
Figure 1: Source: from Zeidler’s book

Recap: So far, we have been studied the completeness of the following normed linear spaces.

1. (Rn

, Î · Î
p

) (with 1 Æ p Æ Œ) is a Banach space.

2. (C[a, b], Î · ÎŒ) is a Banach space. (Proved in class)

3. (L
p

[a, b], Î · Î
p

) (with 1 Æ p < Œ) is a Banach space. (Proved in class)

More examples of Banach spaces (Exercises):

4. (¸
p

, Î · Î
p

) (with 1 Æ p Æ Œ) is a Banach space.

5. (LŒ[a, b], Î · ÎŒ) is a Banach space, where

LŒ[a, b] := {f : [a, b] æ R | There exists an M such that |f(x)| Æ M for almost every x œ [a, b] }/W,

W = {f : [a, b] æ R | f = 0 a.e.}

ÎfÎŒ := ess sup
xœ[a,b]

|f(x)| = inf{M | |f(x)| Æ M for almost every x œ [a, b]}

Some incomplete normed linear spaces:

6. (C[a, b], Î · Î1) is not a Banach space. (Proved in class)

7. (C[a, b], Î · Î2) is not a Banach space. (Exercise)
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Lecture 05: Open and Closed Sets. Convexity. Banach Fixed-Point Theorem

2.3 Open and Closed Sets

Definition 1. Let (X, Î · Î) be a normed linear space. Given a point x0 œ X and a real number r > 0,
Define the following sets

B(x0, r) = {x œ X | Îx ≠ x0Î < r} (open ball)

B(x0, r) = {x œ X | Îx ≠ x0Î Æ r} (closed ball)

S(x0, r) = {x œ X | Îx ≠ x0Î = r} (sphere)

In all three cases, x0 is called the center, and r the radius.

Definition 2. A subset M of a normed linear space X is said to be open if for every x0 œ M , there exists
r > 0 such that B(x0, r) µ M .

A subset M of a normed linear space X is said to be closed if the situation {x

n

} µ M , x

n

æ x œ X

implies x œ M .

Proposition 6. Let (X, Î · Î) be a normed linear space and M be a subset of X. Then M is open if and
only if M

c := X\M is closed.

Proof. (∆) Suppose M is open, we need to show that M

c is closed. Let {x

n

} µ M

c and x

n

Î·Î≠≠æ x œ X.
Assume x ”œ M

c, then x œ M . Since M is open, by definition, there exists r > 0 such that B(x, r) µ M .
On the other hand, since x

n

æ x, there exists N

r

so that Îx

n

≠ xÎ < r for every n > N

r

. Choose
n0 = [N

r

+ 1]. Then x

n0 œ B(x, r) µ M . Therefore, x

n0 œ M fl M

c = ÿ, a contradiction. Hence, the
assumption x ”œ M

c is wrong, which means x œ M

c.
(≈) Suppose M

c is closed, we need to show that M is open. We will prove by contradiction. Assume
M is not open. Then there exists x0 œ M so that for every r > 0, B(x0, r) ”µ M , that is B(x0, r)flM

c ”= ÿ.
Let x

n

œ B

1
x0,

1
n

2
fl M

c. Since

Îx

n

≠ x0Î <

1
n

æ 0 as n æ Œ,

the sequence x

n

æ x0 ( due to Squeeze Limit Theorem). Since M

c is closed and {x

n

} µ M

c, by definition,
x0 œ M

c. We have x0 œ M fl M

c = ÿ, a contradiction. Therefore, the assumption is wrong and M is
open.

Proposition 7. Let (X, Î · Î) be a normed linear space, x0 œ X, and r œ R+ . Then B(x0, r) is open and
B(x0, r) is closed.

Proof. (a). Let x1 œ B(x0, r). Then Îx1 ≠ x0Î < r. Denote r1 = r ≠ Îx1 ≠ x0Î.
Claim: B(x1, r1) µ B(x0, r). Indeed, for any y œ B(x1, r1), we have

Îy ≠ x0Î Æ Îy ≠ x1Î + Îx1 ≠ x0Î < r1 + Îx1 ≠ x0Î = r,

18



which implies y œ B(x0, r). Hence B(x1, r1) µ B(x0, r).

