to within 0.2cm. Use differentials to estimate the maximum error and the percent error
in the calculated surface area of the window. Video Solution

8 Week 8

8.1 Newton’s Method

There are many mathematical equations that are impossible to solve using algebraic techniques.
For example,

cosx = x

If we let f(x) = cosx − x, then we are really interested in finding the roots of this equation or the x-intercepts.
The way your calculator or computer approximates solutions to complicated mathematical equations involves the
use of Newton’s Method. The idea is to use the x-intercept of the tangent to the curve as an approximation
for the x-intercept of the curve.
Suppose we want to find a root r of f(x). That is, a value for which f(r) = 0. We start by guessing a value x1.
Consider the tangent line L to the curve y = f(x) at the point (x1, f(x1)) and look at the x-intercept of L, which
we will call x2.
Note that

y − f(x1) = f ′(x1)(x− x1)

Since the x-intercept of L is x2, if we set y = 0 we have

0− f(x1) = f ′(x1)(x2 − x1)
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As long as f ′(x1) ̸= 0, we can solve for x2:

x2 = x1 −
f(x1)

f ′(x1)

This is our second approximation for r.
We can improve upon this approximation if we repeat the process. This time we will consider the tangent line to

the curve at the point (x2, f(x2)). This gives us a third approximation x3 = x2 −
f(x2)

f ′(x2))
for r.

In general, if the nth approximation for r is xn and if f ′(xn) ̸= 0, the next approximation is given by

xn+1 = xn − f(xn)

f ′(xn)

Example:

Use Newton’s Method to find an approximation accurate to 2 decimals for the root of f(x) = cos 2x−3x+4.
(Hint: Sketch the graph of y = cos 2x and y = 3x−4 to obtain an initial guess for the root.) Video Solution

8.2 Indeterminate Forms and L’Hospital’s Rule

Suppose we would like to evaluate lim
x→1

lnx

x− 1
. We cannot use the quotient law since the denominator is approaching

0.

In general, if we have a limit of the form lim
x→a

f(x)

g(x)
, where both f(x) → 0 and g(x) → 0 as x → a, then this limit

may or may not exist and is called an indeterminate form of type
0

0
.

Some limits of this form, we can handle by simplifying first:

lim
x→1

x2 − x

x2 − 1

However, we cannot use this approach on lim
x→1

lnx

x− 1
, although this limit does in fact exist.

Another limit which is not obvious is lim
x→∞

lnx

x− 1
. Here, both the numerator and denominator approach infinity

as x → ∞. In general, if we have a limit of the form lim
x→a

f(x)

g(x)
, where both f(x) → ∞ and g(x) → ∞ as x → a,

then this limit may or may not exist and is called an indeterminate form of type
∞
∞

.

We have also seen this type of limit before, which we have handled by dividing the numerator and denominator

by the highest power of x in the denominator. This will not work in evaluating lim
x→∞

lnx

x− 1

8.2.1 L’Hospital’s Rule

Suppose f and g are differentiable and g′(x) ̸= 0 near a (except possibly at a). Suppose that

lim
x→a

f(x) = 0 and lim
x→a

g(x) = 0

or

lim
x→a

f(x) = ±∞ and lim
x→a

g(x) = ±∞

(ie. We have an indeterminate form of type
0

0
or

∞
∞

).

Then

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)

Note:
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1. We must verify that we have an indeterminate form before using L’Hospital’s Rule.

2. L’Hospital’s Rule also applies to one-sided limits and infinite limits.

Examples

Evaluate the following limits:

(a) lim
x→1

lnx

x− 1
.

(b) lim
x→∞

ex

x2
.

(c) lim
x→π−

sinx

1− cosx
.

(d) lim
x→∞

x√
x2 + 1

Video Solution

We can also use L’Hospital’s Rule to verify the special limits lim
x→0

sinx

x
= 1 and lim

x→0

cosx− 1

x
= 0.

8.2.2 Indeterminate Products

If lim
x→a

f(x) = 0 and lim
x→a

g(x) = ±∞, then lim
x→a

f(x)g(x) is called an indeterminate form of type 0 · ∞. We

can deal with these limits by writing the product fg as a quotient

fg =
f

1/g
or fg =

g

1/f

This converts the given limit into an indeterminate form of type
0

0
or

∞
∞

so we can then use L’Hospital’s Rule.

Example

Determine lim
x→0+

3
√
x lnx. Video Solution

8.2.3 Indeterminate Differences

If lim
x→a

f(x) = ∞ and lim
x→a

g(x) = ∞, then lim
x→a

[f(x)−g(x)] is called an indeterminate form of type ∞−∞. We

can deal with these limits by converting the difference into a quotient (find a common denominator, rationalize

or factor) so we have an indeterminate form of type
0

0
or

∞
∞

.

8.2.4 Example

Evaluate the following limit lim
x→0+

(
1

x2
− 1

tanx

)
. Video Solution

Harder Problem

Evaluate the limit lim
x→0

sin−1 x− x

2(x− tanx)
. Video Solution
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Stewart HW: 4.8 # 7, 13, 3.10 #1, 5 4.4 # 9, 15, 19, 27, 43, 49, 63
Lyryx HW: 5.4.1-5.4.7, 5.4.14, 5.5.1-5.5.20

9 Week 9

9.1 Maximum and Minimum Values

One use of derivatives is to answer questions such as:

• What shape of a can minimizes the cost of manufacturing?

