

Figure 1: Source: from Zeidler's book

Recap: So far, we have been studied the completeness of the following normed linear spaces.

- 1. $(\mathbb{R}^n,\|\cdot\|_p)$ (with $1\leq p\leq\infty)$ is a Banach space.
- 2. $(C[a,b],\|\cdot\|_\infty)$ is a Banach space. (Proved in class)
- 3. $(L_p[a, b], \|\cdot\|_p)$ (with $1 \le p < \infty$) is a Banach space. (Proved in class)

More examples of Banach spaces (Exercises):

- 4. $(\ell_p, \|\cdot\|_p)$ (with $1 \le p \le \infty$) is a Banach space.
- 5. $(L_{\infty}[a, b], \| \cdot \|_{\infty})$ is a Banach space, where

 $L_{\infty}[a,b] := \{f : [a,b] \to \mathbb{R} \mid \text{There exists an } M \text{ such that } |f(x)| \le M \text{ for almost every } x \in [a,b] \} / W,$

$$W = \{f : [a, b] \to \mathbb{R} \mid f = 0 \quad a.e.\}$$
$$\|f\|_{\infty} := \underset{x \in [a, b]}{\operatorname{ess \, sup}} |f(x)| = \inf\{M \mid |f(x)| \le M \text{ for almost every } x \in [a, b]\}$$

Some incomplete normed linear spaces:

- 6. $(C[a, b], \|\cdot\|_1)$ is not a Banach space. (Proved in class)
- 7. $(C[a, b], \|\cdot\|_2)$ is not a Banach space. (Exercise)

Lecture 05: Open and Closed Sets. Convexity. Banach Fixed-Point Theorem

2.3 Open and Closed Sets

Definition 1. Let $(X, \|\cdot\|)$ be a normed linear space. Given a point $x_0 \in X$ and a real number r > 0, Define the following sets

$B(x_0, r) = \{ x \in X \mid x - x_0 < r \}$	(open ball)
$\overline{B(x_0,r)} = \{x \in X \mid x - x_0 \le r\}$	(closed ball)
$S(x_0, r) = \{x \in X \mid x - x_0 = r\}$	(sphere)

In all three cases, x_0 is called the center, and r the radius.

Definition 2. A subset M of a normed linear space X is said to be open if for every $x_0 \in M$, there exists r > 0 such that $B(x_0, r) \subset M$.

A subset M of a normed linear space X is said to be closed if the situation $\{x_n\} \subset M, x_n \to x \in X$ implies $x \in M$.

Proposition 6. Let $(X, \|\cdot\|)$ be a normed linear space and M be a subset of X. Then M is open if and only if $M^c := X \setminus M$ is closed.

Proof. (\Rightarrow) Suppose M is open, we need to show that M^c is closed. Let $\{x_n\} \subset M^c$ and $x_n \xrightarrow{\|\cdot\|} x \in X$. Assume $x \notin M^c$, then $x \in M$. Since M is open, by definition, there exists r > 0 such that $B(x, r) \subset M$. On the other hand, since $x_n \to x$, there exists N_r so that $||x_n - x|| < r$ for every $n > N_r$. Choose $n_0 = [N_r + 1]$. Then $x_{n_0} \in B(x, r) \subset M$. Therefore, $x_{n_0} \in M \cap M^c = \emptyset$, a contradiction. Hence, the assumption $x \notin M^c$ is wrong, which means $x \in M^c$.

(\Leftarrow) Suppose M^c is closed, we need to show that M is open. We will prove by contradiction. Assume M is not open. Then there exists $x_0 \in M$ so that for every r > 0, $B(x_0, r) \not\subset M$, that is $B(x_0, r) \cap M^c \neq \emptyset$. Let $x_n \in B\left(x_0, \frac{1}{n}\right) \cap M^c$. Since

$$||x_n - x_0|| < \frac{1}{n} \to 0 \quad \text{as} \quad n \to \infty,$$

the sequence $x_n \to x_0$ (due to Squeeze Limit Theorem). Since M^c is closed and $\{x_n\} \subset M^c$, by definition, $x_0 \in M^c$. We have $x_0 \in M \cap M^c = \emptyset$, a contradiction. Therefore, the assumption is wrong and M is open.

Proposition 7. Let $(X, \|\cdot\|)$ be a normed linear space, $x_0 \in X$, and $r \in \mathbb{R}_+$. Then $B(x_0, r)$ is open and $\overline{B(x_0, r)}$ is closed.

Proof. (a). Let $x_1 \in B(x_0, r)$. Then $||x_1 - x_0|| < r$. Denote $r_1 = r - ||x_1 - x_0||$. Claim: $B(x_1, r_1) \subset B(x_0, r)$. Indeed, for any $y \in B(x_1, r_1)$, we have

$$||y - x_0|| \le ||y - x_1|| + ||x_1 - x_0|| < r_1 + ||x_1 - x_0|| = r,$$

which implies $y \in B(x_0, r)$. Hence $B(x_1, r_1) \subset B(x_0, r)$.

