Proposition 4. Let $(X, \|\cdot\|)$ be a normed linear space, $\{x_n\} \subset X$, and $x_n \to x \in X$. Then $\|x_n\| \to \|x\|$.

Proof. Exercise.

Definition 3. Let $(X, \|\cdot\|)$ be a normed linear space. A sequence $\{x_n\} \subset X$ is called a Cauchy sequence if for every $\varepsilon > 0$, there exists an N_{ε} so that

$$||x_n - x_m|| < \varepsilon, \quad for \ all \quad n, m > N_{\varepsilon}.$$

Proposition 5. Every convergent sequence is a Cauchy sequence.

Proof. Let $\{x_n\} \subset X$ be a convergent sequence. For every $\varepsilon > 0$, there exists N so that

$$||x_n - x|| < \frac{\varepsilon}{2}$$
, for all $n > N$.

Then for n, m > N, we have

$$||x_n - x_m|| \le ||x_n - x|| + ||x_m - x|| < \varepsilon.$$

Therefore, $\{x_n\}$ is a Cauchy sequence.

Conversely, there exist normed linear spaces such that not every Cauchy sequence converges.

Example 2. Consider the set of all rational numbers \mathbb{Q} . The set \mathbb{Q} is a normed linear space under the standard addition u+v, the scalar multiplication αu , and the absolute operator as a norm on \mathbb{Q} , ||u|| = |u| $(u, v, \alpha \in \mathbb{Q})$. Consider the following sequence that approximates $\sqrt{2} = 1.4142135...$

$$x_1 = 1$$
, $x_2 = 1.4 = \frac{14}{10}$, $x_3 = 1.41 = \frac{141}{100}$, ...

The sequence $\{x_n\}$ converges to $\sqrt{2}$ and is a Cauchy sequence in \mathbb{Q} . However, $\sqrt{2} \notin \mathbb{Q}$.

Example 3. Consider the following sequence of (piecewise linear) functions in C[0,2]:

$$f_n(x) = \begin{cases} 0 & \text{for } 0 \le x < 1 - \frac{1}{n} \\ 1 & \text{for } 1 < x \le 2 \\ 1 + n(x - 1) & \text{for } 1 - \frac{1}{n} \le x \le 1. \end{cases}$$

Claim: The sequence $\{f_n\}$ is a Cauchy sequence in $(C[0,2], \|\cdot\|_1)$, but $\{f_n\}$ does not converge in $(C[0,2], \|\cdot\|_1)$.

Proof. • Claim 1: $\{f_n\}$ is a Cauchy sequence w.r.t. $\|\cdot\|_1$. Indeed, with m > n, we have

$$\|f_n - f_m\| = \int_0^2 |f_n(x) - f_m(x)| dx$$

= area of the triangle formed by $\left(1 - \frac{1}{m}, 0\right); \left(1 - \frac{1}{n}, 0\right); (1, 1)$
= $\frac{\frac{1}{n} - \frac{1}{m}}{2} < \frac{1}{2n} \to 0, \text{ as } n \to \infty.$

Suppose $\{f_n\}$ converges to some function $f \in C[0,2]$ w.r.t. $\|\cdot\|_1$, i.e., $\lim_{n \to \infty} \|f_n - f\|_1 = 0$.

• Claim 2: The function f must be

$$f(x) = \begin{cases} 0 & \text{for } 0 \le x < 1\\ 1 & \text{for } 1 < x \le 2 \end{cases}$$

Part 2.1: Prove that f(x) = 1 for all $1 < x \le 2$. Suppose $f(x) \ne 1$ for all $1 < x \le 2$. Then there exists $x_1 \in (1,2]$ such that $f(x_1) \ne 1, f(x_1) - 1 \ne 0$. Since $f - 1 \in C[0,2]$, similar to the argument in Example 1 - part 2, there exists a subinterval I of width δ such that $x_1 \ni I \subset (1,2]$ such that $|f(x) - 1| \ge \frac{|f(x_1) - 1|}{2}$ for all $x \in I$. Then

$$||f_n - f||_1 = \int_0^2 |f_n(x) - f(x)| dx \ge \int_I |1 - f(x)| dx \ge \delta \frac{|f(x_1) - 1|}{2}$$

Therefore, $0 = \lim_{n \to \infty} ||f_n - f||_1 \ge \delta \frac{|f(x_1) - 1|}{2} > 0$, a contradiction. That means f(x) = 1 for all $1 < x \le 2$.

