Lecture 07: Continuity. Compactness. Equivalent Norms.

2.7 Continuity

Definition 1. Let X and Y be normed linear spaces over \mathbb{K} ($\mathbb{K} = \mathbb{R}$ or $\mathbb{K} = \mathbb{C}$) and $f : M \subset X \to Y$.

- f is continuous at $x_0 \in M$ if for all $\varepsilon > 0$, there exists $\delta > 0$ such that $||f(x) f(x_0)|| < \varepsilon$ for all x so that $||x x_0|| < \delta$.
- f is continuous on M if f is continuous at all $x_0 \in M$.
- f is uniformly continuous if for all $\varepsilon > 0$, there exists $\delta > 0$ such that $||f(x) f(y)|| < \varepsilon$ for all $x, y \in M$ so that $||x y|| < \delta$. (Note δ does not depend either on x or y).

Proposition 10. Let X and Y be normed linear spaces over \mathbb{K} and $f : M \subset X \to Y$. Then f is continuous at $x \in M$ if and only if for every sequence $\{x_n\}$ in M,

$$\lim_{n \to \infty} x_n = x \quad implies \quad \lim_{n \to \infty} f(x_n) = f(x).$$

Proof. Exercise.

Proposition 11. Let $f: X \to Y, g: Y \to Z$, where X, Y, Z are normed linear spaces. If f is continuous at $a \in X$ and g is continuous at f(a) then $g \circ f$ is continuous at a.

Proof. Exercise.

2.8 Compactness

Definition 1. Let S be a set in a normed linear space X.

- S is called relatively compact iff each sequence $\{u_n\}$ in S has a convergent subsequence $u_{n_k} \to u \in X$ as $k \to \infty$.
- S is called compact iff each sequence $\{u_n\}$ in S has a convergent subsequence $u_{n_k} \to u \in S$ as $k \to \infty$.
- S is called bounded iff there is a number $r \ge 0$ such that $||u|| \le r$ for all $u \in S$.

Proposition 12. Let S be a set in a normed linear space X. Then

- 1. The set S is compact iff it is relatively compact and closed.
- 2. If S is relatively compact, then S is bounded.
- 3. If S is compact, then S is closed and bounded. The reverse might not be true.

Proof. 1. Exercise.

2. Suppose S is relatively compact but S is not bounded. Then, there exists a sequence $\{u_n\} \subset S$ such that $||u_n|| \geq n$ for all n. Since S is relatively compact, there exists a convergent subsequence $\{u_{n_k}\}_k$. Therefore, $\{u_{n_k}\}_k$ is bounded. On the other hand, $|u_{n_k}| \geq n_k \geq k$, a contradiction.

3. Combining (1) and (2), we have the conclusion that if S is compact, then S is closed and bounded. Below is a counter example, where the reverse might not be true.

Example 1. In $(\ell_2, \|\cdot\|_2)$, consider

$$B_1(0) := \{ x = (x_1, x_2, \ldots) : \|x\|_2 \le 1 \}.$$

The closed ball $\overline{B_1(0)}$ is closed and bounded, but $\overline{B_1(0)}$ is not compact. Indeed, consider the following sequence in $\overline{B_1(0)}$:

 $e_k = (0, \ldots, 0, 1, 0, \ldots),$ where the kth position of e_k is 1 and other positions are 0's, $k = 1, 2, \ldots$

Since $||e_k - e_j||_2 = \sqrt{2}$ for every $k \neq j$, the sequence $\{e_k\}_k \subset \overline{B_1(0)}$ has no convergent subsequences since no subsequence can be a Cauchy sequence. Therefore, $\overline{B_1(0)}$ is not compact.

Theorem 1. Let X and Y be normed linear spaces and $T : X \to Y$ be a continuous mapping. Then the image of a compact subset S of X under T is compact.

Proof. Let $\{y_n\}$ be a sequence in T(S). Then $y_n = T(x_n)$ for some $x_n \in S$. Since S is compact, there is a subsequence $\{x_{n_k}\}_k$ of $\{x_n\}$ such that $\lim_{k \to \infty} x_{n_k} = x_* \in S$. Since T is continuous, $y_{n_k} = T(x_{n_k}) \to T(x_*) \in T(S)$ as $k \to \infty$. Therefore T(S) is compact.