(b). Let {x

n

} µ B(x0, r) and x

n

æ x œ X. Then Îx

n

≠ x0Î Æ r. Using Proposition 4, we have
Îx

n

≠ x0Î æ Îx ≠ x0Î. By Squeeze Limit Theorem, we have Îx ≠ x0Î Æ r. Therefore x œ B(x0, r).

Theorem 1. Let (X, Î · Î) be a Banach space and W is a subspace of X. Then (W, Î · Î) is a Banach
space i� W is closed.

Proof. (∆) Suppose (W, Î · Î) is a Banach space, {x

n

} µ W, and lim
næŒ

x

n

= x œ X. Since {x

n

} is a
convergent sequence in X, {x

n

} is a Cauchy sequence in X. In addition, since {x

n

} µ W , {x

n

} is a
Cauchy sequence in W. Because W is a Banach space, there exists y œ W so that x

n

æ y œ W µ X. By
the uniqueness of the limits, x = y. Therefore W is closed.
(≈) Suppose W is closed. Let {x

n

} µ W is a Cauchy sequence. Since X is a Banach space, x

n

æ x œ X.
Since W is closed, x œ W. Therefore, W is a Banach space.

2.4 Convexity

Definition 1. The set M in a linear space is called convex i�

u, v œ M and 0 Æ – Æ 1 imply –u + (1 ≠ –)v œ M.

The function f : M æ R is called convex i� M is convex and

f(–u + (1 ≠ –)v) Æ –f(u) + (1 ≠ –)f(v),

for all u, v œ M and all – œ [0, 1].

Example 1. Let X be a normed space, and let u0 œ X, r Ø 0 be given Then the closed ball

B = {u œ X | Îu ≠ u0Î Æ r}

is convex.

Proof. If u, v œ B and 0 Æ – Æ 1, we have

Î–u + (1 ≠ –)v ≠ u0Î = Î–(u ≠ u0) + (1 ≠ –)(v ≠ u0)Î

Æ Î–(u ≠ u0)Î + Î(1 ≠ –)(v ≠ u0)Î

Æ –Îu ≠ u0Î + (1 ≠ –)Îv ≠ u0Î Æ –r + (1 ≠ –)r = r.

Example 2. Let (X, Î · Î) be a normed space. The function f : X æ R, f(u) := ÎuÎ is continuous and
convex.

Proof. Exercise.
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Figure 2: Source: From Zeidler’s book.

2.5 The Banach Fixed-Point Theorem and the Iteration Method

Definition 1. Let M and Y be sets. An operator A : M æ Y associates to each point u œ M a point
v œ Y , denoted by v = Au.

Example 1. Let ≠Œ < a < b < Œ and let the function

F : [a, b] ◊ R æ R
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be continuous. For each u œ C[a, b], define

Au : [a, b] æ R, (Au)(x) :=
x⁄

a

F (t, u(t))dt for all x œ [a, b].

Since u and F are continuous function, G(t) = F (t, u(t)) is also continuous. By the Fundamental Theorem
of Calculus, Au is continuous. In conclusion, we have defined an operator from C[a, b] to itself:

A : C[a, b] æ C[a, b], (Au)(x) :=
x⁄

a

F (t, u(t))dt for all x œ [a, b].

Next, we will discuss about the Banach fixed-point theorem. It represents a fundamental convergence
theorem for a wide class of iteration methods such as Newton’s method. It is also used to prove the
existence and uniqueness of solutions to certain ODEs (Picard-Lindelöf Theorem), to integral equations,
and to value iteration, policy iteration, and policy evaluation of reinforcement learning.
Problem statement: Given an operator A : M æ M , we want to solve the operator equation

u = Au, u œ M, (2)

by using the iteration method:

u0 œ M, u

n+1 = Au

n

n = 0, 1, . . . , (3)

Each solution of u = Au is called a fixed point of the operator A.

Theorem 1 (Banach Fixed-Point Theorem). Assume that:

(i) M is a closed, nonempty set in the Banach space X

(ii) The operator A : M æ M is k ≠ contractive, i.e.,

ÎAu ≠ AvÎ Æ kÎu ≠ vÎ for all u, v œ M

and fixed k œ [0, 1).

