2 Normed Linear Spaces

2.1 Normed Linear Spaces: Definitions and Examples

Definition 1. Let X be a real (or complex) vector space. A real-valued function $\|\cdot\|: X \to \mathbb{R}$ is a norm on X if

- 1. $||x|| \ge 0$ for all $x \in X$ (positivity)
- 2. ||x|| = 0 if and only if x = 0 (strict positivity)
- 3. $\|\alpha x\| = |\alpha| \|x\|$ for any scalar α and for all $x \in X$ (homogeneity)
- 4. $||x+y|| \le ||x|| + ||y||$ for all $x, y \in X$ (triangle inequality)

The pair $(X, \|\cdot\|)$ is called a normed linear space.

Example 1. 1. The following functions are norms on \mathbb{R}^n :

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}, \quad p \ge 1,$$

and

$$||x||_{\infty} = \max_{1 \le i \le n} |x_i|.$$

Proof. For $||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$, with $p \ge 1$, the first three requirements can be verified from the definition of $||x||_p$. The triangle inequality can be verified using the Minkowski's inequality for finite sums.

2. The following functions are norms on $X=C[a,b]=\{f:[a,b]\to\mathbb{R}\ continuous\ on\ [a,b]\}$:

$$||f||_p = \left(\int_a^b |f(t)|^p dt\right)^{1/p} \quad (1 \le p < \infty)$$

and

$$||f||_{\infty} = \max_{a \le t \le b} |f(t)|.$$

Proof. Let $f \in C[a, b]$. Since f is continuous on [a, b], f is integrable on [a, b] and achieves its maximum and minimum in [a, b]. Therefore, $||f||_p$ and $||f||_{\infty}$ are well-defined.

7

For
$$||f||_p = \left(\int_a^b |f(t)|^p dt\right)^{1/p}$$
 with $1 \le p < \infty$,

• Positivity: By the definition of $||f||_p$, we have $||f||_p \ge 0$.

• Homogeneity: By the definition of $||f||_p$, we have

$$\|\alpha f\|_{p} = \left(\int_{a}^{b} |\alpha f(t)|^{p} dt\right)^{1/p} = |\alpha| \left(\int_{a}^{b} |f(t)|^{p} dt\right)^{1/p} = |\alpha| \|f\|_{p}.$$

• Triangle inequality: Using the Minkowski's inequality for integrable functions, we have

$$||f + g||_p \le ||f||_p + ||g||_p$$
, for all $f, g \in CC[a, b]$.

• Strict positivity: Prove by contradiction. Suppose there exists $f \in C[a,b]$ with $||f||_p = 0$ but $f \not\equiv 0$. That is, there exists $x_0 \in [a,b]$ such that $f(x_0) \not= 0$. Since f is continuous, there exists a subinterval of width $\delta, x_0 \ni I \subset [a,b]$ such that $\frac{|f(x_0)|}{2} \ge |f(x) - f(x_0)|$ for every $x \in I$. Since $|f(x) - f(x_0)| \ge |f(x_0)| - |f(x)|$, we have

$$\frac{|f(x_0)|}{2} \ge |f(x) - f(x_0)| \ge |f(x_0)| - |f(x)|, \quad |f(x)| \ge \frac{|f(x_0)|}{2},$$

for all $x \in I$. So,

$$0 = ||f||_p = \left(\int_a^b |f(t)|^p dt\right) \ge \left(\int_I |f(t)|^p dt\right)^{1/p} \ge \delta^{1/p} \frac{|f(x_0)|}{2} > 0,$$

a contradiction. Therefore the assumption is wrong. That means if $||f||_p = 0$ for some $f \in C[a, b]$, then $f \equiv 0$.

For $||f||_{\infty} = \max_{a \le t \le b} |f(t)|$, DIY.

Question: what is the best norm for C[a, b]?

3. For $1 \le p < \infty$, the vector space

$$L_p[a,b] = \{f: [a,b] \to \mathbb{R} \text{ measurable s.t. } \int_a^b |f(x)|^p dx < \infty\}/\sim$$

(where $f \sim g$ iff f = g a.e.) is a normed space, with the norm defined as

$$||f||_p = \left(\int_a^b |f(x)|^p dx\right)^{1/p}.$$

Proof. The positive and homogenous properties are obvious. If $f \in L_p[a, b]$ and $||f||_p = 0$, then f = 0 a.e., which proves the strict positive property. The triangle inequality comes from the Minkowski's inequality for integrable functions.

More examples:

4. For $C^1[a, b]$,

$$||f||_{1,\infty} = \max_{a \le t \le b} \{|f(t)|, |f'(t)|\}$$

and

$$||f||_{1,2} = \left(\max_{a \le t \le b} |f(t)|^2 + \max_{a \le t \le b} |f'(t)|^2\right)^{1/2}$$

are norms.

- 5. For $1 \le p < \infty$, the vector space $\ell_p = \{x = \{x_i\}, x_i \in \mathbb{R} \mid \sum_i |x_i|^p < \infty\}$ is a normed space, with the norm defined as $||x||_p = \left(\sum_i |x_i|^p\right)^{\frac{1}{p}}$.
- 6. The vector space $\ell_{\infty} = \{x = \{x_i\}, x_i \in \mathbb{R} \mid \sup_i |x_i| < \infty\}$ is a normed space, with the norm defined as $||x||_{\infty} = \sup_i |x_i|$.

Definition 2. Let $(X, \|\cdot\|)$ be a normed linear space. A sequence $\{x_n\} \subset X$ is said to converge or to be convergent if there is an $x \in X$ such that

$$\lim_{n\to\infty} \|x_n - x\| = 0.$$

x is called the *limit* of $\{x_n\}$ and we write $\lim_{n\to\infty} x_n = x$.

Proposition 3 (Uniqueness of Limits). Let $(X, \|\cdot\|)$ be a normed linear space. A sequence in X converges to at most one point in X.

Proof. Consider a sequence $\{x_n\}$ in X. If $\{x_n\}$ diverges, the proof is done. Suppose $\{x_n\}$ converges to two elements $x, y \in X$. Then

$$||x - y|| = ||(x - x_n) + (x_n - y)|| \le ||x - x_n|| + ||x_n - y|| \to 0$$
 as $n \to \infty$.

Hence ||x - y|| = 0, i.e., x = y.