• What is the maximum acceleration of a space shuttle?

• What radius of a contracted windpipe expels air most rapidly during a cough?

• What angle should blood vessels branch to minimize the energy expended by the heart pumping blood?

Definitions:

A function f has a local maximum at x = M if there is an interval I containing M on which f(M) ≥ f(x) for
all x in I. The local maximum value is f(M). A function f has an absolute/global maximum at x = M
if f(M) ≥ f(x) for all x in the domain of f .

A function f has a local minimum at x = m if there is an interval I containing m on which f(m) ≤ f(x)
for all x in I. The local minimum value if f(m). A function f has an absolute/global minimum at x = m
if f(m) ≤ f(x) for all x in the domain of f .

We call values that are either a maximum or minimum, extreme values or extrema. Local extrema are also
called relative extrema since they are the largest or smallest when compared to nearby points. Absolute extrema
are the very highest and very lowest points of the entire graph, not just over a small region.

9.1.1 Extreme Value Theorem

If f is continuous on a closed interval [a, b], then f attains an absolute/global maximum value f(M) and an
absolute/global minimum value f(m) at some numbers M and m in [a, b].

Definition:

A critical number of a function f is a number c in the domain of f such that either f ′(c) = 0 or f ′(c) does not
exist.

Example:

Find the critical numbers of f(x) =
lnx

x2
. Video Solution

9.1.2 Fermat’s Theorem

If f has a local maximum or minimum at c then c is a critical number of f .
Fermat’s Theorem and the Extreme Value Theorem tells us that global extrema must occur at critical values

or at endpoints of a closed interval.

9.1.3 Closed Interval Method

To find the absolute maximum and minimum values of a continuous function f on a closed interval [a, b]:

1. Find the values of f at the critical numbers of f in (a, b).

2. Find the values of f at the endpoints of the interval.
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3. The largest of the values from Steps 1 and 2 is the absolute maximum value; the smallest of these values is
the absolute minimum value.

Example:

Find the absolute maximum and absolute minimum values of f(x) = (sinx)2 − cos(2x) on
[
0, 3π

4

]
. Video

Solution

9.2 Derivatives and the Shape of a Graph

9.2.1 What does f ′ say about f?

Recall that the derivative tells us the slope of the curve. For the parts of the graph where the slope is positive,
the curve is moving up and to the right. When the slope is negative, the curve is moving down and to the right.
Try dragging the tangent line along the curve in this activity (Created with GeoGebra by Author Ken Schwartz)
to see the slope of the curve at various points.

9.2.2 Increasing/Decreasing Test

• If f ′(x) > 0 on an interval, then f is increasing on that interval.

• If f ′(x) < 0 on an interval, then f is decreasing on that interval.

Recall: If f has a local maximum/minimum at c then c is a critical number. We could not say: If c is a critical
number, then it is a local maximum/minimum. We also need the function to change from increasing to decreasing
at c. This is described in the following test.

9.2.3 First Derivative Test

Suppose c is a critical number of a continuous function f :

• If f ′ changes from positive to negative at c, then f has a local maximum at c.

• If f ′ changes from negative to positive at c, then f has a local minimum at c.

• If f does not change sign at c, then f has no local maximum or minimum at c.

Example

Find the local extrema and intervals of increase and decrease for the function f(x) = 5x2/3−2x5/3. Video
Solution

9.2.4 What does f ′′ say about f?

Take another look at the GeoGebra activity and note the intervals where the tangent line lies above or below the
curve.
When the curve lies above its tangent lines, the curve is said to be concave up.
When the curve lies below its tangent lines, the curve is said to be concave down.

Definition:

If the graph of f lies above all of its tangent lines on an interval I, then it is called concave upward on I. If
the graph of f lies below all of its tangent lines on I, it is called concave downward on I.
In the first diagram above, the slopes of the tangent lines increase as we move from left to right. This means f ′

is increasing and so f ′′ > 0.
In the second diagram, the slopes of the tangents lines decrease as we move from left to right. This means f ′ is
decreasing and so f ′′ < 0.
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9.2.5 Concavity Test

• If f ′′(x) > 0 for all x ∈ I, then the graph of f is concave upward on I.

• If f ′′(x) < 0 for all x ∈ I, then the graph of f is concave downward on I.

Definition:

A point P on a curve y = f(x) is called an inflection point if f is continuous there, and the curve changes from
concave up to concave down or concave down to concave up at P .
Note: There is a point of inflection at any point where the second derivative changes sign. Thus, we should look
for possible inflection points where f ′′(x) = 0 or f ′′(x) does not exist.

Example

For the function f(x) = 5x2/3 − 2x5/3, find the intervals of concavity and the inflection points. Video
Solution

9.2.6 The Second Derivative Test

We can also use the second derivative to look for local maximum and minimum values. Suppose f ′′ is continuous
near c:

• If f ′(c) = 0 and f ′′(c) > 0, then f has a local minimum at c.

• If f ′(c) = 0 and f ′′(c) < 0, then f has a local maximum at c.

• If f ′(c) = 0 and f ′′(c) = 0, then this test FAILS.

Harder Problem

Sketch a possible graph of a function f that satisfies the following:

• f ′(1) = f ′(−1) = 0

• f ′(x) < 0 if |x| < 1

• f ′(x) > 0 if 1 < |x| < 2

• f ′(x) = −1 if |x| > 2

• f ′′(x) < 0 if −2 < x < 0, f ′′(x) > 0 if 0 < x < 2 and f ′′(x) = 0 at x = 0.

