Cla, b]

RN
—» Cauchy convergence criterion

|

normed space
(norm ||ul|)

1

linear space
(linear combination au + Bv)

—» convergence and boundedness

— dimension and convexity

Figure 1: Source: from Zeidler’s book
Recap: So far, we have been studied the completeness of the following normed linear spaces.
L. (R™ | -lp) (with 1 <p < o0) is a Banach space.
2. (Cla,bl,| - |lso) is @ Banach space. (Proved in class)
3. (Lpla,b], | - ||p) (with 1 < p < o0) is a Banach space. (Proved in class)
More examples of Banach spaces (Exercises):
4. (L, ] - |lp) (with 1 <p < o00) is a Banach space.
5. (Leola,b], || - [|so) is @ Banach space, where
Loola,b] :={f : [a,b] = R | There exists an M such that |f(z)| < M for almost every z € [a,b] }/W,
W={f:[a,b] = R| f=0 ae.}

I flloo :=esssup |f(x)| = inf{M | |f(x)| < M for almost every z € [a,b]}

z€la,b

Some incomplete normed linear spaces:
6. (Cla,b], |- ]]1) is not a Banach space. (Proved in class)

7. (Cla,b],]| - ||2) is not a Banach space. (Exercise)
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Lecture 05: Open and Closed Sets. Convexity. Banach Fixed-Point Theorem

2.3 Open and Closed Sets

Definition 1. Let (X, || - ||) be a normed linear space. Given a point xg € X and a real number r > 0,

Define the following sets

B(zo,r) ={z € X |||z — zo| < r} (open ball)
B(zg,r) ={z € X |||z —zo| < r} (closed ball)
S(zo,r) ={r € X | ||z —xo|| =7} (sphere)

In all three cases, xg is called the center, and r the radius.

Definition 2. A subset M of a normed linear space X is said to be open if for every xg € M, there exists
r > 0 such that B(xzg,r) C M.

A subset M of a normed linear space X is said to be closed if the situation {z,} C M, x, - x € X
itmplies x € M.

Proposition 6. Let (X, || -||) be a normed linear space and M be a subset of X. Then M is open if and
only if M€ := X\M is closed.

Proof. (=) Suppose M is open, we need to show that M€ is closed. Let {x,} C M€ and z, M> e X.

Assume x ¢ M€, then x € M. Since M is open, by definition, there exists r > 0 such that B(z,r) C M.
On the other hand, since z,, — x, there exists N, so that ||z, — z|| < r for every n > N,. Choose
no = [Ny + 1]. Then z,, € B(x,r) C M. Therefore, z,, € M N M¢ = (), a contradiction. Hence, the
assumption x € M€ is wrong, which means x € M¢.

(<) Suppose M€ is closed, we need to show that M is open. We will prove by contradiction. Assume
M is not open. Then there exists zg € M so that for every r > 0, B(xg,r) ¢ M, that is B(xg,r) N M # (.
Let x, € B (:Bo, %) N M¢€. Since

1
||37n_330H<ﬁ_>0 as n — 0o,

the sequence x,, — xo ( due to Squeeze Limit Theorem). Since M€ is closed and {x,,} C M€, by definition,
xg € M. We have zg € M N M¢ = (), a contradiction. Therefore, the assumption is wrong and M is
open. ]

Proposition 7. Let (X, || -||) be a normed linear space, xo € X, and r € Ry . Then B(xo,r) is open and

B(xg,r) is closed.

Proof. (a). Let x1 € B(xo,7). Then ||x1 — z¢|| < r. Denote r1 = r — ||x1 — zo]].
Claim: B(x1,7r1) C B(zo,r). Indeed, for any y € B(x1,r1), we have

|y — zoll < lly — z1l| + [[z1 — wol| <71+ [[21 — 20| = 7,
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which implies y € B(xo, ). Hence B(z1,r1) C B(zg, 7).

(b). Let {x,} C B(xo,r) and z, — = € X. Then ||z, — z¢|| < r. Using Proposition 4, we have
|xr, — ol = ||z — o] By Squeeze Limit Theorem, we have ||z — x¢|| < r. Therefore = € B(z,r). O

Theorem 1. Let (X, | - ||) be a Banach space and W is a subspace of X. Then (W,|| -||) is a Banach
space iff W is closed.

Proof. (=) Suppose (W,|| -||) is a Banach space, {z,} € W, and Jim 2, =z € X. Since {z,} is a
convergent sequence in X, {z,} is a Cauchy sequence in X. In addition, since {z,} € W, {x,} is a
Cauchy sequence in W. Because W is a Banach space, there exists y € W so that z,, -y € W C X. By
the uniqueness of the limits, x = y. Therefore W is closed.

(<) Suppose W is closed. Let {z,,} C W is a Cauchy sequence. Since X is a Banach space, z,, — x € X.
Since W is closed, x € W. Therefore, W is a Banach space. O

2.4 Convexity
Definition 1. The set M in a linear space is called convex iff
u,v €M and 0<a<1l imply au+ (1—a)ve M.
The function f : M — R s called convex iff M is convexr and
flou+ (1 —a)) <af(u)+ (1 -a)f(v),
for all u,v € M and all o € [0,1].
Example 1. Let X be a normed space, and let ug € X, r > 0 be given Then the closed ball
B={ueX||u-ul<r}
18 convez.
Proof. If u,v € Band 0 < a <1, we have

lau + (1 = a)v —uol| = fla(u = ug) + (1 = @) (v — uo)||
< lla(u = uo) | + [[(T = @) (v = uo)|

<allu—up||l+(1—a)||lv—wl| <ar+(1—a)r=r.

