
1 Preliminaries

1.1 Recall Some Important Notions and Results from Real Analysis

This section is based on Real Analysis and Applications: Theory in Practice by Davidson and Donsig (a
textbook for AMATH/PMATH 331). The electronic version of the book can be downloaded from the UW
Library.

Definition 1. A sequence of real number {xn} is said to converge to x ∈ R if for every ε > 0, there exists
an integer Nε such that |xn − x| < ε for all n > Nε.

Note: Conversely, a sequence of real number {xn} is said to not converge to x ∈ R if there exists an ε > 0
such that for every N , there exists an n > N such that |xn − x| ≥ ε.

Definition 2. A sequence of real number {xn} is called a Cauchy sequence if for every ε > 0, there exists
an Nε such that |xn − xm| < ε for all n,m > Nε.

Theorem 1 (Bolzano-Weierstrass Theorem). Every bounded sequence of real numbers has a convergent
subsequence.

Theorem 2 (Completeness of R). Let {xn} be a sequence of real number. Then {xn} converges if and
only if {xn} is a Cauchy sequence.

Definition 3. A set S ⊂ R is said to be bounded above by b if x ≤ b for all x ∈ S.
A set S ⊂ R is said to be bounded below by a if x ≥ a for all x ∈ S.

Theorem 3 (Theorem and Definition). A set S ⊂ R which is bounded above has a least upper bound or
supremum, written

M = sup
x∈S

x,

with the properties

1. If x ∈ S, then x ≤M .

2. If c < M , then there is an x ∈ S such that x > c.

Example 1. Consider a real-valued f : S → R and assume f has a supremum in S, M = sup
x∈S

f(x). By

definition of the supremum, there is a sequence {xn} ⊂ S such that f(xn) > M − 1
n

.

Theorem 4 (Theorem and Definition). A set S ⊂ R which is bounded below has a greatest lower bound
or infimum, written

m = inf
x∈S

x,

with the properties

1. If x ∈ S, then x ≥ m.
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2. If c > m, then there is an x ∈ S such that x < c.

Note: For a set S, max
x∈S

x and sup
x∈S

x are not the same. There are sets where the supremum exists but the

maximum does not. For example, S = (0, 1).

Definition 4 (Continuous Functions, ε − δ Definition). A function f : R ⊃ Ω → R is continuous at a
point x0 ∈ Ω (this automatically means that f(x0) exists) iff for every ε > 0 there exists a δ > 0 such that

|f(x0)− f(x)| < ε whenever |x0 − x| < δ, x ∈ Ω.

The function f : R ⊃ Ω→ R is said to be continuous on Ω iff f is continuous at every point of Ω.

Definition 5 (Sequential Continuity). A function f : R ⊃ Ω→ R is said to be sequentially continuous at
a point x0 ∈ Ω iff for every sequence {xn} ⊂ Ω converging to x0, the sequence {f(xn)} converges to f(x0).

Proposition 1. A function f : R ⊃ Ω→ R is continuous at a point x0 ∈ Ω iff it is sequentially continuous
at x0.

Proposition 2. A real-valued function that is continuous on a closed and bounded region Ω ⊂ R is
bounded, and achieves its supremum and infimum in Ω.

Example 2. Let f : [a, b]→ R be a continuous function. Since [a, b] is closed and bounded, f is bounded
and achieves its supremum and infimum in [a, b]. That is there exist x1, x2 ∈ [a, b] such that

f(x1) = max
x∈[a,b]

f(x), f(x2) = min
x∈[a,b]

f(x).

Definition 6. Let {fn(x)}∞n=1 be a sequence of real-valued functions on Ω ⊂ R. We say that {fn} converges
pointwise to a function f : Ω→ R if

lim
n→∞

fn(x) = f(x), for all x ∈ Ω.

That is, for each x ∈ Ω and for every ε > 0, there exists Nε,x (depending on ε and x) such that

|fn(x)− f(x)| < ε whenever n > Nε,x.

Note:

• Pointwise limit of continuous functions can be discontinuous.

• Limit of integral may not be integral of limit.

• Pointwise limit of discontinuous functions can be continuous.

Definition 7. Let {fn(x)}∞n=1 be a sequence of real-valued functions on Ω ⊂ R. We say that {fn} converges
uniformly to a function f : Ω→ R if given ε > 0, there exists an integer Nε (depending on ε) so that

|fn(x)− f(x)| < ε for all x ∈ Ω and for all n > Nε.
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Note:

• Uniform convergence implies pointwise convergence.

• If {fn} converges pointwise to f , then f is the only potential limit for uniform convergence.

• Let {fn : S → R} be a sequence of continuous functions. If {fn} converges uniformly to a function
f , then f is continuous.

Lemma 1 (Minkowski’s Inequalities). Let p ∈ R and 1 ≤ p <∞.

1. (for finite sum) Let x1, . . . , xn, y1, . . . , yn ∈ R. Then(
n∑

i=1
|xi + yi|p

)1/p

≤
(

n∑
i=1
|xi|p

)1/p

+
(

n∑
i=1
|yi|p

)1/p

.

2. (for infinite sequence) Consider `p = {x = (x1, x2, . . .), xi ∈ R,
∞∑

i=1
|xi|p < ∞}. Let x, y ∈ `p. Then

x+ y ∈ `p and ( ∞∑
i=1
|xi + yi|p

)1/p

≤
( ∞∑

i=1
|xi|p

)1/p

+
( ∞∑

i=1
|yi|p

)1/p

.