Video Solution

9.3 Guidelines for Sketching a Curve

The following steps will be useful information to help you sketch the graph of f(x).

1. Domain: Determine the set of values x for which f(x) is defined.

2. Intercepts: To obtain the y-intercept(s), set x = 0 and solve for y.
To obtain the x-intercept(s), set f(x) = 0 and solve for x.

3. Symmetry:

(a) If f(−x) = f(x) for all x in the domain of f , then f is an even function and so the curve is symmetric
about the y-axis.

(b) If f(−x) = −f(x) for all x in the domain of f , then f is an odd function and so the curve is symmetric
about the origin.
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(c) If f(x+ p) = f(x) for all x in the domain of f , then f is a periodic function and the smallest value p
is called the period.

4. Asymptotes:

(a) If lim
x→±∞

f(x) = L then y = L is a horizontal asymptote of the curve. If lim
x→±∞

= ±∞, we do not have

a horizontal asymptote but this information will still help us sketch the graph.

(b) Look for places x = a where the curves is undefined (refer to domain found in step 1). If lim
x→a−

f(x) =

±∞ or lim
x→a+

f(x) = ±∞, then x = a is a vertical asymptote of the curve. Note that if the domain of f

is an open interval (a, b), (where f(a) and f(b) are undefined), then we should compute the one-sided
limits lim

x→a+
f(x) and lim

x→b−
f(x).

5. Local Maxima and Minima Find critical values c of f by finding where f ′(c) = 0 or f ′(c) does not exist.
Use the first derivative test to see if f ′ change from positive to negative (local max at c) or negative to
positive (local min at c). Alternatively, use the second derivative test by substituting any critical values c
into the second derivative. If f ′′(c) < 0, local max at c. If f ′′(c) > 0, local min at c.

6. Intervals of Increase and Decrease Compute f ′(x) and find the intervals on which f ′(x) > 0 (f is
increasing) and f ′(x) < 0 (f is decreasing).

7. Concavity and Points of Inflection Compute f ′′(x) and use the Concavity Test to determine when
f ′′(x) > 0 (f is concave up) and when f ′′(x) < 0 (f is concave down). To find points of inflection, look at
points P where f ′′(P ) = 0 or f ′′(P ) does not exist. If f ′′ changes sign at P , then P is a point of inflection.

8. Sketch the Curve Using the information found in steps 1-7, sketch your curve, labelling intercepts,
asymptotes, local and absolute extreme and points of inflection.

Example:

Use the guidelines above to sketch the curve of the function f(x) = 5x2/3 − 2x5/3. You may use the
information found in earlier examples. Check your final graph with this GeoGebra graph. Video Solution

Example:

Use the guidelines above to sketch the graph of g(x) =
x2 + x+ 1

x2
. Video Solution

9.4 Optimization Problems

We can use calculus to solve word problems associated with maximizing or minimizing certain quantities. These
are known as optimization problems. The following steps will be useful to solve this type of word problem.

1. Understand the problemWhat information is given and what are you begin asked to maximize/minimize?

2. Introduce notation Assign a variable to the quantity Q that is to be maximized or minimized and symbols
to any other unknown quantities.

3. Draw a diagram Include given and required quantities on the diagram.

4. Write an equation Express Q in terms of other variable(s).

5. Substitute given information If Q is expressed as a function of more than variable, use any given
information to eliminate other variables so that Q = f(x). State the domain of this function.
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6. Optimize Find the absolute maximum or minimum value of Q = f(x). Make sure you have verified that
this value is in fact a maximum or minimum. You may use the Closed Interval Method if the domain of f
is a closed interval. Otherwise, you will need to use the First Derivative Test for absolute extreme values
(below).

7. Answer the Question Make sure that your answer makes sense in the context of the problem and that
you have completely answered the question.

9.4.1 First Derivative Test for Absolute Extreme Values

Suppose c is a critical number of a continuous function f defined on an interval.

• If f ′(x) > 0 for all x < c and f ′(x) < 0 for all x > c, then f(c) is the absolute maximum value of f .

• If f ′(x) < 0 for all x < c and f ′(x) > 0 for all x > c, then f(c) is the absolute minimum value of f .

In other words, if c is the only local extrema on an interval, then it is also an absolute extrema.
Note that we could alternatively use the second derivative test to verify that we have a local extrema. Again,
if it is the only one on the given interval, it is also an absolute extrema.

Example:

If a resistor of R ohms is connected across a battery of E volts with internal resistance r ohms, then the

power (in watts) in the external resistor is P =
E2R

(R+ r)2
. If E and r are fixed but R varies, what is the

maximum value of the power? Video Solution
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Example:

What is the maximum possible area of a rectangle whose base lies on the x-axis, with its two upper
vertices on the graph of y = 4− x2?

Solution: Following the steps outlined above:

1. We are asked to maximize the area of a rectangle.

2. Let A be the area of rectangle. Let (x, y) be the coordinates of the upper vertex in the first quadrant.
Then the other upper vertex is (−x, y) due to the symmetry of the parabola about the y-axis.
The length of the base is x− (−x) = 2x and the height is y.
Note that 0 ≤ x ≤ 2 for the point (x, y) to be in the first quadrant.