(b). Let $\{x_n\} \subset \overline{B(x_0, r)}$ and $x_n \to x \in X$. Then $||x_n - x_0|| \leq r$. Using Proposition 4, we have $||x_n - x_0|| \to ||x - x_0||$. By Squeeze Limit Theorem, we have $||x - x_0|| \leq r$. Therefore $x \in \overline{B(x_0, r)}$.

Theorem 1. Let $(X, \|\cdot\|)$ be a Banach space and \mathbb{W} is a subspace of X. Then $(\mathbb{W}, \|\cdot\|)$ is a Banach space iff \mathbb{W} is closed.

Proof. (\Rightarrow) Suppose $(\mathbb{W}, \|\cdot\|)$ is a Banach space, $\{x_n\} \subset \mathbb{W}$, and $\lim_{n\to\infty} x_n = x \in X$. Since $\{x_n\}$ is a convergent sequence in X, $\{x_n\}$ is a Cauchy sequence in X. In addition, since $\{x_n\} \subset W$, $\{x_n\}$ is a Cauchy sequence in \mathbb{W} . Because \mathbb{W} is a Banach space, there exists $y \in \mathbb{W}$ so that $x_n \to y \in \mathbb{W} \subset X$. By the uniqueness of the limits, x = y. Therefore \mathbb{W} is closed.

(\Leftarrow) Suppose \mathbb{W} is closed. Let $\{x_n\} \subset \mathbb{W}$ is a Cauchy sequence. Since X is a Banach space, $x_n \to x \in X$. Since \mathbb{W} is closed, $x \in \mathbb{W}$. Therefore, \mathbb{W} is a Banach space.

2.4 Convexity

Definition 1. The set M in a linear space is called convex iff

$$u, v \in M$$
 and $0 \le \alpha \le 1$ imply $\alpha u + (1 - \alpha)v \in M$.

The function $f: M \to \mathbb{R}$ is called convex iff M is convex and

$$f(\alpha u + (1 - \alpha)v) \le \alpha f(u) + (1 - \alpha)f(v),$$

for all $u, v \in M$ and all $\alpha \in [0, 1]$.

Example 1. Let X be a normed space, and let $u_0 \in X$, $r \ge 0$ be given Then the closed ball

$$B = \{ u \in X \mid ||u - u_0|| \le r \}$$

is convex.

Proof. If $u, v \in B$ and $0 \le \alpha \le 1$, we have

$$\begin{aligned} \|\alpha u + (1-\alpha)v - u_0\| &= \|\alpha (u-u_0) + (1-\alpha)(v-u_0)\| \\ &\leq \|\alpha (u-u_0)\| + \|(1-\alpha)(v-u_0)\| \\ &\leq \alpha \|u-u_0\| + (1-\alpha)\|v-u_0\| \leq \alpha r + (1-\alpha)r = r. \end{aligned}$$

Example 2. Let $(X, \|\cdot\|)$ be a normed space. The function $f : X \to \mathbb{R}$, $f(u) := \|u\|$ is continuous and convex.

Proof. Exercise.

Figure 2: Source: From Zeidler's book.

2.5 The Banach Fixed-Point Theorem and the Iteration Method

Definition 1. Let M and Y be sets. An operator $A : M \to Y$ associates to each point $u \in M$ a point $v \in Y$, denoted by v = Au.

Example 1. Let $-\infty < a < b < \infty$ and let the function

 $F:[a,b]\times \mathbb{R}\to \mathbb{R}$

be continuous. For each $u \in C[a, b]$, define

$$Au: [a,b] \to \mathbb{R}, \ (Au)(x):=\int_{a}^{x} F(t,u(t))dt \quad for \ all \ x \in [a,b].$$

Since u and F are continuous function, G(t) = F(t, u(t)) is also continuous. By the Fundamental Theorem of Calculus, Au is continuous. In conclusion, we have defined an operator from C[a, b] to itself:

$$A: C[a,b] \to C[a,b], \quad (Au)(x) := \int_{a}^{x} F(t,u(t))dt \quad for \ all \ x \in [a,b].$$

Next, we will discuss about the Banach fixed-point theorem. It represents a fundamental convergence theorem for a wide class of iteration methods such as Newton's method. It is also used to prove the existence and uniqueness of solutions to certain ODEs (Picard-Lindelöf Theorem), to integral equations, and to value iteration, policy iteration, and policy evaluation of reinforcement learning.

Problem statement: Given an operator $A: M \to M$, we want to solve the operator equation

$$u = Au, \quad u \in M,\tag{2}$$

by using the iteration method:

$$u_0 \in M, \quad u_{n+1} = Au_n \quad n = 0, 1, \dots,$$
 (3)

Each solution of u = Au is called a fixed point of the operator A.

