1 Preliminaries

1.1 Recall Some Important Notions and Results from Real Analysis

This section is based on Real Analysis and Applications: Theory in Practice by Davidson and Donsig (a textbook for AMATH/PMATH 331). The electronic version of the book can be downloaded from the UW Library.

Definition 1. A sequence of real number $\left\{x_{n}\right\}$ is said to converge to $x \in \mathbb{R}$ if for every $\varepsilon>0$, there exists an integer N_{ε} such that $\left|x_{n}-x\right|<\varepsilon$ for all $n>N_{\varepsilon}$.

Note: Conversely, a sequence of real number $\left\{x_{n}\right\}$ is said to not converge to $x \in \mathbb{R}$ if there exists an $\varepsilon>0$ such that for every N, there exists an $n>N$ such that $\left|x_{n}-x\right| \geq \varepsilon$.

Definition 2. A sequence of real number $\left\{x_{n}\right\}$ is called a Cauchy sequence if for every $\varepsilon>0$, there exists an N_{ε} such that $\left|x_{n}-x_{m}\right|<\varepsilon$ for all $n, m>N_{\varepsilon}$.

Theorem 1 (Bolzano-Weierstrass Theorem). Every bounded sequence of real numbers has a convergent subsequence.

Theorem 2 (Completeness of \mathbb{R}). Let $\left\{x_{n}\right\}$ be a sequence of real number. Then $\left\{x_{n}\right\}$ converges if and only if $\left\{x_{n}\right\}$ is a Cauchy sequence.

Definition 3. A set $S \subset \mathbb{R}$ is said to be bounded above by b if $x \leq b$ for all $x \in S$.
A set $S \subset \mathbb{R}$ is said to be bounded below by a if $x \geq a$ for all $x \in S$.
Theorem 3 (Theorem and Definition). A set $S \subset \mathbb{R}$ which is bounded above has a least upper bound or supremum, written

$$
M=\sup _{x \in S} x
$$

with the properties

1. If $x \in S$, then $x \leq M$.
2. If $c<M$, then there is an $x \in S$ such that $x>c$.

Example 1. Consider a real-valued $f: S \rightarrow \mathbb{R}$ and assume f has a supremum in $S, M=\sup _{x \in S} f(x)$. By definition of the supremum, there is a sequence $\left\{x_{n}\right\} \subset S$ such that $f\left(x_{n}\right)>M-\frac{1}{n}$.
Theorem 4 (Theorem and Definition). A set $S \subset \mathbb{R}$ which is bounded below has a greatest lower bound or infimum, written

$$
m=\inf _{x \in S} x,
$$

with the properties

1. If $x \in S$, then $x \geq m$.
2. If $c>m$, then there is an $x \in S$ such that $x<c$.

Note: For a set $S, \max _{x \in S} x$ and $\sup _{x \in S} x$ are not the same. There are sets where the supremum exists but the maximum does not. For example, $S=(0,1)$.

Definition 4 (Continuous Functions, $\varepsilon-\delta$ Definition). A function $f: \mathbb{R} \supset \Omega \rightarrow \mathbb{R}$ is continuous at a point $x_{0} \in \Omega$ (this automatically means that $f\left(x_{0}\right)$ exists) iff for every $\varepsilon>0$ there exists a $\delta>0$ such that

$$
\left|f\left(x_{0}\right)-f(x)\right|<\varepsilon \text { whenever }\left|x_{0}-x\right|<\delta, x \in \Omega
$$

The function $f: \mathbb{R} \supset \Omega \rightarrow \mathbb{R}$ is said to be continuous on Ω iff f is continuous at every point of Ω.
Definition 5 (Sequential Continuity). A function $f: \mathbb{R} \supset \Omega \rightarrow \mathbb{R}$ is said to be sequentially continuous at a point $x_{0} \in \Omega$ iff for every sequence $\left\{x_{n}\right\} \subset \Omega$ converging to x_{0}, the sequence $\left\{f\left(x_{n}\right)\right\}$ converges to $f\left(x_{0}\right)$.