An important consequence is the following theorem, which is a generalization of the Extreme Value Theorem for continuous functions over bounded and closed intervals on \mathbb{R} .

Theorem 2 (The Weeirstrass Theorem). Let $T : S \to \mathbb{R}$ be a continuous function on the compact, nonempty subset S of a normed linear space. Then T has a minimum and maximum on S.

Proof. By Theorem 1, T(S) is compact in \mathbb{R} . Therefore, T(S) is closed and bounded. Therefore, $\alpha = \inf_{x \in S} T(x)$ is finite. By the definition of the infimum, there exists a sequence $\{x_n\}$ in S such that $\lim_{n \to \infty} T(x_n) = \alpha$. Since T(S) is closed, $\lim_{n \to \infty} T(x_n) \in T(S)$, i.e., $\alpha \in T(S)$. Thus T has a minimum on S. The same argument can be used to show T has a maximum on S.

Note:

• Image of a closed set under a continuous mapping might not be closed. For example, consider $f : \mathbb{R} \to \mathbb{R}, f(x) = \exp^x$ and $S = (-\infty, 0] \subset \mathbb{R}$. The function f is continuous on \mathbb{R} , S is a closed subset in \mathbb{R} but f(S) = (0, 1] is not a closed subset of \mathbb{R} .

• Image of a bounded set under a continuous mapping might not be bounded. For example, $f:(0,1) \to \mathbb{R}$, $f(x) = \frac{1}{r}$ and S = (0,1) is a bounded set but $f(S) = (0,\infty)$ is not bounded.

Now, we will present some compactness critera for a set in a normed linear space.

2.8.1 Compactness in Finite-Dimensional Normed Linear Spaces

Next, we recall a theorem in real analysis.

Theorem 3 (Bolzano-Weierstrass Theorem). Every bounded sequence of real numbers has a convergent subsequence.

Using Bolzano-Weierstrass Theorem, we have the following result.

Theorem 4. In $(\mathbb{K}^n, \|\cdot\|_{\infty})$ where $\mathbb{K} = \mathbb{R}$ or $\mathbb{K} = \mathbb{C}$, a subset $S \subset \mathbb{K}^n$ is compact if and only if S is closed and bounded.

Proof. Case $\mathbb{K} = \mathbb{R}$. It is sufficient to prove that if S is bounded in \mathbb{R}^n , then S is relatively compact. Consider a sequence in S:

$$\{u_m = (u_{m,1}, \dots, u_{m,n})\}_m \subset S$$

Since S is bounded, there is a constant M > 0 such that

 $M \ge ||u_m||_{\infty} \ge |u_{m,k}|$, for all $k = 1, 2, \dots, n$, and $m = 1, 2, \dots$

The real sequence $\{u_{m,1}\}_m$ is bounded, so by the Bolzano-Weierstrass theorem, there is a subsequence $\{u_m^{(1)}\}\$ of $\{u_m\}\$ such that $\{u_{m,1}^{(1)}\}\$ converges.

By the Bolzano-Weierstrass theorem, there is a subsequence $\{u_m^{(2)}\}$ of $\{u_m^{(1)}\}$ such that $\{u_{m,2}^{(2)}\}$ converges. Thus $\{u_{m,1}^{(2)}\}$ and $\{u_{m,2}^{(2)}\}$ converge.

Repeating this process n times, we have constructed a subsequence $\{u_m^{(n)}\}_m$ of $\{u_m\}_m$ such that $\{u_{m,k}^{(n)}\}_m$ converges for all k = 1, 2, ..., n. Using the $\varepsilon - N_{\varepsilon}$ definition of convergent sequences, we can easily verify that $\{u_m^{(n)}\}_n$ converges in \mathbb{R}^n . Therefore, S is relatively compact.

Case $\mathbb{K} = \mathbb{C}$. (Sketch of the proof): Any $u \in \mathbb{C}^n$ can be written as u = v + iw, where $v, w \in \mathbb{R}^n$. Use $||u||_{\infty} \geq ||v||_{\infty}$ and $||u||_{\infty} \geq ||w||_{\infty}$.

Definition 2. Two norms $\|\cdot\|_1$ and $\|\cdot\|_2$ on a linear space X are called equivalent iff there are positive numbers $\alpha, \beta > 0$ such that

$$\alpha \|x\|_1 \le \|x\|_2 \le \beta \|x\|_1, \text{ for all } x \in X.$$