3. A = 2xy, but y = 4− x2, so we can write A in terms of x only: A = 2x(4− x2) = 8x− 2x3.

4. Draw a diagram with base of rectangle on x-axis and upper vertices on parabola y = 4− x2.

5. We want to maximize A, so we find A′(x) to find the absolute maximum of A.

A′(x) = 8− 6x2 = 0 when x2 =
4

3
or x = ± 2√

3
.

Since x ∈ [0, 2] in the first quadrant, x =
2√
3
.

We will use the second derivative test to show this is a maximum.

A′′(x) = −12x and A′′
(

2√
3

)
< 0.

Therefore, x =
2√
3
is a local maximum. Since it is the only local maximum on [0.2], it is also the

absolute maximum.

6. To answer the question, the maximum area is

A

(
2√
3

)
= 8

(
2√
3

)
− 2

(
2√
3

)3

=
16√
3
− 16

3
√
3
=

(48− 16)
√
3

9
=

32
√
3

9

Stewart HW: 4.1 # 5, 9, 13, 27, 31, 35, 49, 53, and 57, 4.3 #1, 19, 27, 41, and 47 4.5 # 3, 11, 21,
25, 29, 35, 39, 45, 49, 51 4.7 #3, 7, 13, 17, 25, 35, 37, 45, 55
Lyryx HW: 5.2.1-5.2.9, 5.2.16-5.2.22, 5.6.1-5.6.7, 5.6.17-5.6.23, 5.6.35-5.6.41, 5.6.56-5.6.57, 5.6.65,
5.6.60, 5.6.77, 5.7.1-5.7.14, 5.7.23-5.7.25

10 Week 10

10.1 Antiderivatives

Definition:

A function F is called an antiderivative of f on an interval I if F ′(x) = f(x) for all x ∈ I.
If two functions have the same derivative, then they must differ by a constant. Thus, if F is any antiderivative

of f , then the general antiderivative of f is F (x) + C, where C is an arbitrary constant.

Examples

Find the general antiderivative of f(t) =
1

1 + t2
− 3

√
t
2
.

Video Solution
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10.1.1 Table of Common Antiderivatives

Function f(x) = F ′(x) General Antiderivative F (x)

1

x
ln |x|+ C

ex ex + C

ax
ax

ln a
+ C, a > 0

cosx sinx+ C
sinx − cosx+ C
sec2 x tanx+ C

secx tanx secx+ C
1√

1− x2
sin−1 x+ C

1

1 + x2
tan−1 x+ C

xn xn+1

n+ 1
+ C(n ̸= −1)

Sometimes, we need to antidifferentiate more than once to uncover the original function. Since each time we
take an antiderivative, there is an arbitrary constant introduced, we need multiple data points on the original
function or some of its derivatives in order to solve for these constants.

Example

Find the function f if f ′′′(x) =
π3

3
sin

(π
3
x
)
, f ′′(0) = 4− π2, f ′(0) = 0, f(0) =

21

2
.

Video Solution

Antidifferentiation is often used in describing the motion of an object moving along a straight path. Since the
velocity function v(t) is the derivative of the displacement function s(t) and acceleration a(t) is the derivative of
velocity, we can start with acceleration and a couple of pieces of information about displacement and velocity at
particular times to uncover the displacement function.

Example:

A stone is dropped from the upper observation deck of the CN Tower, 450 m above the ground.

(a) How long does it take the stone to hit the ground and with what velocity?

(b) If the stone is thrown downward with a speed of 5 m/s, how long does it take to reach the ground?

Video Solution

10.2 Sigma Notation

Suppose we want to add together the first 100 integers. We can write this using three dots to convey the idea of
continuing the pattern.

S = 1 + 2 + 3 + . . .+ 98 + 99 + 100

Another way to express the sum S is

S =

100∑
i=1

i

This is called sigma notation.
In general when we want to add together the numbers ai for i taking on the integer values m through n inclusive,
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we express this as

n∑
i=m

ai = am + am+1 + am+2 + . . .+ an

We need to recognize the description of ai in our sum. The subscript i just means we want a formula in terms of
i. (Another way of saying ai would be f(i).)
Suppose we want to represent 32 + 42 + 52 + . . .+ 92 using summation notation.
We recognize that we are adding together squares of numbers between 3 and 9.

So m = 3, n = 9 and ai = i2, and we have 32 + 42 + 52 + . . .+ 92 =

9∑
i=3

i2.

Check by substituting values for i starting at 3 and going all the way up to 9.

Example:

Write the sum
3

7
+

4

8
+

5

9
+

6

10
+ . . .+

23

27
using sigma notation. Video Solution

Properties of Summations

1.

n∑
i=m

cai = c

n∑
i=m

ai

2.

n∑
i=m

(ai + bi) =

n∑
i=m

ai +

n∑
i=m

bi

3.

n∑
i=1

c = cn. In particular,

n∑
i=1

1 = n

The following three formulas will be useful in evaluating sums.

n∑
i=1

i =
n(n+ 1)

2

n∑
i=1

i2 =
n(n+ 1)(2n+ 1)

6

n∑
i=1

i3 =
n2(n+ 1)2

4

We will demonstrate how to obtain the first formula.
We will define the sum S as follows:

S = 1 + 2 + 3 + . . .+ (n− 1) + n

Writing this another way, we have

S = n+ (n− 1) + . . .+ 3 + 2 + 1

Adding the two equations together, we have

2S = (n+ 1) + (n+ 1) + . . .+ (n+ 1) + (n+ 1) + (n+ 1)

2S = n(n+ 1)

S =
n(n+ 1)

2
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Example:

Find the value of the sum

6∑
i=3

i(i+ 2). Video Solution

Harder Problem

Evaluate the limit at infinity lim
n→∞

n∑
i=1

2

n

[(
2i

n

)3

+ 5

(
2i

n

)]
. Video Solution

10.3 Areas and Distances

10.3.1 The Area Problem

In this section, we will solve the problem of how to find the area of the region S that lies below the continuous
function y = f(x) between x = a and x = b.