Proposition 1. A function $f: \mathbb{R} \supset \Omega \rightarrow \mathbb{R}$ is continuous at a point $x_{0} \in \Omega$ iff it is sequentially continuous at x_{0}.

Proposition 2. A real-valued function that is continuous on a closed and bounded region $\Omega \subset \mathbb{R}$ is bounded, and achieves its supremum and infimum in Ω.

Example 2. Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function. Since $[a, b]$ is closed and bounded, f is bounded and achieves its supremum and infimum in $[a, b]$. That is there exist $x_{1}, x_{2} \in[a, b]$ such that

$$
f\left(x_{1}\right)=\max _{x \in[a, b]} f(x), \quad f\left(x_{2}\right)=\min _{x \in[a, b]} f(x)
$$

Definition 6. Let $\left\{f_{n}(x)\right\}_{n=1}^{\infty}$ be a sequence of real-valued functions on $\Omega \subset \mathbb{R}$. We say that $\left\{f_{n}\right\}$ converges pointwise to a function $f: \Omega \rightarrow \mathbb{R}$ if

$$
\lim _{n \rightarrow \infty} f_{n}(x)=f(x), \quad \text { for all } x \in \Omega
$$

That is, for each $x \in \Omega$ and for every $\varepsilon>0$, there exists $N_{\varepsilon, x}$ (depending on ε and x) such that

$$
\left|f_{n}(x)-f(x)\right|<\varepsilon \quad \text { whenever } \quad n>N_{\varepsilon, x} \text {. }
$$

Note:

- Pointwise limit of continuous functions can be discontinuous.
- Limit of integral may not be integral of limit.
- Pointwise limit of discontinuous functions can be continuous.

Definition 7. Let $\left\{f_{n}(x)\right\}_{n=1}^{\infty}$ be a sequence of real-valued functions on $\Omega \subset \mathbb{R}$. We say that $\left\{f_{n}\right\}$ converges uniformly to a function $f: \Omega \rightarrow \mathbb{R}$ if given $\varepsilon>0$, there exists an integer N_{ε} (depending on ε) so that

$$
\left|f_{n}(x)-f(x)\right|<\varepsilon \quad \text { for all } x \in \Omega \text { and for all } n>N_{\varepsilon} .
$$

Note:

- Uniform convergence implies pointwise convergence.
- If $\left\{f_{n}\right\}$ converges pointwise to f, then f is the only potential limit for uniform convergence.
- Let $\left\{f_{n}: S \rightarrow \mathbb{R}\right\}$ be a sequence of continuous functions. If $\left\{f_{n}\right\}$ converges uniformly to a function f, then f is continuous.

Lemma 1 (Minkowski's Inequalities). Let $p \in \mathbb{R}$ and $1 \leq p<\infty$.

1. (for finite sum) Let $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n} \in \mathbb{R}$. Then

$$
\left(\sum_{i=1}^{n}\left|x_{i}+y_{i}\right|^{p}\right)^{1 / p} \leq\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}+\left(\sum_{i=1}^{n}\left|y_{i}\right|^{p}\right)^{1 / p} .
$$

2. (for infinite sequence) Consider $\ell_{p}=\left\{x=\left(x_{1}, x_{2}, \ldots\right), x_{i} \in \mathbb{R}, \sum_{i=1}^{\infty}\left|x_{i}\right|^{p}<\infty\right\}$. Let $x, y \in \ell_{p}$. Then $x+y \in \ell_{p}$ and

$$
\left(\sum_{i=1}^{\infty}\left|x_{i}+y_{i}\right|^{p}\right)^{1 / p} \leq\left(\sum_{i=1}^{\infty}\left|x_{i}\right|^{p}\right)^{1 / p}+\left(\sum_{i=1}^{\infty}\left|y_{i}\right|^{p}\right)^{1 / p}
$$

3. (for integrable functions)

$$
\left(\int_{a}^{b}|f(t)+g(t)|^{p} d t\right)^{1 / p} \leq\left(\int_{a}^{b}|f(t)|^{p} d t\right)^{1 / p}+\left(\int_{a}^{b}|g(t)|^{p} d t\right)^{1 / p}
$$

