
Lecture 04: Riesz-Fischer Theorem
Lemma 4. Let (X, Î ·Î) be a normed linear space and {x

n

} be a Cauchy sequence in X. Then there exists
a subsequence {x

nk}
k

µ {x

n

} such that

Îx

nk+1 ≠ x

nkÎ <

1
2k

, for all k = 1, 2, . . .

Proof. Since {x

n

} is a Cauchy sequence,

ù For Á = 1
2, there exists n1 > 0 such that Îx

n

≠ x

m

Î <

1
2 for every n, m Ø n1.

ù For Á = 1
22 , there exists n2 > n1 such that Îx

n

≠ x

m

Î <

1
22 for every n, m Ø n2.

ù For Á = 1
23 , there exists n3 > n2 such that Îx

n

≠ x

m

Î <

1
23 for every n, m Ø n3.

· · ·
We have constructed a subsequence {x

nk}
k

with

Îx

nk+1 ≠ x

nkÎ <

1
2k

, for every k Ø 1.

Lemma 5. Let (X, Î · Î) be a normed linear space and {x

n

} be a Cauchy sequence in X. If there is a
subsequence {x

nk}
k

µ {x

n

} such that lim
kæŒ

x

nk = x œ X, then {x

n

} also converges to that limit.

Proof. Pick Á > 0. Since lim
kæŒ

x

nk = x, there exists N1 such that

Îx

nk ≠ xÎ <

Á

2 , for all k Ø N1.

Since {x

n

} is a Cauchy sequence, there exists N2 > N1 such that

Îx

n

≠ x

m

Î <

Á

2 , for all n, m Ø N2.

Note that n

N2 Ø N2 > N1. For all n Ø N2, we have

Îx

n

≠ xÎ Æ Îx

nN2
≠ xÎ + Îx

nN2
≠ x

n

Î <

Á

2 + Á

2 = Á,

which means lim
næŒ

x

n

= x.

Recall Some Important Results from Measure Theory
Theorem 4 (Lebesgue Monotone Convergence Theorem). Assume � µ Rd is measurable. If {f

n

: � æ [0, Œ]}
n

is a sequence of nonnegative measurable functions satisfying

0 Æ f1(x) Æ f2(x) Æ . . . for a.e. x œ �,

then
lim

næŒ

⁄

�

f

n

(x) dx =
⁄

�

1
lim

næŒ
f

n

(x)
2

dx.
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Theorem 5 (Lebesgue Dominated Convergence Theorem). Assume � µ Rd is measurable. Let
{f

n

: � æ [≠Œ, Œ]}
n

be a sequence of measurable functions that converge pointwise for a.e. x œ �. If
there is a measurable function g such that

|f
n

(x)| Æ g(x) for every n and a.e. x œ �,

then
lim

næŒ

⁄

�

f

n

(x) dx =
⁄

�

1
lim

næŒ
f

n

(x)
2

dx.

Recall:

L

p

[a, b] = {f : [a, b] æ R measurable s.t.
b⁄

a

|f(x)|pdx < Œ}/W,

where W = {f : [a, b] æ R | f = 0 a.e.}. In practice, we consider [f ] œ L

p

[a, b] as a function f : [a, b] æ R

with
bs

a

|f(x)|pdx < Œ and functions that coincides µ-almost everywhere are the same.

Theorem 6 (Riesz-Fischer theorem). The set (L
p

[a, b], Î · Î
p

) with 1 Æ p < Œ is a Banach space.

Proof. Let {f

n

} be a Cauchy sequence in (L
p

[a, b], Î · Î
p

).
By Lemma 4, there is a subsequence {f

nk} such that Îf

nk+1 ≠ f

nkÎ <

1
2k

, for every k = 1, 2, . . .

By Lemma 5, to prove {f

n

} converges, it su�ces to show that {f

nk} converges in (L
p

[a, b], Î ·Î
p

). Consider
the following series

f

n1(x) +
Œÿ

k=1
(f

nk+1(x) ≠ f

nk(x))

and
|f

n1(x)| +
Œÿ

k=1
|f

nk+1(x) ≠ f

nk(x)|.

The corresponding partial sums are

S1,m

(x) = f

n1(x) +
mÿ

k=1
(f

nk+1(x) ≠ f

nk(x)) = f

nm+1(x),

S2,m

(x) = |f
n1(x)| +

mÿ

k=1
|f

nk+1(x) ≠ f

nk(x)|.

Since {S2,m

(x)} is an increasing sequence, the limit

g(x) := lim
mæŒ

S2,m

(x) = |f
n1(x)| +

Œÿ

k=1
|f

nk+1(x) ≠ f

nk(x)|

always exists, where g(x) could be +Œ at some points.
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• Step 1: Prove that g œ L

p

[a, b].
The triangle inequality in L

p

[a, b] gives

ÎS2,m

Î
p

Æ Îf

n1Î
p

+
mÿ

k=1
Îf

nk+1 ≠ f

nkÎ
p

Æ Îf

n1Î
p

+
mÿ

k=1

1
2k

< Îf

n1Î
p

+ 1.

Therefore
b⁄

a

(S2,m

(x))p

dx = ÎS2,m

Îp

p

Æ (Îf

n1Î
p

+ 1)p

,

and

lim
mæŒ

b⁄

a

(S2,m

(x))p

dx Æ (Îf

n1(x)Î
p

+ 1)p

< Œ.

On the other hand, since {(S2,m

(x))p} is a monotone increasing sequence of nonnegative functions,
the Lebesgue monotone convergence theorem implies

lim
mæŒ

b⁄

a

(S2,m

(x))p

dx =
b⁄

a

( lim
mæŒ

(S2,m

(x))p) dx =
b⁄

a

g(x)p

dx.

Hence
bs

a

g(x)p

dx < Œ and g œ L

p

[a, b]. It also implies g(x) is finite a.e. in [a, b]. In other words,
S2,m

(x) pointwise converges a.e. in [a, b]. Hence S1,m

(x) pointwise converges a.e. in [a, b] to a finite
value f(x):

f(x) := lim
mæŒ

S1,m

(x) = lim
mæŒ

f

nm(x).

• Step 2: Prove that f œ L

p

[a, b].
Since |S1,m

(x)| Æ S2,m

(x) Æ g(x), we have |f(x)| Æ g(x). Since g œ L

p

[a, b], we conclude that
f œ L

p

[a, b].

• Step 3: Prove that lim
mæŒ

Îf

nm ≠ fÎ
p

= 0.
We have

|f
nm(x) ≠ f(x)|p Æ (2 max {|f(x)|, |S1,m≠1(x)|})p Æ (2g(x))p

.

Since (2g(x))p is measurable, applying the Lebesgue Dominated Convergence Theorem, we obtain

lim
mæŒ

b⁄

a

|f
nm(x) ≠ f(x)|p dx =

b⁄

a

1
lim

mæŒ
|f

nm(x) ≠ f(x)|p
2

dx = 0.

It means lim
mæŒ

Îf

nm ≠ fÎ
p

= 0.

Note: we also can prove f œ L

p

[a, b] after proving lim
mæŒ

Îf

nm ≠ fÎ
p

= 0. For Á = 1, there exists N

so that Îf

nm ≠ fÎ
p

< 1 for all m Ø N . Then

ÎfÎ
p

Æ Îf

nN ≠ fÎ
p

+ Îf

nN Î
p

< 1 + Îf

nN Î
p

< Œ.

In conclusion, we have proved that (L
p

[a, b], Î · Î
p

) is a Banach space.
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