Theorem 1 (Banach Fixed-Point Theorem). Assume that:

- (i) M is a closed, nonempty set in the Banach space X
- (ii) The operator $A: M \to M$ is k-contractive, i.e.,

$$||Au - Av|| \le k ||u - v|| \quad for \ all \ u, v \in M$$

and fixed $k \in [0, 1)$.

Then the following hold true:

- 1. Existence and uniqueness. The equation u = Au, $u \in M$ has exactly one solution $u_* \in M$.
- 2. Convergence of the iteration method. For each given $u_0 \in M$, the sequence $\{u_n\}$ constructed by the iteration method (3) converges to the unique solution u_* of Equation (2).
- 3. Error estimates. For all n = 0, 1, ..., we have a priori error estimate

$$||u_n - u_*|| \le \frac{k^n}{1-k} ||u_1 - u_0||,$$

and for all n = 1, 2, ..., we have a posteriori error estimate

$$|u_n - u_*|| \le \frac{k}{1-k} ||u_n - u_{n-1}||.$$

4. Rate of convergence. For all n = 0, 1, ... we have

$$||u_{n+1} - u_*|| \le k ||u_n - u_*||.$$

Proof. 1 & 2. Step 1: Show that $\{u_n\}$ is a Cauchy sequence in X. Then since X is Banach, $\{u_n\}$ to some $u_* \in X$. Since M is closed and $\{x_n\} \subset M$, $u_* \in M$. Step 1.1: Evaluate

$$||u_{n+1} - u_n|| = ||Au_n - Au_{n-1}|| \le k ||u_n - u_{n-1}|| \le k^2 ||u_{n-1} - u_{n-2}|| \le \dots \le k^n ||u_1 - u_0||.$$

Step 1.2: Evaluate

$$\begin{aligned} \|u_{n+m} - u_n\| &= \|(u_{n+m} - u_{n+m-1}) + \dots + (u_{n+2} - u_{n+1}) + (u_{n+1} - u_n)\| \\ &\leq \|u_{n+m} - u_{n+m-1}\| + \dots + \|u_{n+1} - u_n\| \\ &\leq (k^{n+m-1} + \dots + k^n) \|u_1 - u_0\| \\ &\leq k^n (k^{m-1} + \dots + k + 1) \|u_1 - u_0\| = k^n \frac{1 - k^m}{1 - k} \|u_1 - u_0\| \\ &\leq \frac{k^n}{1 - k} \|u_1 - u_0\|. \end{aligned}$$

Since $k \in [0,1), k^n \to 0$ as $n \to \infty$. Therefore the sequence $\{u_n\}$ is Cauchy. Since X is Banach, $\{u_n\}$ to some $u_* \in X$. Also, because M is closed and $\{x_n\} \subset M, u_* \in M$.

Step 2: Show that $u_* = Au_*$. Observe that

 $||u_{n+1} - Au_*|| = ||Au_n - Au_*|| \le k ||u_n - u_* \xrightarrow{n \to \infty} 0.$

Therefore, $Au_* = \lim_{n \to \infty} u_{n+1} = u_*$.

Step 3: Uniqueness of the solution: Show that if $u_* = Au_*$ and $v_* = Av_*$ for some $v_* \in M$ then $u_* = v_*$. We have

$$||u_* - v_*|| = ||Au_* - Av_*|| \le k ||u_* - v_*||, \quad (k-1)||u_* - v_*|| \ge 0$$

Since $k \in [0, 1)$, this implies $||u_* - v_*|| = 0$, and hence $u_* = v_*$.

3. From
$$||u_{n+m} - u_n|| \le \frac{k^n}{1-k} ||u_1 - u_0||$$
, letting $m \to \infty$, we get
 $||u_* - u_n|| \le \frac{k^n}{1-k} ||u_1 - u_0||$, for all $n = 0, 1, ...$

Notice that

 $||u_{n+m} - u_n|| \le ||u_{n+m} - u_{n+m-1}|| + \dots + ||u_{n+1} - u_n|| \le (k^m + \dots + k)||u_n - u_{n-1}|| \le \frac{k}{1-k}||u_n - u_{n-1}||$

Letting $m \to \infty$, we get

$$|u_n - u_*|| \le \frac{k}{1-k} ||u_n - u_{n-1}||.$$

4. It comes from

$$||u_{n+1} - u_*|| = ||Au_n - Au_*|| \le k ||u_n - u_*||.$$

Comments: The priori error estimates can help to determine the maximal number of iterations required to attain a given precision. The posteriori error estimates base on u_n and u_{n+1} to determine the accuracy of the approximation u_{n+1} . Experience shows that a posteriori estimates are better than a priori estimates.