1 Preliminaries

1.1 Recall Some Important Notions and Results from Real Analysis

This section is based on Real Analysis and Applications: Theory in Practice by Davidson and Donsig (a
textbook for AMATH/PMATH 331). The electronic version of the book can be downloaded from the UW
Library.

Definition 1. A sequence of real number {x,} is said to converge to x € R if for every e > 0, there exists

an integer N¢ such that |z, — x| < e for alln > N,.

Note: Conversely, a sequence of real number {z,} is said to not converge to = € R if there exists an € > 0

such that for every N, there exists an n > N such that |z, —z| > ¢.

Definition 2. A sequence of real number {x,} is called a Cauchy sequence if for every e > 0, there exists

an N such that |x, — xp| < e for all nym > N.

Theorem 1 (Bolzano-Weierstrass Theorem). Every bounded sequence of real numbers has a convergent

subsequence.

Theorem 2 (Completeness of R). Let {x,} be a sequence of real number. Then {x,} converges if and

only if {xn} is a Cauchy sequence.

Definition 3. A set S C R is said to be bounded above by b if x < b for all x € S.
A set S C R is said to be bounded below by a if © > a for all x € S.

Theorem 3 (Theorem and Definition). A set S C R which is bounded above has a least upper bound or
supremum, written

M = supz,
zeS

with the properties
1. Ifx €S, thenx < M.
2. If c < M, then there is an x € S such that x > c.

Example 1. Consider a real-valued f : S — R and assume f has a supremum in S, M = sup f(z). By
€S

1
definition of the supremum, there is a sequence {x,} C S such that f(x,) > M — —.
n

Theorem 4 (Theorem and Definition). A set S C R which is bounded below has a greatest lower bound
or infimum, written

m = inf x,
zeS

with the properties

1. Ifx € S, then © > m.



2. If ¢ > m, then there is an x € S such that © < c.

Note: For a set S, max and sup z are not the same. There are sets where the supremum exists but the
z€ €S
maximum does not. For example, S = (0,1).

Definition 4 (Continuous Functions, ¢ — 0 Definition). A function f : R D Q — R is continuous at a

point xg € Q (this automatically means that f(xo) exists) iff for every e > 0 there exists a 6 > 0 such that
|f(zo) — f(x)| < € whenever |xg — x| <, x € Q.

The function f: R D Q — R is said to be continuous on ) iff f is continuous at every point of €.

Definition 5 (Sequential Continuity). A function f : R D Q — R is said to be sequentially continuous at

a point xo € Q iff for every sequence {x,} C 2 converging to xo, the sequence {f(xn)} converges to f(xg).

Proposition 1. A function f: R D Q — R is continuous at a point xo € Q iff it is sequentially continuous

at xg.

Proposition 2. A real-valued function that is continuous on a closed and bounded region Q@ C R is

bounded, and achieves its supremum and infimum in €.

Example 2. Let f : [a,b] — R be a continuous function. Since [a,b] is closed and bounded, f is bounded

and achieves its supremum and infimum in [a,b]. That is there exist x1,x2 € [a,b] such that

f(z1) = max f(z), f(x2) = min f(z).

z€a,b] z€a,b]

Definition 6. Let { f,(z)}>2, be a sequence of real-valued functions on Q C R. We say that { f,} converges
pointwise to a function f:Q — R if

Jim fn(z) = f(x), forallx € Q.
That is, for each x € Q and for every € > 0, there exists N, 4 (depending on e and x) such that
|fn(z) — f(x)| <e whenever n > N,g.
Note:
e Pointwise limit of continuous functions can be discontinuous.
e Limit of integral may not be integral of limit.

e Pointwise limit of discontinuous functions can be continuous.

Definition 7. Let { f,(z)}>2, be a sequence of real-valued functions on Q C R. We say that { f,} converges
uniformly to a function f:Q — R if given € > 0, there exists an integer N (depending on €) so that

|fn(x) — f(2)]| <& forall x € Q and for all n > N..



Note:
e Uniform convergence implies pointwise convergence.
o If {f,} converges pointwise to f, then f is the only potential limit for uniform convergence.

e Let {f, : S — R} be a sequence of continuous functions. If {f,} converges uniformly to a function

f, then f is continuous.
Lemma 1 (Minkowski’s Inequalities). Let p € R and 1 < p < oo.

1. (for finite sum) Let x1,...,%n,Y1,--.,yn € R. Then
n 1/p n 1/p n 1/p
(Zm +yi1p> < <Z|$i|p> + <Z|yz‘|p> :
i=1 i=1 i=1

[e.°]
2. (for infinite sequence) Consider £, = {x = (x1,22,...),z; € R, Y |;|P < oo}. Let x,y € £,. Then
i=1

oo 1/p 0o 1/p 00 1/p
(Z |z; + yi|p> < <Z |$i|p> + (Z |?/i|p> .
=1 i=1 i=1

3. (for integrable functions)

x+yedl, and

1/p 1/p
<

b b 1/p b
( [0+ gl dt) ( [1ror dt) - ( / \g(t)lpdt)

1.2 Recall Some Important Notions and Results from Linear Algebra

In this section, let K=R or K =C.

