Lecture 04: Riesz-Fischer Theorem

Lemma 4. Let $(X, \|\cdot\|)$ be a normed linear space and $\{x_n\}$ be a Cauchy sequence in X. Then there exists a subsequence $\{x_{n_k}\}_k \subset \{x_n\}$ such that

$$||x_{n_{k+1}} - x_{n_k}|| < \frac{1}{2^k}, \text{ for all } k = 1, 2, \dots$$

Proof. Since $\{x_n\}$ is a Cauchy sequence,

$$\diamond \text{ For } \varepsilon = \frac{1}{2}, \text{ there exists } n_1 > 0 \text{ such that } ||x_n - x_m|| < \frac{1}{2} \text{ for every } n, m \ge n_1.$$

$$\diamond \text{ For } \varepsilon = \frac{1}{2^2}, \text{ there exists } n_2 > n_1 \text{ such that } ||x_n - x_m|| < \frac{1}{2^2} \text{ for every } n, m \ge n_2.$$

$$\diamond \text{ For } \varepsilon = \frac{1}{2^3}, \text{ there exists } n_3 > n_2 \text{ such that } ||x_n - x_m|| < \frac{1}{2^3} \text{ for every } n, m \ge n_3.$$

$$\cdots$$

We have constructed a subsequence $\{x_{n_k}\}_k$ with

$$||x_{n_{k+1}} - x_{n_k}|| < \frac{1}{2^k}, \quad \text{for every } k \ge 1.$$

Lemma 5. Let $(X, \|\cdot\|)$ be a normed linear space and $\{x_n\}$ be a Cauchy sequence in X. If there is a subsequence $\{x_{n_k}\}_k \subset \{x_n\}$ such that $\lim_{k\to\infty} x_{n_k} = x \in X$, then $\{x_n\}$ also converges to that limit. Proof Pick $\varepsilon > 0$. Since $\lim_{k\to\infty} x_{n_k} = x$ there exists N, such that

Proof. Pick $\varepsilon > 0$. Since $\lim_{k \to \infty} x_{n_k} = x$, there exists N_1 such that

$$||x_{n_k} - x|| < \frac{\varepsilon}{2}$$
, for all $k \ge N_1$.

Since $\{x_n\}$ is a Cauchy sequence, there exists $N_2 > N_1$ such that

$$||x_n - x_m|| < \frac{\varepsilon}{2}$$
, for all $n, m \ge N_2$.

Note that $n_{N_2} \ge N_2 > N_1$. For all $n \ge N_2$, we have

$$||x_n - x|| \le ||x_{n_{N_2}} - x|| + ||x_{n_{N_2}} - x_n|| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$

which means $\lim_{n \to \infty} x_n = x$.

Recall Some Important Results from Measure Theory

Theorem 4 (Lebesgue Monotone Convergence Theorem). Assume $\Omega \subset \mathbb{R}^d$ is measurable. If $\{f_n : \Omega \to [0,\infty]\}_n$ is a sequence of nonnegative measurable functions satisfying

$$0 \leq f_1(x) \leq f_2(x) \leq \dots$$
 for a.e. $x \in \Omega$,

then

$$\lim_{n \to \infty} \int_{\Omega} f_n(x) \, dx = \int_{\Omega} \left(\lim_{n \to \infty} f_n(x) \right) \, dx.$$

Theorem 5 (Lebesgue Dominated Convergence Theorem). Assume $\Omega \subset \mathbb{R}^d$ is measurable. Let $\{f_n : \Omega \to [-\infty, \infty]\}_n$ be a sequence of measurable functions that converge pointwise for a.e. $x \in \Omega$. If there is a measurable function g such that

$$|f_n(x)| \le g(x)$$
 for every n and a.e. $x \in \Omega$,

then

$$\lim_{n \to \infty} \int_{\Omega} f_n(x) \, dx = \int_{\Omega} \left(\lim_{n \to \infty} f_n(x) \right) \, dx.$$

Recall:

$$L_p[a,b] = \{f : [a,b] \to \mathbb{R} \text{ measurable s.t. } \int_a^b |f(x)|^p dx < \infty\}/W,$$

where $W = \{f : [a, b] \to \mathbb{R} \mid f = 0 \quad a.e.\}$. In practice, we consider $[f] \in L_p[a, b]$ as a function $f : [a, b] \to \mathbb{R}$ with $\int_{a}^{b} |f(x)|^p dx < \infty$ and functions that coincides μ -almost everywhere are the same.

Theorem 6 (Riesz-Fischer theorem). The set $(L_p[a, b], \|\cdot\|_p)$ with $1 \le p < \infty$ is a Banach space.