1.2 Recall Some Important Notions and Results from Linear Algebra

In this section, let $\mathbb{K}=\mathbb{R}$ or $\mathbb{K}=\mathbb{C}$.
Definition 8. A vector space X over \mathbb{K} is a set X together with an addition, $u+v$, and a scalar multiplication, αu, satisfies the following rules for every $u, v, w \in X$ and $\alpha, \beta \in \mathbb{K}$:

1. $u+v \in X$
2. $(u+v)+w=u+(v+w)$
3. $u+v=v+u$
4. There is a vector $0 \in X$, called the zero vector, such that $u+0=0+u=u$
5. For every $u \in X$, there exists $(-u) \in X$ such that $u+(-u)=0$
6. $\alpha u \in X$
7. $\alpha(\beta u)=(\alpha \beta) u$
8. $(\alpha+\beta) u=\alpha u+\beta u$
9. $\alpha(u+v)=\alpha u+\alpha v$
10. $1 u=u$

The elements of a vector space X are called vectors.
Example 3. 1. \mathbb{R}^{n} is a vector space over $\mathbb{R} ; \mathbb{C}^{n}$ is a vector space over \mathbb{C}
2. $X=\{$ all functions $f: \mathbb{R} \rightarrow \mathbb{R}\}$
3. $\ell_{p}=\left\{\left.\left\{x_{i}\right\} \subset \mathbb{K}\left|\sum_{i}\right| x_{i}\right|^{p}<\infty\right\}$, where $1 \leq p<\infty$.
4. $\ell_{\infty}=\left\{\left\{x_{i}\right\} \subset \mathbb{K}\left|\sup _{i}\right| x_{i} \mid<\infty, \forall n\right\}$

Definition 9. Let X be a vector space over \mathbb{K}. If \mathbb{S} is a subset of X and \mathbb{S} is a vector space under the same operations as X, then \mathbb{S} is called a subspace of X.

Lemma 2. (Subspace Test) If \mathbb{S} is a nonempty set of X such that $u+v \in \mathbb{S}$ and $\alpha u \in \mathbb{S}$ for all $u, v \in \mathbb{S}$ and $c \in \mathbb{K}$ under the operation of X, then \mathbb{S} is a subspace of X.

Example 4. Using subspace test, we can verify the following sets are vector spaces over \mathbb{R}.

1. $X=P(x)=\{$ all univariate polynomials $\}$
2. $X=P_{n}(x)=\{$ all univariate polynomials of degree at most $n\}$
3. $X=C[a, b]=\{$ all continuous functions on $[a, b]\}$
4. $X=C^{1}[a, b]=\{$ all continuously differentiable functions on $[a, b]\}$
5. $X=C^{\infty}[a, b]=\{$ all infinitely differentiable functions on $[a, b]\}$
6. $X=L_{p}[a, b]=\{$ all Lebesgue integrable functions on $[a, b]\}=\left\{f:\left.[a, b] \rightarrow \mathbb{R}\left|\int_{a}^{b}\right| f(x)\right|^{p} d x<\infty\right\}$
7. $X=L_{\infty}[a, b]=\{$ all bounded almost everywhere functions on $[a, b]\}$

Definition 10. Let X be a vector space over \mathbb{K}. The vectors $\left\{u_{1}, \ldots, u_{k}\right\} \subset X$ are called linearly independent if the only solution to $0=\alpha_{1} u_{1}+\cdots+\alpha_{k} u_{k}$ is the trivial solution $\alpha_{1}=\ldots=\alpha_{k}=0$.

If the maximal number of linearly independent vectors in X is $n<\infty$, we say X is an n-dimensional vector space and $\operatorname{dim} X=n$. Any set of n linearly independent vectors in X is called a basis for the vector space X.

We write $\operatorname{dim} X=\infty$ if for each $n=1,2, \ldots$, there exist n linearly independent vectors in X. In this case, X is called an infinite dimensional space.

Convention: $\operatorname{dim}\{\overrightarrow{0}\}=0$.

