
Proposition 4. Let (X, Î · Î) be a normed linear space, {x

n

} µ X, and x

n

æ x œ X. Then Îx

n

Î æ ÎxÎ.

Proof. Exercise.

Definition 3. Let (X, Î · Î) be a normed linear space. A sequence {x

n

} µ X is called a Cauchy sequence
if for every Á > 0, there exists an N

Á

so that

Îx

n

≠ x

m

Î < Á, for all n, m > N

Á

.

Proposition 5. Every convergent sequence is a Cauchy sequence.

Proof. Let {x

n

} µ X be a convergent sequence. For every Á > 0, there exists N so that

Îx

n

≠ xÎ <

Á

2 , for all n > N.

Then for n, m > N , we have
Îx

n

≠ x

m

Î Æ Îx

n

≠ xÎ + Îx

m

≠ xÎ < Á.

Therefore, {x

n

} is a Cauchy sequence.

Conversely, there exist normed linear spaces such that not every Cauchy sequence converges.

Example 2. Consider the set of all rational numbers Q. The set Q is a normed linear space under the
standard addition u+v, the scalar multiplication – u, and the absolute operator as a norm on Q, ÎuÎ = |u|
(u, v, – œ Q). Consider the following sequence that approximates

Ô
2 = 1.4142135...

x1 = 1, x2 = 1.4 = 14
10 , x3 = 1.41 = 141

100 , . . .

The sequence {x

n

} converges to
Ô

2 and is a Cauchy sequence in Q. However,
Ô

2 ”œ Q.

Example 3. Consider the following sequence of (piecewise linear) functions in C[0, 2]:

f

n

(x) =

Y
____]

____[

0 for 0 Æ x < 1 ≠ 1
n

1 for 1 < x Æ 2

1 + n(x ≠ 1) for 1 ≠ 1
n

Æ x Æ 1.

Claim: The sequence {f

n

} is a Cauchy sequence in (C[0, 2], Î ·Î1), but {f

n

} does not converge in (C[0, 2], Î ·
Î1).
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Proof. • Claim 1: {f

n

} is a Cauchy sequence w.r.t. Î · Î1. Indeed, with m > n, we have

Îf

n

≠ f

m

Î =
2⁄

0

|f
n

(x) ≠ f

m

(x)|dx

= area of the triangle formed by
3

1 ≠ 1
m

, 0
4

;
3

1 ≠ 1
n

, 0
4

; (1, 1)

=
1
n

≠ 1
m

2 <

1
2n

æ 0, as n æ Œ.

Suppose {f

n

} converges to some function f œ C[0, 2] w.r.t. Î · Î1, i.e., lim
næŒ

Îf

n

≠ fÎ1 = 0.

• Claim 2: The function f must be

f(x) =

Y
_]

_[

0 for 0 Æ x < 1

1 for 1 < x Æ 2

Part 2.1: Prove that f(x) = 1 for all 1 < x Æ 2. Suppose f(x) ”= 1 for all 1 < x Æ 2. Then there
exists x1 œ (1, 2] such that f(x1) ”= 1, f(x1) ≠ 1 ”= 0. Since f ≠ 1 œ C[0, 2], similar to the argument
in Example 1 - part 2, there exists a subinterval I of width ” such that x1 – I µ (1, 2] such that

|f(x) ≠ 1| Ø |f(x1) ≠ 1|
2 for all x œ I. Then

Îf

n

≠ fÎ1 =
2⁄

0

|f
n

(x) ≠ f(x)|dx Ø
⁄

I

|1 ≠ f(x)|dx Ø ”

|f(x1) ≠ 1|
2 .

Therefore, 0 = lim
næŒ

Îf

n

≠ fÎ1 Ø ”

|f(x1) ≠ 1|
2 > 0, a contradiction. That means f(x) = 1 for all

1 < x Æ 2.

Part 2.2: Prove that f(x) = 0 for all 0 Æ x < 1. (hint: follow the same argument as in Part 2.1).

• Claim 3: The function f is not continuous at x = 1 since lim
xæ1≠

f(x) = 0 and lim
xæ1+

= 1. Therefore,
f(x) ”œ C[0, 2], a contradiction.

In conclusion, {f

n

} is a Cauchy sequence in (C[0, 2], Î · Î1), but {f

n

} does not converge in (C[0, 2], Î ·
Î1).

2.2 Banach Spaces: Definitions and Examples

Definition 1. A normed linear space (X, d) is called a Banach space if every Cauchy sequence in X

converges (that is, has a limit which is an element of X).
Banach spaces are also called complete normed spaces.

Most proofs of completeness are based on the completeness of R.
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Theorem 1. (Rn

, Î · Î
p

) is a Banach space for 1 Æ p Æ Œ.

Proof. Exercise.

Theorem 2. (C[a, b], Î · Î1) is not a Banach space (See Example 3 Section 2.1)

Theorem 3. (C[a, b], Î · ÎŒ) is a Banach space.

Proof. Let {f

n

} be a Cauchy sequence in C[a, b] w.r.t. Î · ÎŒ. Then for every Á > 0, there exists N

Á

such
that for all n, m > N

Á

, we have

Á > Îf

n

≠ f

m

ÎŒ = max
tœ[a,b]

|f
n

(t) ≠ f

m

(t)|. (1)

• Step 1: Show that f

n

converges pointwise to some function f :

Fixed x œ [a, b]. Then for every n, m > N

Á

,

|f
n

(x) ≠ f

m

(x)| Æ Îf

n

≠ f

m

ÎŒ < Á.

Therefore, {f

n

(x)}
nØ1 is a Cauchy sequence in R. Since R is complete, {f

n

(x)}
nØ1 converges. Denote

f(x) := lim
næŒ

f

n

(x). In other words, we have constructed a function f : [a, b] æ R such that {f

n

}
converges pointwise to f .

• Step 2: Prove that {f

n

} converges uniformly to f , i.e., Îf

n

≠ fÎŒ æ 0. From the inequality (1), for
every Á > 0, there exists N

Á

such that

|f
n

(t) ≠ f

m

(t)| < Á, for all n, m > N

Á

, for all t œ [a, b].

Now letting m æ Œ and keeping everything else fixed, we get

|f
n

(t) ≠ f(t)| Æ Á, for all n > N

Á

, for all t œ [a, b].

Therefore {f

n

} converges uniformly to f , f

n

Î·ÎŒ≠≠≠æ f . Since the uniform convergence of continuous
functions is a continuous function, f œ C[a, b]. In conclusion, the Cauchy sequence {f

n

} converges
in C[a, b] w.r.t. the infty norm Î · ÎŒ. That completes the proof.

Theorem 4. The space (L
p

[a, b], Î · Î
p

) with 1 Æ p < Œ is a Banach space.

Proof. See next lecture.
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