Part 2.2: Prove that f(x) = 0 for all $0 \le x < 1$. (hint: follow the same argument as in Part 2.1).

• Claim 3: The function f is not continuous at x = 1 since $\lim_{x \to 1^-} f(x) = 0$ and $\lim_{x \to 1^+} = 1$. Therefore, $f(x) \notin C[0, 2]$, a contradiction.

In conclusion, $\{f_n\}$ is a Cauchy sequence in $(C[0,2], \|\cdot\|_1)$, but $\{f_n\}$ does not converge in $(C[0,2], \|\cdot\|_1)$.

2.2 Banach Spaces: Definitions and Examples

Definition 1. A normed linear space (X,d) is called a Banach space if every Cauchy sequence in X converges (that is, has a limit which is an element of X). Banach spaces are also called complete normed spaces.

Most proofs of completeness are based on the completeness of \mathbb{R} .

Theorem 1. $(\mathbb{R}^n, \|\cdot\|_p)$ is a Banach space for $1 \le p \le \infty$.

Proof. Exercise.

Theorem 2. $(C[a,b], \|\cdot\|_1)$ is not a Banach space (See Example 3 Section 2.1)

Theorem 3. $(C[a,b], \|\cdot\|_{\infty})$ is a Banach space.

Proof. Let $\{f_n\}$ be a Cauchy sequence in C[a, b] w.r.t. $\|\cdot\|_{\infty}$. Then for every $\varepsilon > 0$, there exists N_{ε} such that for all $n, m > N_{\varepsilon}$, we have

$$\varepsilon > \|f_n - f_m\|_{\infty} = \max_{t \in [a,b]} |f_n(t) - f_m(t)|.$$

$$\tag{1}$$

• Step 1: Show that f_n converges pointwise to some function f:

Fixed $x \in [a, b]$. Then for every $n, m > N_{\varepsilon}$,

$$|f_n(x) - f_m(x)| \le ||f_n - f_m||_{\infty} < \varepsilon.$$

Therefore, $\{f_n(x)\}_{n\geq 1}$ is a Cauchy sequence in \mathbb{R} . Since \mathbb{R} is complete, $\{f_n(x)\}_{n\geq 1}$ converges. Denote $f(x) := \lim_{n \to \infty} f_n(x)$. In other words, we have constructed a function $f : [a, b] \to \mathbb{R}$ such that $\{f_n\}$ converges pointwise to f.

• Step 2: Prove that $\{f_n\}$ converges uniformly to f, i.e., $||f_n - f||_{\infty} \to 0$. From the inequality (1), for every $\varepsilon > 0$, there exists N_{ε} such that

 $|f_n(t) - f_m(t)| < \varepsilon$, for all $n, m > N_{\varepsilon}$, for all $t \in [a, b]$.

Now letting $m \to \infty$ and keeping everything else fixed, we get

$$|f_n(t) - f(t)| \le \varepsilon$$
, for all $n > N_{\varepsilon}$, for all $t \in [a, b]$.

Therefore $\{f_n\}$ converges uniformly to f, $f_n \xrightarrow{\|\cdot\|_{\infty}} f$. Since the uniform convergence of continuous functions is a continuous function, $f \in C[a, b]$. In conclusion, the Cauchy sequence $\{f_n\}$ converges in C[a, b] w.r.t. the infty norm $\|\cdot\|_{\infty}$. That completes the proof.

Theorem 4. The space $(L_p[a, b], \|\cdot\|_p)$ with $1 \le p < \infty$ is a Banach space.

Proof. See next lecture.