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Natural Language Processing (NLP)

Examples of NLP tasks:

• Classifying whole sentences: sentiment analysis, email spam filter,

grammar check, sentences’ correlations.

• Classifying each word in a sentence: noun/verb/adjective, named entity

recognition(person/location/organization...)

• Text generation: Completing a prompt, filling in the blanks in a text.

• Question-Answering (extractive summarization).

• Generating a new sentence from an input text (seq2seq): Translation,

abstractive summarization.
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Transformers

• Pretrained language models (backbone models): Trained on large

amounts of raw text, the models’ sizes are big.

• Transfomer models are self-supervised learning: the objective is

automatically computed from the inputs of the model. No need of labeled

data.

2
2https://huggingface.co/course/
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General Transformer Architecture

• Basic blocks of a transfomer model:

• Encoder: Input
Encoder−−−−→ A representation (features) of the input.

• Decoder: Encoder’s representation + other inputs
Decoder−−−−→ Generate

a target sequence.

• Encoder-only models: Good for task that require understanding of the

input, such as sentence classification, named entity recognition, QA.

Examples: BERT, RoBERTa, DeBERTa.

• Decoder-only models: Good for generative tasks such as text generation.

Examples: GPT, GPT-2,3,4, Transformer XL.

• Encoder-decoder model: Good for generative tasks that require an input,

such as translation or summarization. Examples: BART, mBART,

Marian, T5.
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Vanilla Transformer Model

3

3“Attention is all you need”, https://arxiv.org/abs/1706.03762
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Vanilla Transformer Model (cont’d)

• The original Transformer was designed for translation.

• In the translation task, during training, the encoder receives inputs

(sentences) in a certain language while the decoder receives the same

sentence in another language.

• Inputs to Encoder:
[
w1 w2 . . . wn

]
∈ Rn×v , where n is the sequence

length and v is vocab size. Each wt is a word (or character) in the

sequence.

• wt ∈ Rv Input Embedding−−−−−−−−−→ e(wt) ∈ Rdmodel , for t = 1, . . . , n.

• Positional Encoding: Re-represent the values of a word and its position in

a sentence. For example4,

enew (wt) = e(wt) + p⃗t

= e(wt) +
[
sin(ω1t), cos(ω1t), · · · , sin(ωd/2t), cos(ωd/2t)

]T
,

where ωk = 10−10k/d , d = dmodel .
4https://kazemnejad.com/blog/transformer_architecture_positional_encoding/
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Vanilla Transformer Model(cont’d)

5

5Attention is all you need, https://arxiv.org/abs/1706.03762
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Vanilla Transformer Model - Encoder Part

• Each encoder layer has two residual blocks:

1. A multi-head self-attention

2. A feed-forward NN

• In the encoder, the attention layers can use all the words in a sentence

(since the translation of a given word can be dependent on what is after

as well as before it in the sentence).6

• Each followed by a layernorm (normalize each sample such that the

elements in the sample have zero mean and unit variance).

• In practice, a dropout layer is added between additions and layernorms.

6https://huggingface.co/course/chapter1/4?fw=pt
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Vanilla Transformer Model - Decoder Part

• Each decoder layer has three residual blocks:

1. A causally masked multi-head self-attention (later)

2. A cross attention where the keys and values come from the output of

the encoder → Access the whole input sentence to best predict the

current word.

3. A feed-forward NN

• The decoder works sequentially and can only pay attention to the words in

the sentence that it has already translated. 7

• Masked multi-head attention: the upper triangular part (excluding the

diagonal) of QKT is set to −∞ to ensure that the result at every position

does not depend on subsequent values in V .

• Each followed by a layernorm.

• In practice, a dropout layer is added between additions and layernorms.
7https://huggingface.co/course/chapter1/4?fw=pt
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Attention Layers

• Key feature of Transformer models is the attention layers.

• Roles of attention layers:

• Pay specific attention to certain words in the sentence when dealing

with the representation of each word.