Proof. Let $\{f_n\}$ be a Cauchy sequence in $(L_p[a, b], \|\cdot\|_p)$. By Lemma 4, there is a subsequence $\{f_{n_k}\}$ such that $\|f_{n_{k+1}} - f_{n_k}\| < \frac{1}{2^k}$, for every k = 1, 2, ...By Lemma 5, to prove $\{f_n\}$ converges, it suffices to show that $\{f_{n_k}\}$ converges in $(L_p[a, b], \|\cdot\|_p)$. Consider the following series

$$f_{n_1}(x) + \sum_{k=1}^{\infty} (f_{n_{k+1}}(x) - f_{n_k}(x))$$

and

$$|f_{n_1}(x)| + \sum_{k=1}^{\infty} |f_{n_{k+1}}(x) - f_{n_k}(x)|$$

The corresponding partial sums are

$$S_{1,m}(x) = f_{n_1}(x) + \sum_{k=1}^{m} (f_{n_{k+1}}(x) - f_{n_k}(x)) = f_{n_{m+1}}(x),$$
$$S_{2,m}(x) = |f_{n_1}(x)| + \sum_{k=1}^{m} |f_{n_{k+1}}(x) - f_{n_k}(x)|.$$

Since $\{S_{2,m}(x)\}$ is an increasing sequence, the limit

$$g(x) := \lim_{m \to \infty} S_{2,m}(x) = |f_{n_1}(x)| + \sum_{k=1}^{\infty} |f_{n_{k+1}}(x) - f_{n_k}(x)|$$

always exists, where g(x) could be $+\infty$ at some points.

• Step 1: Prove that $g \in L_p[a, b]$.

The triangle inequality in $L_p[a, b]$ gives

$$||S_{2,m}||_p \le ||f_{n_1}||_p + \sum_{k=1}^m ||f_{n_{k+1}} - f_{n_k}||_p \le ||f_{n_1}||_p + \sum_{k=1}^m \frac{1}{2^k} < ||f_{n_1}||_p + 1.$$

Therefore

$$\int_{a}^{b} (S_{2,m}(x))^{p} dx = \|S_{2,m}\|_{p}^{p} \le (\|f_{n_{1}}\|_{p} + 1)^{p},$$

and

$$\lim_{m \to \infty} \int_{a}^{b} (S_{2,m}(x))^{p} dx \le (\|f_{n_{1}}(x)\|_{p} + 1)^{p} < \infty.$$

On the other hand, since $\{(S_{2,m}(x))^p\}$ is a monotone increasing sequence of nonnegative functions, the Lebesgue monotone convergence theorem implies

$$\lim_{m \to \infty} \int_{a}^{b} (S_{2,m}(x))^{p} dx = \int_{a}^{b} (\lim_{m \to \infty} (S_{2,m}(x))^{p}) dx = \int_{a}^{b} g(x)^{p} dx$$

Hence $\int_{a}^{b} g(x)^{p} dx < \infty$ and $g \in L_{p}[a, b]$. It also implies g(x) is finite a.e. in [a, b]. In other words, $S_{2,m}(x)$ pointwise converges a.e. in [a, b]. Hence $S_{1,m}(x)$ pointwise converges a.e. in [a, b] to a finite value f(x):

$$f(x) := \lim_{m \to \infty} S_{1,m}(x) = \lim_{m \to \infty} f_{n_m}(x).$$

- Step 2: Prove that $f \in L_p[a, b]$. Since $|S_{1,m}(x)| \leq S_{2,m}(x) \leq g(x)$, we have $|f(x)| \leq g(x)$. Since $g \in L_p[a, b]$, we conclude that $f \in L_p[a, b]$.
- Step 3: Prove that $\lim_{m \to \infty} ||f_{n_m} f||_p = 0.$ We have

$$|f_{n_m}(x) - f(x)|^p \le (2\max\{|f(x)|, |S_{1,m-1}(x)|\})^p \le (2g(x))^p.$$

Since $(2g(x))^p$ is measurable, applying the Lebesgue Dominated Convergence Theorem, we obtain

$$\lim_{m \to \infty} \int_{a}^{b} |f_{n_m}(x) - f(x)|^p \, dx = \int_{a}^{b} \left(\lim_{m \to \infty} |f_{n_m}(x) - f(x)|^p \right) \, dx = 0.$$

It means $\lim_{m \to \infty} ||f_{n_m} - f||_p = 0.$

Note: we also can prove $f \in L_p[a, b]$ after proving $\lim_{m \to \infty} ||f_{n_m} - f||_p = 0$. For $\varepsilon = 1$, there exists N so that $||f_{n_m} - f||_p < 1$ for all $m \ge N$. Then

$$||f||_p \le ||f_{n_N} - f||_p + ||f_{n_N}||_p < 1 + ||f_{n_N}||_p < \infty.$$

In conclusion, we have proved that $(L_p[a, b], \|\cdot\|_p)$ is a Banach space.