

Figure 1: Source: from Zeidler's book
Recap: So far, we have been studied the completeness of the following normed linear spaces.

1. $\left(\mathbb{R}^{n},\|\cdot\|_{p}\right)$ (with $\left.1 \leq p \leq \infty\right)$ is a Banach space.
2. $\left(C[a, b],\|\cdot\|_{\infty}\right)$ is a Banach space. (Proved in class)
3. $\left(L_{p}[a, b],\|\cdot\|_{p}\right)($ with $1 \leq p<\infty)$ is a Banach space. (Proved in class)

More examples of Banach spaces (Exercises):
4. $\left(\ell_{p},\|\cdot\|_{p}\right)$ (with $\left.1 \leq p \leq \infty\right)$ is a Banach space.
5. $\left(L_{\infty}[a, b],\|\cdot\|_{\infty}\right)$ is a Banach space, where
$L_{\infty}[a, b]:=\{f:[a, b] \rightarrow \mathbb{R} \mid$ There exists an M such that $|f(x)| \leq M$ for almost every $x \in[a, b]\} / W$,

$$
\begin{aligned}
W & =\{f:[a, b] \rightarrow \mathbb{R} \mid f=0 \quad \text { a.e. }\} \\
\|f\|_{\infty}:=\underset{x \in[a, b]}{\operatorname{ess} \sup }|f(x)| & =\inf \{M| | f(x) \mid \leq M \text { for almost every } x \in[a, b]\}
\end{aligned}
$$

Some incomplete normed linear spaces:
6. $\left(C[a, b],\|\cdot\|_{1}\right)$ is not a Banach space. (Proved in class)
7. $\left(C[a, b],\|\cdot\|_{2}\right)$ is not a Banach space. (Exercise)

Lecture 05: Open and Closed Sets. Convexity. Banach Fixed-Point Theorem

2.3 Open and Closed Sets

Definition 1. Let $(X,\|\cdot\|)$ be a normed linear space. Given a point $x_{0} \in X$ and a real number $r>0$, Define the following sets

$$
\begin{array}{rlr}
B\left(x_{0}, r\right)=\left\{x \in X \mid\left\|x-x_{0}\right\|<r\right\} & \text { (open ball) } \\
\overline{B\left(x_{0}, r\right)}=\left\{x \in X \mid\left\|x-x_{0}\right\| \leq r\right\} & (\text { closed ball) } \\
S\left(x_{0}, r\right)=\left\{x \in X \mid\left\|x-x_{0}\right\|=r\right\} & (\text { sphere })
\end{array}
$$

In all three cases, x_{0} is called the center, and r the radius.
Definition 2. A subset M of a normed linear space X is said to be open if for every $x_{0} \in M$, there exists $r>0$ such that $B\left(x_{0}, r\right) \subset M$.

A subset M of a normed linear space X is said to be closed if the situation $\left\{x_{n}\right\} \subset M, x_{n} \rightarrow x \in X$ implies $x \in M$.

Proposition 6. Let $(X,\|\cdot\|)$ be a normed linear space and M be a subset of X. Then M is open if and only if $M^{c}:=X \backslash M$ is closed.

Proof. (\Rightarrow) Suppose M is open, we need to show that M^{c} is closed. Let $\left\{x_{n}\right\} \subset M^{c}$ and $x_{n} \xrightarrow{\|\cdot\|} x \in X$. Assume $x \notin M^{c}$, then $x \in M$. Since M is open, by definition, there exists $r>0$ such that $B(x, r) \subset M$. On the other hand, since $x_{n} \rightarrow x$, there exists N_{r} so that $\left\|x_{n}-x\right\|<r$ for every $n>N_{r}$. Choose $n_{0}=\left[N_{r}+1\right]$. Then $x_{n_{0}} \in B(x, r) \subset M$. Therefore, $x_{n_{0}} \in M \cap M^{c}=\emptyset$, a contradiction. Hence, the assumption $x \notin M^{c}$ is wrong, which means $x \in M^{c}$.
(\Leftarrow) Suppose M^{c} is closed, we need to show that M is open. We will prove by contradiction. Assume M is not open. Then there exists $x_{0} \in M$ so that for every $r>0, B\left(x_{0}, r\right) \not \subset M$, that is $B\left(x_{0}, r\right) \cap M^{c} \neq \emptyset$. Let $x_{n} \in B\left(x_{0}, \frac{1}{n}\right) \cap M^{c}$. Since

$$
\left\|x_{n}-x_{0}\right\|<\frac{1}{n} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

the sequence $x_{n} \rightarrow x_{0}$ (due to Squeeze Limit Theorem). Since M^{c} is closed and $\left\{x_{n}\right\} \subset M^{c}$, by definition, $x_{0} \in M^{c}$. We have $x_{0} \in M \cap M^{c}=\emptyset$, a contradiction. Therefore, the assumption is wrong and M is open.