It is easy to find the area of objects with straight edges but it is more difficult when a shape has curved edges.
We will divide the area into strips of equal width and then approximate the area of each strip by a rectangle and
finally take the limit of these areas as we increase the number of rectangles.

Estimate Area Using Rectangles

Estimate the area under the parabola y = x2 from 0 to 1 using 4 rectangles of equal width.

1
4

1
2

3
4

1

We will divide S into 4 strips S1, S2, S3, S4 of width
1

4
.

We can approximate each strip by a rectangle whose base
is the same as the base of the strip and whose height is the
same as the height of the right edge of the strip.
That is, the heights of these rectangles are the values of
the function f(x) = x2 at the right endpoints of the subin-
tervals:

[
0, 1

4

]
,
[
1
4 ,

1
2

]
,
[
1
2 ,

3
4

]
,
[
3
4 , 1

]
.

1
4

1
2

3
4

1

Each rectangle has width 1
4 and the heights are:

(
1
4

)2
,(

1
2

)2
,
(
3
4

)2
, 12. If we let R4 denote the sum of the areas of

the rectangles, we have

R4 =
1

4

(
1

4

)2

+
1

4

(
1

2

)2

+
1

4

(
3

4

)2

+
1

4
(1)2 =

15

32
≈ 0.46875

Note that the area of S, AS is less than R4.

Instead of using the larger rectangles above, we could use the smaller rectangles whose heights are the values of
f at the left endpoints of the subintervals. The sum of these approximating rectangles is

L4 =
1

4
(0)2 +

1

4

(
1

4

)2

+
1

4

(
1

2

)2

+
1

4

(
3

4

)2

=
7

32
≈ 0.21875

Note that L4 < AS < R4 or 0.21875 < AS < 0.46875.
We can obtain better estimates for AS by increasing the number of strips.
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n Ln Rn

10 0.30875 0.35875
50 0.3234 0.3434
100 0.32835 0.33835
1000 0.3328335 0.3338335

From these values it looks as if Rn and Ln are approaching 1
3 as n increases. We will verify this observation once

we find an expression for the area under a curve in general.

10.3.2 Riemann Sums

In general, if we want to find the area S under a curve y = f(x), we start dividing S into n strips S1, S2, . . . , Sn

of equal width.

The width of the interval [a, b] is b− a and the width of each strip is ∆x =
b− a

n
.

These strips divide the interval [a, b] into n subintervals [x0, x1], [x1, x2], . . . , [xn−1, xn], where x0 = a, xn = b and
xi = a+ i∆x.

a = x0 x1 x2 x3
. . . xn−1 xn = b

If we approximate the areas Si by rectangles using

(a) right endpoints, then the area of each rectangle i is ∆xf(xi) and

(b) using left endpoints, then the area of each rectangle i is ∆xf(xi−1).

An approximation for the area of S is simply the sum of the areas of rectangles, so

Rn = f(x1)∆x+ f(x2)∆x+ . . .+ f(xn)∆x

Ln = f(x0)∆x+ f(x1)∆x+ . . .+ f(xn−1)∆x

If we want the exact area A of the region S that lies under the graph of the continuous function f , we simply
take the limit of the sum of the areas of the approximating rectangles. That is,

A = lim
n→∞

Rn = lim
n→∞

n∑
i=1

f(xi)∆x

= lim
n→∞

Ln = lim
n→∞

n∑
i=1

f(xi−1)∆x

In fact, we can choose any sample point x∗
i that lies in the ith subinterval [xi−1, xi]. Common choices for x∗

i are
left endpoints, right endpoints and midpoints. Left endpoints are given by xi−1 = a+ (i− 1)∆x, right endpoints

are given by xi = a+ i∆x and the midpoint of the ith subinterval xi =
xi−1 + xi

2
. The exact area can be found
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by the following formula

A = lim
n→∞

n∑
i=1

f(x∗
i )∆x

where the sum

n∑
i=1

f(x∗
i )∆x is called a Riemann Sum.

Example:

Express the area of the region bounded f(x) = x2 on the interval [0, 1] as the limit of a Riemann sum

using right endpoints. Show that the limit of this Riemann sum approaches
1

3
.

Solution: We divide the interval [0, 1] into n subintervals of equal width ∆x =
1− 0

n
=

1

n
. The ith right

endpoint is given by xi = a+ i∆x = 0 +
i

n
=

i

n
. Thus, we have

Rn =

n∑
i=1

f(xi)∆x =

n∑
i=1

f

(
i

n

)
1

n

=

n∑
i=1

(
i

n

)2
1

n

=

n∑
i=1

i2

n3

=
1

n3

n∑
i=1

i2

=
1

n3

n(n+ 1)(2n+ 1)

6

=
2n3 + 3n2 + n

6n3

Finally, we take the limit of Rn as n → ∞ to obtain lim
n→∞

Rn = lim
n→∞

2n3 + 3n2 + n

6n3
=

2

6
=

1

3
.