Definition 8. A vector space X over K is a set X together with an addition, u + v, and a scalar multi-

plication, au, satisfies the following rules for every u,v,w € X and «, 8 € K:
I.u+veX
2. (u+v)+w=u+ (v+w)
S ut+v=v+u
4. There is a vector 0 € X, called the zero vector, such that u+0=0+u=u
5. For every u € X, there exists (—u) € X such that u+ (—u) =0

6. aue X

7. a(Bu) = (af)u



8. (a+ B)u =au+ fu
9. a(u+v) =au+av
10. lu=u
The elements of a vector space X are called vectors.
Example 3. 1. R"™ is a vector space over R; C" is a vector space over C
2. X ={all functions f : R — R}
3. by ={{z;} CK| X |wi|P < oo}, where 1 <p < oco.
i
4. loo = {{x;} C K| sup;|zi| < oco,¥n}

Definition 9. Let X be a vector space over K. If S is a subset of X and S is a vector space under the

same operations as X, then S is called a subspace of X.

Lemma 2. (Subspace Test) If S is a nonempty set of X such that u+v € S and au € S for all u,v € S
and ¢ € K under the operation of X, then S is a subspace of X.

Example 4. Using subspace test, we can verify the following sets are vector spaces over R.
1. X = P(z) = {all univariate polynomials}
2. X = P,(x) = {all univariate polynomials of degree at most n}
3. X = Cla,b] = {all continuous functions on |a,b]}
4. X = Ca,b] = {all continuously differentiable functions on [a,b]}
5. X = C®[a,b] = {all infinitely differentiable functions on |a,b]}
6. X = Lyla,b] = {all Lebesgue integrable functions on [a,b]} = {f : [a,b] = R | fb |f(z)Pdx < oo}
7. X = Loo[a,b] = {all bounded almost everywhere functions on [a,b]}

Definition 10. Let X be a vector space over K. The vectors {uy,...,ur} C X are called linearly inde-
pendent if the only solution to 0 = ajuy + - - - + apug @s the trivial solution a; = ... = a = 0.

If the mazimal number of linearly independent vectors in X is n < oo, we say X is an n-dimensional
vector space and dim X = n. Any set of n linearly independent vectors in X is called a basis for the vector
space X.

We write dim X = oo if for each n = 1,2,..., there exist n linearly independent vectors in X . In this
case, X is called an infinite dimensional space.

Convention: dim{0} = 0.



Example 5. dimR" =n, dimP,(z)=n+1, dimC|a,b] = cc.

Lemma 3. Let X be an n-dimensional vector space and {uy,...,uy} be a basis for X. Then every vector

u € X can be uniquely expressed as a linear combination of {uy,...,up}.

Definition 11 (Quotient Space). Let V be a vector space and W be a subspace of V. Consider the relation
~ onV:

Forzx,yeV, z~ysz—yeW.
It is easy to verify that relation is an equivalent relation (symmetric, reflexivity, and transitivity). Denote
[2] ={yeV|z~y}

Define the following set
V/W = {[z] | z €V},

with the following operators:

[z] + [yl = [z +y], alz] = [az],

for any x,y € V,a € K. Those operators are well-defined and V/W is a vector space. Moreover, if
dimV < oo, dimV/W = dimV — dim W.

Example 6. Let V be the set of all real-valued integrable functions on [a,b] and W = {f € V| f = Oa.e.}.
We can verify that W is a subspace of V, hence V/W is also a vector space. Indeed, Li[a,b] = V/W.

Definition 12. A map T : V — W between two vector spaces over K is called a linear operator if it

preseves the operations of addition of vectors and multiplication by scalars, i.e.,
T(au+ fv) = aT(u) + T (v).

Denote kerT ={u eV |T(u) =0} Kernel of T, a subspace of V.
ImT ={Tu|ueV} Image (range) of T, a subspace of W.

Theorem 5. Let T : V — W be a linear operator between two vector spaces V and W over K. Then
e T is one-to-one iff ker T = {0}
o T is onto iff ImT =W

o [fdimV < oo, then dimker(7)+ dimIm(7) = dimV.



2 Normed Linear Spaces

Below are contents in the next few weeks.

2.1 Normed Linear Spaces: Definitions and Examples

2.2 Banach Spaces: Definitions and Examples

2.3 Open and Closed Sets

2.4 Continuity

2.5 The Banach Fixed-Point Theorem and the Iteration Method
2.6 Applications to Ordinary Differential Equations
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