
Lecture 07: Continuity. Compactness. Equivalent Norms.

2.7 Continuity

Definition 1. Let X and Y be normed linear spaces over K (K = R or K = C) and f : M µ X æ Y .

• f is continuous at x0 œ M if for all Á > 0, there exists ” > 0 such that Îf(x) ≠ f(x0)Î < Á for all x

so that Îx ≠ x0Î < ”.

• f is continuous on M if f is continuous at all x0 œ M .

• f is uniformly continuous if for all Á > 0, there exists ” > 0 such that Îf(x) ≠ f(y)Î < Á for all
x, y œ M so that Îx ≠ yÎ < ”. (Note ” does not depend either on x or y).

Proposition 10. Let X and Y be normed linear spaces over K and f : M µ X æ Y . Then f is continuous
at x œ M if and only if for every sequence {xn} in M ,

lim

næŒ
xn = x implies lim

næŒ
f(xn) = f(x).

Proof. Exercise.

Proposition 11. Let f : X æ Y, g : Y æ Z, where X, Y, Z are normed linear spaces. If f is continuous
at a œ X and g is continuous at f(a) then g ¶ f is continuous at a.

Proof. Exercise.

2.8 Compactness

Definition 1. Let S be a set in a normed linear space X.

• S is called relatively compact i� each sequence {un} in S has a convergent subsequence unk æ u œ X

as k æ Œ.

• S is called compact i� each sequence {un} in S has a convergent subsequence unk æ u œ S as k æ Œ.

• S is called bounded i� there is a number r Ø 0 such that ÎuÎ Æ r for all u œ S.

Proposition 12. Let S be a set in a normed linear space X. Then

1. The set S is compact i� it is relatively compact and closed.

2. If S is relatively compact, then S is bounded.

3. If S is compact, then S is closed and bounded. The reverse might not be true.
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Proof. 1. Exercise.

2. Suppose S is relatively compact but S is not bounded. Then, there exists a sequence {un} µ S such

that ÎunÎ Ø n for all n. Since S is relatively compact, there exists a convergent subsequence {unk}k.

Therefore, {unk}k is bounded. On the other hand, |unk | Ø nk Ø k, a contradiction.

3. Combining (1) and (2), we have the conclusion that if S is compact, then S is closed and bounded.

Below is a counter example, where the reverse might not be true.

Example 1. In (¸2, Î · Î2), consider

B1(0) := {x = (x1, x2, . . .) : ÎxÎ2 Æ 1}.

The closed ball B1(0) is closed and bounded, but B1(0) is not compact. Indeed, consider the following
sequence in B1(0):

ek = (0, . . . , 0, 1, 0, . . .), where the kth position of ek is 1 and other positions are 0’s, k = 1, 2, . . .

Since Îek ≠ ejÎ2 =

Ô
2 for every k ”= j, the sequence {ek}k µ B1(0) has no convergent subsequences since

no subsequence can be a Cauchy sequence. Therefore, B1(0) is not compact.

Theorem 1. Let X and Y be normed linear spaces and T : X æ Y be a continuous mapping. Then the
image of a compact subset S of X under T is compact.

Proof. Let {yn} be a sequence in T (S). Then yn = T (xn) for some xn œ S. Since S is compact, there is a

subsequence {xnk}k of {xn} such that lim

kæŒ
xnk = xú œ S. Since T is continuous, ynk = T (xnk) æ T (xú) œ

T (S) as k æ Œ. Therefore T (S) is compact.

An important consequence is the following theorem, which is a generalization of the Extreme Value

Theorem for continuous functions over bounded and closed intervals on R.

Theorem 2 (The Weeirstrass Theorem). Let T : S æ R be a continuous function on the compact,
nonempty subset S of a normed linear space. Then T has a minimum and maximum on S.

Proof. By Theorem 1, T (S) is compact in R. Therefore, T (S) is closed and bounded. Therefore,

– = inf

xœS
T (x) is finite. By the definition of the infimum, there exists a sequence {xn} in S such

that lim

næŒ
T (xn) = –. Since T (S) is closed, lim

næŒ
T (xn) œ T (S), i.e., – œ T (S). Thus T has a minimum on

S. The same argument can be used to show T has a maximum on S.

Note:

• Image of a closed set under a continuous mapping might not be closed. For example, consider

f : R æ R, f(x) = exp

x
and S = (≠Œ, 0] µ R. The function f is continuous on R, S is a closed

subset in R but f(S) = (0, 1] is not a closed subset of R.
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• Image of a bounded set under a continuous mapping might not be bounded. For example, f : (0, 1) æ
R, f(x) =

1

x

and S = (0, 1) is a bounded set but f(S) = (0, Œ) is not bounded.

Now, we will present some compactness critera for a set in a normed linear space.

2.8.1 Compactness in Finite-Dimensional Normed Linear Spaces

Next, we recall a theorem in real analysis.

Theorem 3 (Bolzano-Weierstrass Theorem). Every bounded sequence of real numbers has a convergent
subsequence.

Using Bolzano-Weierstrass Theorem, we have the following result.

Theorem 4. In (Kn
, Î ·ÎŒ) where K = R or K = C, a subset S µ Kn is compact if and only if S is closed

and bounded.

Proof. Case K = R. It is su�cient to prove that if S is bounded in Rn
, then S is relatively compact.

Consider a sequence in S:

{um = (um,1, . . . , um,n)}m µ S.

Since S is bounded, there is a constant M > 0 such that

M Ø ÎumÎŒ Ø |um,k|, for all k = 1, 2, . . . , n, and m = 1, 2, . . . .

The real sequence {um,1}m is bounded, so by the Bolzano-Weierstrass theorem, there is a subsequence

{u

(1)
m } of {um} such that {u

(1)
m,1} converges.

By the Bolzano-Weierstrass theorem, there is a subsequence {u

(2)
m } of {u

(1)
m } such that {u

(2)
m,2} converges.

Thus {u

(2)
m,1} and {u

(2)
m,2} converge.

Repeating this process n times, we have constructed a subsequence {u

(n)
m }m of {um}m such that {u

(n)
m,k}m

converges for all k = 1, 2, . . . , n. Using the Á ≠ NÁ definition of convergent sequences, we can easily verify

that {u

(n)
m }n converges in Rn

. Therefore, S is relatively compact.

Case K = C. (Sketch of the proof): Any u œ Cn
can be written as u = v + iw, where v, w œ Rn

. Use

ÎuÎŒ Ø ÎvÎŒ and ÎuÎŒ Ø ÎwÎŒ.

Definition 2. Two norms Î · Î1 and Î · Î2 on a linear space X are called equivalent i� there are positive
numbers –, — > 0 such that

–ÎxÎ1 Æ ÎxÎ2 Æ —ÎxÎ1, for all x œ X.
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