Example:

Find the exact area of the region bounded by f(x) = x2+3x− 4 and the x-axis on the interval [2, 4] using
a Riemann sum and left endpoints. Video Solution

10.3.3 The Distance Problem

Suppose an object moves with velocity v = f(t), where a ≤ t ≤ b and f(t) ≥ 0. If we take velocity readings
at equally spaced times t0 = a, t1, t2, . . . , tn = b, we will assume the velocity to be constant on each subinterval.
Then the total distance travelled during the time interval [a, b] (using left endpoints) is approximately

f(t0)∆t+ f(t1)∆t+ . . .+ f(tn−1)∆t =

n∑
i=1

f(ti−1)∆t where ∆t =
b− a

n
.

The more frequently we take velocity measurements, the more accurate our estimates become, so the exact
distance d travelled is the limit of such an expression.

d = lim
n→∞

n∑
i=1

f(ti−1)∆t
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Example

Suppose the speedometer readings taken every 5 seconds give the following table:

Time (sec) 0 5 10 15 20 25 30
Velocity (m/s) 25 31 35 43 47 46 41

Then an approximation for the distance travelled in 30 seconds is
5(25) + 5(31) + 5(35) + 5(43) + 5(47) + 5(46) = 1135 m using left endpoints and
5(31) + 5(35) + 5(43) + 5(47) + 5(46) + 5(41) = 1215 m using right endpoints.

5 10 15 20 25 30

10

20

30

40

50

Stewart HW: #4.9 # 3, 5, 9, 15, 17, 25, 27, 31, 33, 36, 45, 66 Appendix E # 1-19, 5.1# 1, 5, 13,
17, 19
Lyryx HW: 6.1.1, 6.1.2

11 Week 11

11.1 The Definite Integral

The following sum

n∑
i=1

f(x∗
i )∆x

is called a Riemann Sum and the limit of this sum

lim
n→∞

n∑
i=1

f(x∗
i )∆x =

∫ b

a

f(x)dx

is called the definite integral of f from a to b.∫
is called an integral sign, which means the limit of sums.

f(x) is called the integrand
a and b are called the lower and upper limits of integration, respectively.
The process of calculating a definite integral is called integration.

Note that

∫ b

a

f(x)dx is a number not a function. It represents the area below the curve y = f(x) between x = a

and x = b.
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Example

Express lim
n→∞

n∑
i=1

(x3
i + xi sinxi)∆x as a definite integral on the interval [0, π]. Video Solution

11.1.1 Properties of Definite Integrals Video Lesson

1.

∫ a

b

f(x)dx = −
∫ b

a

f(x)dx 4.

∫ b

a

[f(x)± g(x)]dx =

∫ b

a

f(x)dx±
∫ b

a

g(x)dx

2.

∫ a

a

f(x)dx = 0 5.

∫ b

a

cf(x)dx = c

∫ b

a

f(x)dx

3.

∫ b

a

cdx = c(b− a) 6.

∫ c

a

f(x)dx+

∫ b

c

f(x)dx =

∫ b

a

f(x)dx

11.1.2 Comparison Properties of Integrals

1. If f(x) ≥ 0 for a ≤ x ≤ b, then

∫ b

a

f(x)dx ≥ 0.

2. If f(x) ≥ g(x) for a ≤ x ≤ b, then

∫ b

a

f(x)dx ≥
∫ b

a

g(x)dx.

3. If m ≤ f(x) ≤ M for a ≤ x ≤ b, then m(b− a) ≤
∫ b

a

f(x)dx ≤ M(b− a).

11.2 Fundamental Theorem of Calculus

11.2.1 FTOC Part I Video Lesson

Let g(x) =

∫ x

a

f(t)dt, where f is a continuous function on [a, b] and x varies between a and b.

a x b

g(x)

f(t)

t

We can think of g as an “area so far” function - the area under f
from a to x.

FTOC I says that g(x) =

∫ x

a

f(t)dt is continuous

on [a, b], differentiable on (a, b) and g′(x) = f(x).

Alternatively,
d

dx

∫ x

a

f(t)dt = f(x).
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The proof of the Fundamental Theorem of Calculus Part I is included here for interest. It uses several theorems
and properties we have seen in the course but you are not responsible for memorizing or reproducing any part of
this proof on assessments.

Proof:

Let g(x) =

∫ x

a

f(t)dt. We want to show g′(x) = f(x).

g′(x) = lim
h→0

g(x+ h)− g(x)

h

We will assume x and x+ h are in the interval (a, b). Looking at the numerator, we have

g(x+ h)− g(x) =

∫ x+h

a

f(t)dt−
∫ x

a

f(t)dt

=

∫ x

a

f(t)dt+

∫ x+h

x

f(t)dt−
∫ x

a

f(t)dt

=

∫ x+h

x

f(t)dt

using Property 6 of Integrals.

For h ̸= 0,
g(x+ h)− g(x)

h
=

1

h

∫ x+h

x

f(t)dt.