3. (for integrable functions)

 b∫
a

|f(t) + g(t)|p dt

1/p

≤

 b∫
a

|f(t)|p dt

1/p

+

 b∫
a

|g(t)|p dt

1/p

1.2 Recall Some Important Notions and Results from Linear Algebra

In this section, let K = R or K = C.

Definition 8. A vector space X over K is a set X together with an addition, u + v, and a scalar multi-
plication, αu, satisfies the following rules for every u, v, w ∈ X and α, β ∈ K:

1. u+ v ∈ X

2. (u+ v) + w = u+ (v + w)

3. u+ v = v + u

4. There is a vector 0 ∈ X, called the zero vector, such that u+ 0 = 0 + u = u

5. For every u ∈ X, there exists (−u) ∈ X such that u+ (−u) = 0

6. αu ∈ X

7. α(βu) = (αβ)u
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8. (α+ β)u = αu+ βu

9. α(u+ v) = αu+ αv

10. 1u = u

The elements of a vector space X are called vectors.

Example 3. 1. Rn is a vector space over R; Cn is a vector space over C

2. X = {all functions f : R→ R}

3. `p = {{xi} ⊂ K |
∑
i
|xi|p <∞}, where 1 ≤ p <∞.

4. `∞ = {{xi} ⊂ K | supi |xi| <∞,∀n}

Definition 9. Let X be a vector space over K. If S is a subset of X and S is a vector space under the
same operations as X, then S is called a subspace of X.

Lemma 2. (Subspace Test) If S is a nonempty set of X such that u + v ∈ S and αu ∈ S for all u, v ∈ S
and c ∈ K under the operation of X, then S is a subspace of X.

Example 4. Using subspace test, we can verify the following sets are vector spaces over R.

1. X = P (x) = {all univariate polynomials}

2. X = Pn(x) = {all univariate polynomials of degree at most n}

3. X = C[a, b] = {all continuous functions on [a, b]}

4. X = C1[a, b] = {all continuously differentiable functions on [a, b]}

5. X = C∞[a, b] = {all infinitely differentiable functions on [a, b]}

6. X = Lp[a, b] = {all Lebesgue integrable functions on [a, b]} = {f : [a, b]→ R |
b∫

a
|f(x)|pdx <∞}

7. X = L∞[a, b] = {all bounded almost everywhere functions on [a, b]}

Definition 10. Let X be a vector space over K. The vectors {u1, . . . , uk} ⊂ X are called linearly inde-
pendent if the only solution to 0 = α1u1 + · · ·+ αkuk is the trivial solution α1 = . . . = αk = 0.

If the maximal number of linearly independent vectors in X is n <∞, we say X is an n-dimensional
vector space and dimX = n. Any set of n linearly independent vectors in X is called a basis for the vector
space X.

We write dimX =∞ if for each n = 1, 2, . . ., there exist n linearly independent vectors in X. In this
case, X is called an infinite dimensional space.

Convention: dim{~0} = 0.
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Example 5. dimRn = n, dimPn(x) = n+ 1, dimC[a, b] =∞.

Lemma 3. Let X be an n-dimensional vector space and {u1, . . . , un} be a basis for X. Then every vector
u ∈ X can be uniquely expressed as a linear combination of {u1, . . . , un}.

Definition 11 (Quotient Space). Let V be a vector space and W be a subspace of V. Consider the relation
∼ on V:

For x, y ∈ V, x ∼ y ⇔ x− y ∈W.

It is easy to verify that relation is an equivalent relation (symmetric, reflexivity, and transitivity). Denote

[x] = {y ∈ V | x ∼ y}

Define the following set
V/W = {[x] | x ∈ V},

with the following operators:
[x] + [y] := [x+ y], α[x] := [αx],

for any x, y ∈ V, α ∈ K. Those operators are well-defined and V/W is a vector space. Moreover, if
dimV <∞, dimV/W = dimV− dimW.

Example 6. Let V be the set of all real-valued integrable functions on [a, b] and W = {f ∈ V | f = 0a.e.}.
We can verify that W is a subspace of V, hence V/W is also a vector space. Indeed, L1[a, b] = V/W.

Definition 12. A map T : V → W between two vector spaces over K is called a linear operator if it
preseves the operations of addition of vectors and multiplication by scalars, i.e.,

T (αu+ βv) = αT (u) + βT (v).

Denote kerT = {u ∈ V | T (u) = 0} Kernel of T , a subspace of V.
ImT = {Tu | u ∈ V} Image (range) of T , a subspace of W.

Theorem 5. Let T : V→W be a linear operator between two vector spaces V and W over K. Then

• T is one-to-one iff kerT = {~0}

• T is onto iff ImT = W

• If dimV <∞, then dim ker(T ) + dim Im(T ) = dimV.
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2 Normed Linear Spaces

Below are contents in the next few weeks.

2.1 Normed Linear Spaces: Definitions and Examples

2.2 Banach Spaces: Definitions and Examples

2.3 Open and Closed Sets

2.4 Continuity

2.5 The Banach Fixed-Point Theorem and the Iteration Method

2.6 Applications to Ordinary Differential Equations

References:

• Sections 1.2, 1.3, 1.4, 1.5, 1.6, 1.8, 1.9 in Applied Functional Analysis: Applications to Mathematical
Physics, by E. Zeidler

• Sections 3.1, 2.1, 2.2, 2.4, 2.5, 2.6, 2.7 in Applied Functional Analysis: Course Notes for AM 731, by
D. Siegel
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