O
Example 2. Let (X,| - ||) be a normed space. The function f: X — R, f(u) := ||u|| is continuous and
convex.
Proof. Exercise. O
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RN

— contraction A
(| Au — Av” <kllu—ovl, 0< k< 1) compact operator A

1 /

Banach fixed-point theorem Schauder fixed-point theorem
(Au =u) (Au =u)
Picard-Lindel6f theorem for Peano theorem for
the ordinary differential the ordinary differential
equation u' = F'(x, u) equation ' = F'(z, u)
continuous operator convex set

~N

Brower fixed-point theorem in RN

+ compactness

\

Schauder fixed-point theorem in Banach spaces

1

the Leray-Schauder principle and a priori estimates

Figure 2: Source: From Zeidler’s book.

2.5 The Banach Fixed-Point Theorem and the Iteration Method

Definition 1. Let M and Y be sets. An operator A : M — Y associates to each point w € M a point
v €Y, denoted by v = Au.

Example 1. Let —0o < a < b < co and let the function

F:la,b] xR—R
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be continuous. For each u € Cla,b|, define
Au: [a,b] = R, (Au)(z) := /F(t,u(t))dt for all x € [a,b].

Since w and F' are continuous function, G(t) = F(t,u(t)) is also continuous. By the Fundamental Theorem

of Calculus, Au is continuous. In conclusion, we have defined an operator from Cla,b] to itself:

A: Cla,b] = Cla,b], (Au)(x):= /F(t,u(t))dt for all x € [a,b].

Next, we will discuss about the Banach fixed-point theorem. It represents a fundamental convergence
theorem for a wide class of iteration methods such as Newton’s method. It is also used to prove the
existence and uniqueness of solutions to certain ODEs (Picard-Lindel6f Theorem), to integral equations,
and to value iteration, policy iteration, and policy evaluation of reinforcement learning.

Problem statement: Given an operator A : M — M, we want to solve the operator equation
u=Au, ué€eM, (2)
by using the iteration method:
ug € M, upy1=Au, n=0,1,..., (3)
Each solution of u = Aw is called a fixed point of the operator A.
Theorem 1 (Banach Fixed-Point Theorem). Assume that:
(i) M is a closed, nonempty set in the Banach space X
(ii) The operator A : M — M is k — contractive, i.e.,
|[Au — Av|| < k|lu — || for all u,v € M
and fized k € [0,1).
Then the following hold true:

1. Existence and uniqueness. The equation u = Au, w € M has exactly one solution u, € M.

2. Convergence of the iteration method. For each given uy € M, the sequence {u,} constructed by the

iteration method (3) converges to the unique solution u, of Equation (2).

3. Error estimates. For alln =0,1,..., we have a priori error estimate
L
lun =l < T llur = woll,
and for allm =1,2,..., we have a posteriori error estimate
k
[un — ux| < 1— kHUn — Un—1]|-
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4. Rate of convergence. For alln=0,1,... we have

[uns1 = well < Kljug — wl].

Proof. 1 & 2. Step 1: Show that {u,} is a Cauchy sequence in X. Then since X is Banach, {u,} to some
ux € X. Since M is closed and {z,} C M, u, € M.
Step 1.1: Evaluate

lunss = tnll = At — A1l < Fllun — tnll < K2 uny — ozl < - < K"llur — o]l
Step 1.2: Evaluate

[untm — tnll = [[(Un4m — Unpm—1) + -+ + (Unt2 — Ung1) + (Unt1 — un)||
< Jwntm = tngm—tll + -+ [[tng1 — unl]
< (K" K Jun — o
1-Km
1-k

§k”(km_1+---+k+1)||u1—uo|| = k" Hul—u0||

n

k
<
T 1-k

|ur — ol

Since k € [0,1), k™ — 0 as n — oco. Therefore the sequence {u,} is Cauchy. Since X is Banach, {u,} to
some u, € X. Also, because M is closed and {x,} C M, u, € M.

Step 2: Show that u, = Au,.
Observe that

n—oo

lunt1 — Auyl| = ||Aun — Auy|| < Eljuy, — ue —— 0.
Therefore, Au, = lim up11 = Us.
n—oo

Step 3: Uniqueness of the solution: Show that if u, = Au, and v, = Av, for some v, € M then u, = v,.
We have

e = vl = Aus = Ava| < Kllus = velly (= 1)y — 0. = 0
Since k € [0,1), this implies ||us — vi|| = 0, and hence u, = v,.

n

3. From ||tn4m — un|| < ||lur — upl|, letting m — oo, we get

“1—-k

. — <
e = uall <

llur —upl, foraln=0,1,...

Notice that

Un4+m — Un|| > [|Un+m — Un+m—1 ce Up4+1 — Un|| > T Up — Un—-1]] > Up — Un—1
| < [+ =+ | < (K™ +---+ k) | < | |

1—-k

Letting m — oo, we get

Up — Us|| < |tn — un—1]|-

k
1—-k
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4. It comes from

[unsr = well = | Aun = Au|] < Fflun — us]-

d

Comments: The priori error estimates can help to determine the maximal number of iterations required
to attain a given precision. The posteriori error estimates base on u, and u,41 to determine the accuracy

of the approximation u,+1. Experience shows that a posteriori estimates are better than a priori estimates.
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