• The meaning of a word is affected by the context, which can be any

word (or words) before or after the word being studied.

Figure 1: Scaled dot-product attention and Multihead attention.
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Attention Layers (cont’d)

• The scaled dot-product attention is defined as

Attn(Q,K,V) = softmax

(
QKT

√
dk

)
V ∈ Rm×dv ,

where Q ∈ Rm×dk ,K ∈ Rn×dk and V ∈ Rn×dv .

• Masked attention: set the upper-triangular part of QKT to −∞. After

softmax, these entries become 0. This ensures autoregressiveness -

output at time t only depends on inputs of < t.

• The multihead attention is given by:

A = [Attn(XW1
Q ,YW

1
K ,ZW

1
V ), . . . , Attn(XW

h
Q ,YW

h
K ,ZW

h
V )]WO ,

where X ∈ Rq×dmodel ;Y,Z ∈ Rn×dmodel are the inputs, and all W’s are

trainable parameters:

Wi
Q ,W

i
K ∈ Rdmodel×dk ,Wi

V ∈ Rdmodel×dv ,WO ∈ Rhdv×dmodel .

• The multihead self-attention: multihead attention with X = Y = Z.
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Scaled Dot-Product Attention

• Let q1, . . . ,qm ∈ Rdk be the rows of Q;

k1, . . . , kn ∈ Rdk be the rows of K;

v1, . . . , vn ∈ Rdv be the rows of V,

and S = (si,j) := softmax
(

QKT
√
dk

)
.

• Then

Attn(Q,K,V) = softmax

(
QKT

√
dk

)
V

=


softmax

(
kT1 q1√

dk
. . .

kTn q1√
dk

)
softmax

(
kT1 q2√

dk
. . .

kTn q2√
dk

)
...

...

softmax
(

kT1 qm√
dk

. . .
kTn qm√

dk

)

V =



( n∑
j=1

s1,jvj
)T

( n∑
j=1

s2,jvj
)T

...( n∑
j=1

sm,jvj)T


.
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Scaled Dot-Product Attention (cont’d)

Comments:

• Notations: In these slides, all indices start from 1 and all vectors are

column vectors of size d × 1. Note that, in Pytorch, all indices starts

from 0 and vectors are of size 1× d , with suitable d .

• The softmax operator is applied to each row of

(
QKT

√
dk

)
.

• Each row of the scaled dot-product attention is a linear combination

of rows of V, where the weights (coefficients) are decided by the

relations (similarity) between rows of Q and K.

• Potential benefit: Since the entries of S are obtained by the dot

products of every row of Q with every row of K, if Q = XWQ and

K = XWK , then all words in X are paid attention to all other words

in X ⇒ Useful for language translation, for example.
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Language Models

• Two classes of LMs:

1. Autoregressive (unidirectional) LM, e.g. GPT. Good for generation,

2. Masked (bidirectional) LM, e.g. BERT. Good for classification.

• Pre-train + fine-tune regime

• idea from computer vision

• labeled datasets are small and few compared to size of models -

overfitting, bad generalizing ability.

• Pre-train in self-supervised way on very large unlabeled datasets.

(”The Pile” 825GB)

• Fine-tune on small task-specific labeled dataset for a small number

of epochs. Better results than training solely on the small dataset.
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Autoregressive models: training

• ”Decoder-only” models: the attention has a causal mask.

• Maximize the log-likelihood of each correct word xt given previous

ones x<t .

• Teacher-Forced training: Because of the causal mask applied to the

attention, the model can be trained in parallel in time. (Unlike RNN

which has to be trained sequentially.)
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Autoregressive models: generation

• Generate outputs incrementally: Greedy or beam search.
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Masked Language Models: training

• Encoder-only models.

• Maximize the log-likelihood of masked words xt given other words

x ̸=t .
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Masked Language Models: fine-tuning for sentence classifica-

tion

• Use the output vector for the [CLS] token (seen in pre-training).