Assume h > 0.
Since f is continuous on [x, x+h], the Extreme Value Theroem says there exist numbers u, v ∈ [x, x+h] such that
f(u) = m and f(v) = M , where m is the absolute minimum and M is the absolute maximum of f on [x, x+ h].
That is, on the interval [x, x+ h], we have m ≤ f(t) ≤ M .
By Comparison Property 3 of Integrals,

(x+ h− x)m ≤
∫ x+h

x

f(t)dt ≤ M(x+ h− x)

mh ≤
∫ x+h

x

f(t)dt ≤ Mh

f(u)h ≤
∫ x+h

x

f(t)dt ≤ f(v)h

Since h > 0, we can divide this inequality by h:

f(u) ≤ 1

h

∫ x+h

x

f(t)dt ≤ f(v)

f(u) ≤ g(x+ h)− g(x)

h
≤ f(v)

We get a similar inequality for h < 0, being careful to change signs when we divide inequality by h < 0.
Finally, we want to take the limit as h → 0. We note that as h → 0, u → x and v → x, since u and v lie between
x and x+ h. We can use the Squeeze Theorem.
We have lim

h→0
f(u) = lim

u→x
f(u) = f(x) and lim

h→0
f(v) = lim

v→x
f(v) = f(x) because f is continuous at x.

Thus, by the Squeeze Theorem, lim
h→0

g(x+ h)− g(x)

h
= f(x) and so g′(x) = f(x) as required.

11.2.2 FTOC Part II Video Lesson

If f is continuous on [a, b], then

∫ b

a

f(x)dx = F (b)− F (a), where F is any antiderivative of f . We often use the

notation F (x)|ba to denote F (b)− F (a).
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Proof:

Let g(x) =

∫ x

a

f(t)dt.

Then g′(x) = f(x) by FTOC I. So g is an antiderivative of f .
If F is any other antiderivative of f on [a, b], then F and g differ by a constant, or F (x) = g(x)+C, for a ≤ x ≤ b.

F (b)− F (a) = [g(b) + C]− [g(a) + C]

= g(b)− g(a)

=

∫ b

a

f(t)dt−
∫ a

a

f(t)dt

=

∫ b

a

f(t)dt− 0

Examples

Evaluate the following

1.
d

dx

∫ x2

1

sin tdt.

2.
d

dx

∫ 1

0

x2dx.

Video Solution

Harder Problem

Prove that

∫ x

π/2

t2 sin tdt = −x2 cosx + 2

∫ x

π/2

t cos tdt by first showing that the functions on the left and

right sides of the equal sign have the same derivative, and so differ by a constant; then evaluate the
constant. Video Solution

Stewart HW: 5.2 # 1, 3, 5, 33, 35, 39, 47, 51 5.3 # 7, 9, 17, 19, 21, 23, 27, 29, 37, 39
Lyryx HW: 8.1.1-8.1.5, 6.2.1-6.2.6

11.3 Indefinite Integrals Video Lesson

Since there is an obvious connection between antiderivatives and definite integrals, we use the notation∫
f(x)dx = F (x)

if F is an antiderivative of f or F ′(x) = f(x). This is called an indefinite integral which is a function or family
of functions as opposed to a definite integral which is a number.
Note that the connection between definite and indefinite integrals is that∫ b

a

f(x)dx =

∫
f(x)dx

∣∣∣∣b
a

When evaluating an indefinite integral, we must always include “+C” in our answer to demonstrate the fact there
are infinitely many antiderivatives of a function that differ by a constant.
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Examples

Evaluate the following integrals:

1.

∫
3

x2 + 1
dx

2.

∫ 3

1

2xdx.

Video Solution

11.3.1 Table of Common Indefinite Integrals Video Lesson∫
cf(x)dx = c

∫
f(x)dx

∫
[f(x) + g(x)]dx =

∫
f(x)dx+

∫
g(x)dx

∫
kdx = kx+ C

∫
xndx =

xn+1

n+ 1
+ C

∫
1

x
dx = ln |x|+ C

∫
exdx = ex + C∫

axdx =
ax

ln a
+ C

∫
sinxdx = − cosx+ C

∫
cosxdx = sinx+ C∫

sec2 xdx = tanx+ C

∫
csc2 xdx = − cotx+ C

∫
secx tanxdx = secx+ C∫

cscx cotxdx = − cscx+ C

∫
1

x2 + 1
dx = tan−1 x+ C

∫
1√

1− x2
dx = sin−1 x+ C

11.3.2 Net Change Theorem Video Lesson

If y = F (x), then F ′(x) represents the rate of change of y with respect to x and F (b) − F (a) represents the
change in y when x changes from a to b. Thus, the integral of a rate of change is equal to the net change in y or∫ b

a

F ′(x)dx = F (b)− F (a).

11.3.3 Distance vs Displacement as an Integral Video Lesson

Suppose an object moves along a straight line with position function s(t). Then its velocity is v(t) = s′(t) so∫ t2

t1

v(t)dt = s(t2)− s(t1)

is the net displacement of the particle during the time period from t1 to t2.
If we want to calculate the distance travelled, we have to consider the intervals when v(t) ≥ 0 (particle moves
forwards/to the right) and when v(t) ≤ 0 (particle moves backwards/to the left).

Total Distance Travelled =

∫ t2

t1

|v(t)|dt

Example

Find the displacement and the distance travelled by the particle whose velocity is v(t) = t2 − t− 6 during
time 1 ≤ t ≤ 4.
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12 Week 12

12.1 Substitution Rule Video Lesson

How do we evaluate integrals such as ∫
2x

√
1 + x2dx

2x
√
1 + x2 is the derivative of what function?