Proposition 7. Let $(X,\|\cdot\|)$ be a normed linear space, $x_{0} \in X$, and $r \in \mathbb{R}_{+}$. Then $B\left(x_{0}, r\right)$ is open and $\overline{B\left(x_{0}, r\right)}$ is closed.

Proof. (a). Let $x_{1} \in B\left(x_{0}, r\right)$. Then $\left\|x_{1}-x_{0}\right\|<r$. Denote $r_{1}=r-\left\|x_{1}-x_{0}\right\|$.
Claim: $B\left(x_{1}, r_{1}\right) \subset B\left(x_{0}, r\right)$. Indeed, for any $y \in B\left(x_{1}, r_{1}\right)$, we have

$$
\left\|y-x_{0}\right\| \leq\left\|y-x_{1}\right\|+\left\|x_{1}-x_{0}\right\|<r_{1}+\left\|x_{1}-x_{0}\right\|=r
$$

which implies $y \in B\left(x_{0}, r\right)$. Hence $B\left(x_{1}, r_{1}\right) \subset B\left(x_{0}, r\right)$.
(b). Let $\left\{x_{n}\right\} \subset \overline{B\left(x_{0}, r\right)}$ and $x_{n} \rightarrow x \in X$. Then $\left\|x_{n}-x_{0}\right\| \leq r$. Using Proposition 4, we have $\left\|x_{n}-x_{0}\right\| \rightarrow\left\|x-x_{0}\right\|$. By Squeeze Limit Theorem, we have $\left\|x-x_{0}\right\| \leq r$. Therefore $x \in \overline{B\left(x_{0}, r\right)}$.

Theorem 1. Let $(X,\|\cdot\|)$ be a Banach space and \mathbb{W} is a subspace of X. Then $(\mathbb{W},\|\cdot\|)$ is a Banach space iff \mathbb{W} is closed.

Proof. (\Rightarrow) Suppose $(\mathbb{W},\|\cdot\|)$ is a Banach space, $\left\{x_{n}\right\} \subset \mathbb{W}$, and $\lim _{n \rightarrow \infty} x_{n}=x \in X$. Since $\left\{x_{n}\right\}$ is a convergent sequence in $X,\left\{x_{n}\right\}$ is a Cauchy sequence in X. In addition, since $\left\{x_{n}\right\} \subset W,\left\{x_{n}\right\}$ is a Cauchy sequence in \mathbb{W}. Because \mathbb{W} is a Banach space, there exists $y \in \mathbb{W}$ so that $x_{n} \rightarrow y \in \mathbb{W} \subset X$. By the uniqueness of the limits, $x=y$. Therefore \mathbb{W} is closed.
(\Leftarrow) Suppose \mathbb{W} is closed. Let $\left\{x_{n}\right\} \subset \mathbb{W}$ is a Cauchy sequence. Since X is a Banach space, $x_{n} \rightarrow x \in X$. Since \mathbb{W} is closed, $x \in \mathbb{W}$. Therefore, \mathbb{W} is a Banach space.

2.4 Convexity

Definition 1. The set M in a linear space is called convex iff

$$
u, v \in M \quad \text { and } \quad 0 \leq \alpha \leq 1 \quad \text { imply } \quad \alpha u+(1-\alpha) v \in M .
$$