Then the following hold true:

1. Existence and uniqueness. The equation u = Au, u œ M has exactly one solution uú œ M .

2. Convergence of the iteration method. For each given u0 œ M , the sequence {u

n

} constructed by the
iteration method (3) converges to the unique solution uú of Equation (2).

3. Error estimates. For all n = 0, 1, . . ., we have a priori error estimate

Îu

n

≠ uúÎ Æ k

n

1 ≠ k

Îu1 ≠ u0Î,

and for all n = 1, 2, . . ., we have a posteriori error estimate

|u
n

≠ uúÎ Æ k

1 ≠ k

Îu

n

≠ u

n≠1Î.
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4. Rate of convergence. For all n = 0, 1, . . . we have

Îu

n+1 ≠ uúÎ Æ kÎu

n

≠ uúÎ.

Proof. 1 & 2. Step 1: Show that {u

n

} is a Cauchy sequence in X. Then since X is Banach, {u

n

} to some
uú œ X. Since M is closed and {x

n

} µ M , uú œ M .
Step 1.1: Evaluate

Îu

n+1 ≠ u

n

Î = ÎAu

n

≠ Au

n≠1Î Æ kÎu

n

≠ u

n≠1Î Æ k

2Îu

n≠1 ≠ u

n≠2Î Æ · · · Æ k

nÎu1 ≠ u0Î.

Step 1.2: Evaluate

Îu

n+m

≠ u

n

Î = Î(u
n+m

≠ u

n+m≠1) + · · · + (u
n+2 ≠ u

n+1) + (u
n+1 ≠ u

n

)Î

Æ Îu

n+m

≠ u

n+m≠1Î + · · · + Îu

n+1 ≠ u

n

Î

Æ (kn+m≠1 + · · · + k

n)Îu1 ≠ u0Î

Æ k

n(km≠1 + · · · + k + 1)Îu1 ≠ u0Î = k

n

1 ≠ k

m

1 ≠ k

Îu1 ≠ u0Î

Æ k

n

1 ≠ k

Îu1 ≠ u0Î.

Since k œ [0, 1), k

n æ 0 as n æ Œ. Therefore the sequence {u

n

} is Cauchy. Since X is Banach, {u

n

} to
some uú œ X. Also, because M is closed and {x

n

} µ M , uú œ M .

Step 2: Show that uú = Auú.
Observe that

Îu

n+1 ≠ AuúÎ = ÎAu

n

≠ AuúÎ Æ kÎu

n

≠ uú
næŒ≠≠≠æ 0.

Therefore, Auú = lim
næŒ

u

n+1 = uú.

Step 3: Uniqueness of the solution: Show that if uú = Auú and vú = Avú for some vú œ M then uú = vú.
We have

Îuú ≠ vúÎ = ÎAuú ≠ AvúÎ Æ kÎuú ≠ vúÎ, (k ≠ 1)Îuú ≠ vúÎ Ø 0

Since k œ [0, 1), this implies Îuú ≠ vúÎ = 0, and hence uú = vú.

3. From Îu

n+m

≠ u

n

Î Æ k

n

1 ≠ k

Îu1 ≠ u0Î, letting m æ Œ, we get

Îuú ≠ u

n

Î Æ k

n

1 ≠ k

Îu1 ≠ u0Î, for all n = 0, 1, . . .

Notice that

Îu

n+m

≠ u

n

Î Æ Îu

n+m

≠ u

n+m≠1Î + · · · + Îu

n+1 ≠ u

n

Î Æ (km + · · · + k)Îu

n

≠ u

n≠1Î Æ k

1 ≠ k

Îu

n

≠ u

n≠1Î

Letting m æ Œ, we get
|u

n

≠ uúÎ Æ k

1 ≠ k

Îu

n

≠ u

n≠1Î.
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4. It comes from
Îu

n+1 ≠ uúÎ = ÎAu

n

≠ AuúÎ Æ kÎu

n

≠ uúÎ.

Comments: The priori error estimates can help to determine the maximal number of iterations required
to attain a given precision. The posteriori error estimates base on u

n

and u

n+1 to determine the accuracy
of the approximation u

n+1. Experience shows that a posteriori estimates are better than a priori estimates.
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