It looks like the Chain Rule may have been used to get this derivative.
We will introduce a new variable u to be what seems to be the inner function u = 1 + x2.
Recall: If u = f(x), then du = f ′(x)dx. Here du = 2xdx.
If we think of the dx in the integral as a differential, we have the differential 2xdx occurring in the given integral.∫

2x
√
1 + x2dx =

∫ √
1 + x22xdx =

∫ √
udu

Now we can integrate: ∫ √
udu =

∫
u1/2du =

2

3
u3/2 + C =

2

3
(1 + x2)3/2 + C

We can check our answer by differentiating it using the Chain Rule.
In general, whenever we have an integral of the form∫

f(g(x))g′(x)dx

we use the substitution u = g(x), so du = g′(x)dx, and solve the simpler integral∫
f(u)du

Note: Let u be a function in the integrand whose derivative also occurs. Usually, we will let u be the inner
function or the complicated part of a function.

Be careful when evaluating definite integrals to remember to change the limits of integration since we are
doing a substitution of variables.

Examples

Evaluate the following integrals:

1.

∫
4x√

1− 2x2
dx

2.

∫
x

x2 + 5
dx

Video Solution

Look out for integrals of the form

∫
1

a2 + x2
dx =

1

a
tan−1 x

a
+C or

∫
1√

a2 − x2
dx = sin−1 x

a
+C. You may

need to complete the square first to put the denominator of your integral in this form. Look out for quadratics
or roots of quadratics in the denominator.

12.1.1 Symmetry: Video Lesson

Suppose f is continuous on [−a, a].

(a) If f is even, then
∫ a

−a
f(x)dx = 2

∫ a

0
f(x)dx.

(b) If f is odd, then
∫ a

−a
f(x)dx = 0.
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More Integrals to Try: Exercise

1.

∫
7e6x

4 + 5e6x
dx 2.

∫
8ln(x

2)

x
dx

3.

∫
e2x

√
1 + 4exdx 4.

∫ 2

1

(1 + e−x)2dx

5.

∫
ln(

√
1 + x2)x

1 + x2
dx 6.

∫
2ln(1/x)

x
dx

7.

∫ √
105xdx 8.

∫ 1/2

0

x5

√
1− 2x3

dx

Answers

1.
7

30
ln(4 + 5e6x) + C 2.

1

6 ln 2
8ln(x

2) + C

3.
(1 + 4ex)3/2

120
(12ex − 2) + C 4. 1 + 2e−1 − 3

2
e−2 − 1

2
e−4

5.
1

4
ln2(1 + x2) + C 6.

−1

ln 2
2ln(1/x) + C

7.
2

5 ln 10

√
105x + C 8.

1

9
−

√
3

16

12.2 Areas Between Curves

Consider the region S that lies between two curves y = f(x) and y = g(x) from x = a to x = b, where f and g
are continuous and f(x) ≥ g(x) for all x ∈ [a, b].

a b

We can divide S into n strips of equal width and then
approximate the area of the ith strip by a rectangle of

base ∆x =
b− a

n
and height f(x∗

i ) − g(x∗
i ), where x∗

i is

any sample point in the ith subinterval. Then if we let
n → ∞, we get a value for the area A of this region S

A = lim
n→∞

n∑
i=1

[f(x∗
i )− g(x∗

i )]∆x

=

∫ b

a

[f(x)− g(x)]dx

It will be helpful to sketch the two curves so we can see which curve lies on top. If we get these backwards, it

will result in a negative area calculation. It may be helpful to express the integral as A =

∫ b

a

(yT − yB)dx, where

yT is the top curve and yB is the bottom curve.
Sometimes we need to put more thought into the bounds for x because the boundaries for the region between

the two curves will be defined by where the two curves intersect. Here, we will have to first find the points of
intersection of the two curves then see which curve is yT and which curve is yB between the points of intersection.
The curves may cross over each other at points of intersection and the roles of yT and yB will be switched. We
can examine the graph to see which lies on top in each interval OR we can test a value for x in each curve between
the intersection points and see which gives the larger y value. We will illustrate this in the next example.

Example

Find the area of the region bounded by the curves f(x) = 20− x2 and g(x) = (x− 6)2. Video Solution

Some regions are better treated by regarding x as a function of y. Then the area between the curves x = f(y)
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and x = g(y) from y = c to y = d if f(y) ≥ g(y) for all y ∈ [c, d] is given by∫ d

c

[f(y)− g(y)]dy

In order to produce a positive value for the area we will need to subtract the curve on the left from the curve on
the right, so we could write the area formula as∫ d

c

(xR − xL)dy

Again, we may need to look for points of intersection first to see where curves overlap to get bounds for y and
determine which has the larger x value on each interval.

Example

Find the area of the region bounded by x = y2 − 2y and y = x− 4. Video Solution

Stewart HW: 5.4#1, 3, 5, 9, 11, 12, 15, 21, 27, 31, 37, 53, 63, 5.5#1, 3, 5, 9, 11, 13, 23, 25, 39, 45,
47, 53, 55, 57, 59, 63, 69, 73 6.1 # 1, 5, 7, 9, 11, 17, 20
Lyryx HW: 6.3.1-6.3.9, 7.1.1-7.1.15 8.2.1-8.2.5, 8.2.9

That’s a wrap for MATH 127. In MATH 128, you will continue to explore more advanced techniques of
integration. You will also study volumes of solids of revolution and find solutions to differential equations. You
will learn about how functions can be expressed as a polynomial with an infinite number of terms. This will help
us to understand how calculators and computers are able to approximate function values and definite integrals of
more complicated functions.
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