Example 5. $\operatorname{dim} \mathbb{R}^{n}=n, \quad \operatorname{dim} P_{n}(x)=n+1, \quad \operatorname{dim} C[a, b]=\infty$.
Lemma 3. Let X be an n-dimensional vector space and $\left\{u_{1}, \ldots, u_{n}\right\}$ be a basis for X. Then every vector $u \in X$ can be uniquely expressed as a linear combination of $\left\{u_{1}, \ldots, u_{n}\right\}$.

Definition 11 (Quotient Space). Let \mathbb{V} be a vector space and \mathbb{W} be a subspace of \mathbb{V}. Consider the relation \sim on \mathbb{V} :

$$
\text { For } x, y \in \mathbb{V}, \quad x \sim y \Leftrightarrow x-y \in \mathbb{W}
$$

It is easy to verify that relation is an equivalent relation (symmetric, reflexivity, and transitivity). Denote

$$
[x]=\{y \in \mathbb{V} \mid x \sim y\}
$$

Define the following set

$$
\mathbb{V} / \mathbb{W}=\{[x] \mid x \in \mathbb{V}\}
$$

with the following operators:

$$
[x]+[y]:=[x+y], \quad \alpha[x]:=[\alpha x]
$$

for any $x, y \in \mathbb{V}, \alpha \in \mathbb{K}$. Those operators are well-defined and \mathbb{V} / \mathbb{W} is a vector space. Moreover, if $\operatorname{dim} \mathbb{V}<\infty, \operatorname{dim} \mathbb{V} / \mathbb{W}=\operatorname{dim} \mathbb{V}-\operatorname{dim} \mathbb{W}$.

Example 6. Let \mathbb{V} be the set of all real-valued integrable functions on $[a, b]$ and $\mathbb{W}=\{f \in \mathbb{V} \mid f=0$ a.e. $\}$. We can verify that \mathbb{W} is a subspace of \mathbb{V}, hence \mathbb{V} / \mathbb{W} is also a vector space. Indeed, $L_{1}[a, b]=\mathbb{V} / \mathbb{W}$.

Definition 12. A map $T: \mathbb{V} \rightarrow \mathbb{W}$ between two vector spaces over \mathbb{K} is called a linear operator if it preseves the operations of addition of vectors and multiplication by scalars, i.e.,

$$
T(\alpha u+\beta v)=\alpha T(u)+\beta T(v)
$$

Denote $\operatorname{ker} T=\{u \in \mathbb{V} \mid T(u)=0\} \quad$ Kernel of T, a subspace of \mathbb{V}.
$\operatorname{Im} T=\{T u \mid u \in \mathbb{V}\} \quad$ Image (range) of T, a subspace of \mathbb{W}.
Theorem 5. Let $T: \mathbb{V} \rightarrow \mathbb{W}$ be a linear operator between two vector spaces \mathbb{V} and \mathbb{W} over \mathbb{K}. Then

- T is one-to-one iff $\operatorname{ker} T=\{\overrightarrow{0}\}$
- T is onto iff $\operatorname{Im} T=\mathbb{W}$
- If $\operatorname{dim} \mathbb{V}<\infty$, then $\operatorname{dim} \operatorname{ker}(T)+\operatorname{dim} \operatorname{Im}(T)=\operatorname{dim} \mathbb{V}$.

2 Normed Linear Spaces

Below are contents in the next few weeks.
2.1 Normed Linear Spaces: Definitions and Examples
2.2 Banach Spaces: Definitions and Examples
2.3 Open and Closed Sets
2.4 Continuity
2.5 The Banach Fixed-Point Theorem and the Iteration Method
2.6 Applications to Ordinary Differential Equations

References:

- Sections 1.2, 1.3, 1.4, 1.5, 1.6, 1.8, 1.9 in Applied Functional Analysis: Applications to Mathematical Physics, by E. Zeidler
- Sections 3.1, 2.1, 2.2, 2.4, 2.5, 2.6, 2.7 in Applied Functional Analysis: Course Notes for AM 731, by D. Siegel