The function $f: M \rightarrow \mathbb{R}$ is called convex iff M is convex and

$$
f(\alpha u+(1-\alpha) v) \leq \alpha f(u)+(1-\alpha) f(v),
$$

for all $u, v \in M$ and all $\alpha \in[0,1]$.
Example 1. Let X be a normed space, and let $u_{0} \in X, r \geq 0$ be given Then the closed ball

$$
B=\left\{u \in X \mid\left\|u-u_{0}\right\| \leq r\right\}
$$

is convex.
Proof. If $u, v \in B$ and $0 \leq \alpha \leq 1$, we have

$$
\begin{aligned}
\left\|\alpha u+(1-\alpha) v-u_{0}\right\| & =\left\|\alpha\left(u-u_{0}\right)+(1-\alpha)\left(v-u_{0}\right)\right\| \\
& \leq\left\|\alpha\left(u-u_{0}\right)\right\|+\left\|(1-\alpha)\left(v-u_{0}\right)\right\| \\
& \leq \alpha\left\|u-u_{0}\right\|+(1-\alpha)\left\|v-u_{0}\right\| \leq \alpha r+(1-\alpha) r=r .
\end{aligned}
$$

Example 2. Let $(X,\|\cdot\|)$ be a normed space. The function $f: X \rightarrow \mathbb{R}, f(u):=\|u\|$ is continuous and convex.

Proof. Exercise.

Figure 2: Source: From Zeidler's book.

2.5 The Banach Fixed-Point Theorem and the Iteration Method

Definition 1. Let M and Y be sets. An operator $A: M \rightarrow Y$ associates to each point $u \in M$ a point $v \in Y$, denoted by $v=A u$.

Example 1. Let $-\infty<a<b<\infty$ and let the function

$$
F:[a, b] \times \mathbb{R} \rightarrow \mathbb{R}
$$

be continuous. For each $u \in C[a, b]$, define

$$
A u:[a, b] \rightarrow \mathbb{R},(A u)(x):=\int_{a}^{x} F(t, u(t)) d t \quad \text { for all } x \in[a, b] .
$$

Since u and F are continuous function, $G(t)=F(t, u(t))$ is also continuous. By the Fundamental Theorem of Calculus, $A u$ is continuous. In conclusion, we have defined an operator from $C[a, b]$ to itself:

$$
A: C[a, b] \rightarrow C[a, b], \quad(A u)(x):=\int_{a}^{x} F(t, u(t)) d t \quad \text { for all } x \in[a, b] .
$$

Next, we will discuss about the Banach fixed-point theorem. It represents a fundamental convergence theorem for a wide class of iteration methods such as Newton's method. It is also used to prove the existence and uniqueness of solutions to certain ODEs (Picard-Lindelöf Theorem), to integral equations, and to value iteration, policy iteration, and policy evaluation of reinforcement learning.
Problem statement: Given an operator $A: M \rightarrow M$, we want to solve the operator equation

$$
\begin{equation*}
u=A u, \quad u \in M, \tag{2}
\end{equation*}
$$

by using the iteration method:

$$
\begin{equation*}
u_{0} \in M, \quad u_{n+1}=A u_{n} \quad n=0,1, \ldots, \tag{3}
\end{equation*}
$$

Each solution of $u=A u$ is called a fixed point of the operator A.
Theorem 1 (Banach Fixed-Point Theorem). Assume that:
(i) M is a closed, nonempty set in the Banach space X
(ii) The operator $A: M \rightarrow M$ is k-contractive, i.e.,

$$
\|A u-A v\| \leq k\|u-v\| \quad \text { for all } u, v \in M
$$

and fixed $k \in[0,1)$.
Then the following hold true:

1. Existence and uniqueness. The equation $u=A u, u \in M$ has exactly one solution $u_{*} \in M$.
2. Convergence of the iteration method. For each given $u_{0} \in M$, the sequence $\left\{u_{n}\right\}$ constructed by the iteration method (3) converges to the unique solution u_{*} of Equation (2).
3. Error estimates. For all $n=0,1, \ldots$, we have a priori error estimate

$$
\left\|u_{n}-u_{*}\right\| \leq \frac{k^{n}}{1-k}\left\|u_{1}-u_{0}\right\|,
$$

and for all $n=1,2, \ldots$, we have a posteriori error estimate

$$
\left\lvert\, u_{n}-u_{*}\left\|\leq \frac{k}{1-k}\right\| u_{n}-u_{n-1}\right. \| .
$$