• Remove the language modeling head and add a classifier head.

22



Bias and Limitations of Transformer Models

• Pretrained models: Training a model from scratch on very large

amounts of data→ The training data may contain both good and

bad data.

• The pretrained models could generate sexist, racist, or homophobic

content - Gemini.

• Fine tuning the model on your data won’t make this intrinsic bias

disappear.

23
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Self-Attention and Nonparametric Kernel Regression8

• Training set {kj , vj}Nj=1, where kj are the key vectors (training

inputs), and vj are the value vectors (training outputs).

• Nonparametric regression model: Learn a function f such that

vj = f (kj) + εj , ∀j = 1, . . . ,N,

where εj are independent noises with zero mean; kj are i.i.d.

samples from the distribution that admits p(k) as density function.

• Nadaraya-Watson estimator: E[vj |kj ] = f (kj), for all j ∈ [n].

8https://arxiv.org/abs/2206.00206
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Self-Attention and Nonparametric Kernel Regression(cont’d)

• Denote p(v, k) the joint density where the key and value vectors

{kj , vj}Nj=1 are i.i.d. samples from. We have

E[v|k] =
∫
Rd

v · p(v|k)dv =

∫
v · p(v, k)

p(k)
dv

• Using isotropic Gaussian kernel with bandwidth σ to approximate

p(v, k) and p(k):

p̂σ(v, k) =
1

N

N∑
j=1

φσ(v−vj)φσ(k−kj), p̂σ(k) =
1

N

N∑
j=1

φσ(k−kj),

where φσ(·) is the isotropic multivariate Gaussian density function

with diagonal covariance matrix σ2Id .
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Self-Attention and Nonparametric Kernel Regression9

f̂σ(k) =
∫
RD

v · p̂σ(v, k)
p̂σ(k)

dv =

∫
RD

v ·
∑N

j=1 φσ (v − vj)φσ (k − kj)∑N
j=1 φσ (k − kj)

dv

=

∑N
j=1 ϕσ (k − kj)

∫
v · φσ (v − vj) dv∑N

j=1 φσ (k − kj)
=

∑N
j=1 vjφσ (k − kj)∑N
j=1 φσ (k − kj)

9https://arxiv.org/abs/2206.00206
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Self-Attention and Nonparametric Kernel Regression10

Connection between Self-Attention and nonparametric regression: By

plugging the query vectors qi into the function f̂σ, we obtain that

f̂σ (qi ) =

∑N
j vj exp

(
−∥qi − kj∥2 /2σ2

)
∑N

j exp
(
−∥qi − kj∥2 /2σ2

)
=

∑N
j vj exp

[
−
(
∥qi∥2 + ∥kj∥2

)
/2σ2

]
exp

(
qik⊤

j /σ2
)

∑N
j exp

[
−
(
∥qi∥2 + ∥kj′∥2

)
/2σ2

]
exp

(
qik⊤

j /σ2
) .

If we further assume that the keys kj are normalized (usually done to

stabilize the training), the value of f̂σ (qi ) then becomes

f̂σ (qi ) =

∑N
j vj exp

(
qik⊤

j /σ2
)

∑N
j′ exp

(
qik⊤

j′ /σ
2
) =

N∑
j=1

softmax
(
q⊤
i kj/σ

2
)
vj .

10https://arxiv.org/abs/2206.00206
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References of the Transformers Section

• https://huggingface.co/course/

• Transformer with Fourier Integral Attentions, by Tan Nguyen et al.,

https://arxiv.org/pdf/2206.00206.pdf

• A Recipe for Training Neural Networks, by Andrej Karpathy,

https://karpathy.github.io/2019/04/25/recipe/

• Speech and Language Processing (3rd ed. draft) by Dan Jurafsky

and James H. Martin

https://web.stanford.edu/~jurafsky/slp3/10.pdf

https://web.stanford.edu/~jurafsky/slp3/11.pdf
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