4. Rate of convergence. For all $n=0,1, \ldots$ we have

$$
\left\|u_{n+1}-u_{*}\right\| \leq k\left\|u_{n}-u_{*}\right\| .
$$

Proof. 1 \& 2. Step 1: Show that $\left\{u_{n}\right\}$ is a Cauchy sequence in X. Then since X is Banach, $\left\{u_{n}\right\}$ to some $u_{*} \in X$. Since M is closed and $\left\{x_{n}\right\} \subset M, u_{*} \in M$.
Step 1.1: Evaluate

$$
\left\|u_{n+1}-u_{n}\right\|=\left\|A u_{n}-A u_{n-1}\right\| \leq k\left\|u_{n}-u_{n-1}\right\| \leq k^{2}\left\|u_{n-1}-u_{n-2}\right\| \leq \cdots \leq k^{n}\left\|u_{1}-u_{0}\right\|
$$

Step 1.2: Evaluate

$$
\begin{aligned}
\left\|u_{n+m}-u_{n}\right\| & =\left\|\left(u_{n+m}-u_{n+m-1}\right)+\cdots+\left(u_{n+2}-u_{n+1}\right)+\left(u_{n+1}-u_{n}\right)\right\| \\
& \leq\left\|u_{n+m}-u_{n+m-1}\right\|+\cdots+\left\|u_{n+1}-u_{n}\right\| \\
& \leq\left(k^{n+m-1}+\cdots+k^{n}\right)\left\|u_{1}-u_{0}\right\| \\
& \leq k^{n}\left(k^{m-1}+\cdots+k+1\right)\left\|u_{1}-u_{0}\right\|=k^{n} \frac{1-k^{m}}{1-k}\left\|u_{1}-u_{0}\right\| \\
& \leq \frac{k^{n}}{1-k}\left\|u_{1}-u_{0}\right\| .
\end{aligned}
$$

Since $k \in[0,1), k^{n} \rightarrow 0$ as $n \rightarrow \infty$. Therefore the sequence $\left\{u_{n}\right\}$ is Cauchy. Since X is Banach, $\left\{u_{n}\right\}$ to some $u_{*} \in X$. Also, because M is closed and $\left\{x_{n}\right\} \subset M, u_{*} \in M$.

Step 2: Show that $u_{*}=A u_{*}$.
Observe that

$$
\left\|u_{n+1}-A u_{*}\right\|=\left\|A u_{n}-A u_{*}\right\| \leq k \| u_{n}-u_{*} \xrightarrow{n \rightarrow \infty} 0 .
$$

Therefore, $A u_{*}=\lim _{n \rightarrow \infty} u_{n+1}=u_{*}$.
Step 3: Uniqueness of the solution: Show that if $u_{*}=A u_{*}$ and $v_{*}=A v_{*}$ for some $v_{*} \in M$ then $u_{*}=v_{*}$. We have

$$
\left\|u_{*}-v_{*}\right\|=\left\|A u_{*}-A v_{*}\right\| \leq k\left\|u_{*}-v_{*}\right\|, \quad(k-1)\left\|u_{*}-v_{*}\right\| \geq 0
$$

Since $k \in[0,1)$, this implies $\left\|u_{*}-v_{*}\right\|=0$, and hence $u_{*}=v_{*}$.
3. From $\left\|u_{n+m}-u_{n}\right\| \leq \frac{k^{n}}{1-k}\left\|u_{1}-u_{0}\right\|$, letting $m \rightarrow \infty$, we get

$$
\left\|u_{*}-u_{n}\right\| \leq \frac{k^{n}}{1-k}\left\|u_{1}-u_{0}\right\|, \quad \text { for all } n=0,1, \ldots
$$

Notice that
$\left\|u_{n+m}-u_{n}\right\| \leq\left\|u_{n+m}-u_{n+m-1}\right\|+\cdots+\left\|u_{n+1}-u_{n}\right\| \leq\left(k^{m}+\cdots+k\right)\left\|u_{n}-u_{n-1}\right\| \leq \frac{k}{1-k}\left\|u_{n}-u_{n-1}\right\|$
Letting $m \rightarrow \infty$, we get

$$
\left\lvert\, u_{n}-u_{*}\left\|\leq \frac{k}{1-k}\right\| u_{n}-u_{n-1}\right. \| .
$$

4. It comes from

$$
\left\|u_{n+1}-u_{*}\right\|=\left\|A u_{n}-A u_{*}\right\| \leq k\left\|u_{n}-u_{*}\right\| .
$$

Comments: The priori error estimates can help to determine the maximal number of iterations required to attain a given precision. The posteriori error estimates base on u_{n} and u_{n+1} to determine the accuracy of the approximation u_{n+1}. Experience shows that a posteriori estimates are better than a priori estimates.

