Lecture 07: Continuity. Compactness. Equivalent Norms.

2.7 Continuity

Definition 1. Let X and Y be normed linear spaces over K (K=R or K=C)and f: M C X =Y.

o f is continuous at xo € M if for all € > 0, there exists § > 0 such that || f(z) — f(z0)| < € for all x
so that ||z — x| < 6.

e f is continuous on M if f is continuous at all xg € M.

e f is uniformly continuous if for all € > 0, there exists § > 0 such that || f(z) — f(y)|| < € for all
x,y € M so that ||x — y|| < 0. (Note 6 does not depend either on x ory).

Proposition 10. Let X andY be normed linear spaces over K and f : M C X — Y. Then f is continuous
at x € M if and only if for every sequence {x,} in M,

nh_)ngo Tp = implies nh_)ngo f(zyn) = f(x).

Proof. Exercise. O

Proposition 11. Let f: X = Y,g:Y — Z, where X, Y, Z are normed linear spaces. If f is continuous

at a € X and g is continuous at f(a) then go f is continuous at a.

Proof. Exercise. O

2.8 Compactness

Definition 1. Let S be a set in a normed linear space X .

o S is called relatively compact iff each sequence {u,} in S has a convergent subsequence u,, — u € X

as k — oo.
e S is called compact iff each sequence {u,} in S has a convergent subsequence u,, — u € S ask — oo.
o S is called bounded iff there is a number r > 0 such that |u|| < r for allu € S.
Proposition 12. Let S be a set in a normed linear space X. Then
1. The set S is compact iff it is relatively compact and closed.
2. If S is relatively compact, then S is bounded.

3. If S is compact, then S is closed and bounded. The reverse might not be true.
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Proof. 1. Exercise.
2. Suppose S is relatively compact but S is not bounded. Then, there exists a sequence {u,} C S such
that [|u,|| > n for all n. Since S is relatively compact, there exists a convergent subsequence {uy, }.

Therefore, {uy, }1 is bounded. On the other hand, |u,,| > n; > k, a contradiction.

3. Combining (1) and (2), we have the conclusion that if S is compact, then S is closed and bounded.

Below is a counter example, where the reverse might not be true.

Example 1. In ({o,] - ||2), consider

B1(0) :={x = (1, m2,...) : ||z]2 < 1}.

The closed ball B1(0) is closed and bounded, but Bi(0) is not compact. Indeed, consider the following

sequence in B1(0):
er =(0,...,0,1,0,...), where the kth position of ey, is 1 and other positions are 0’s, k=1,2,...

Since |lex — ejll2 = V2 for every k # j, the sequence {ex}r C B1(0) has no convergent subsequences since

no subsequence can be a Cauchy sequence. Therefore, B1(0) is not compact.

O]

Theorem 1. Let X and Y be normed linear spaces and T : X — 'Y be a continuous mapping. Then the

image of a compact subset S of X under T is compact.

Proof. Let {y,} be a sequence in T'(S). Then y, = T(z,) for some x,, € S. Since S is compact, there is a

subsequence {z,, }; of {x,} such that klim T, = s € S. Since T is continuous, y,, = T(xy,) = T'(z«) €
—00

T(S) as k — oco. Therefore T'(S) is compact. O

An important consequence is the following theorem, which is a generalization of the Extreme Value

Theorem for continuous functions over bounded and closed intervals on RR.

Theorem 2 (The Weeirstrass Theorem). Let T' : S — R be a continuous function on the compact,

nonempty subset S of a normed linear space. Then T has a minimum and maximum on S.

Proof. By Theorem 1, T'(S) is compact in R. Therefore, T'(S) is closed and bounded. Therefore,

a = inkf9 T(x) is finite. By the definition of the infimum, there exists a sequence {z,} in S such
xre

that lim_ T(x,) = . Since T'(S) is closed, Jim T(xy) € T(S), i.e., « € T(S). Thus T has a minimum on

S. The same argument can be used to show 7" has a maximum on S. 0
Note:

e Image of a closed set under a continuous mapping might not be closed. For example, consider
f:R =R, f(r) = exp® and S = (—00,0] C R. The function f is continuous on R, S is a closed
subset in R but f(S) = (0, 1] is not a closed subset of R.
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e Image of a bounded set under a continuous mapping might not be bounded. For example, f : (0,1) —
1
R, f(z) = — and S = (0,1) is a bounded set but f(S) = (0, 00) is not bounded.
T

Now, we will present some compactness critera for a set in a normed linear space.

2.8.1 Compactness in Finite-Dimensional Normed Linear Spaces

Next, we recall a theorem in real analysis.

Theorem 3 (Bolzano-Weierstrass Theorem). Every bounded sequence of real numbers has a convergent

subsequence.
Using Bolzano-Weierstrass Theorem, we have the following result.

Theorem 4. In (K", |- |loc) where K=R or K = C, a subset S C K" is compact if and only if S is closed

and bounded.

Proof. Case K = R. It is sufficient to prove that if S is bounded in R", then S is relatively compact.
Consider a sequence in S:

{um = (um,lp s )um,n)}m cS.

Since S is bounded, there is a constant M > 0 such that

M > ||umlloo > |tmp|, forall k=1,2,...,n, and m=12,....

The real sequence {1}, is bounded, so by the Bolzano-Weierstrass theorem, there is a subsequence
{u,%)} of {un,} such that {ug)l} converges.

By the Bolzano-Weierstrass theorem, there is a subsequence {ug)} of {u%)} such that {uﬁé} converges.
Thus {ug)l} and {US)Q} converge.

Repeating this process n times, we have constructed a subsequence {u% )}m of {tm }m such that {ugs)k}m
converges for all Kk =1,2,...,n. Using the e — N definition of convergent sequences, we can easily verify

that {u%Z )}n converges in R™. Therefore, S is relatively compact.

Case K = C. (Sketch of the proof): Any u € C" can be written as u = v + {w, where v,w € R". Use
[ullos = [[v]loo and [Juljoc = [|wl|eo-

O

Definition 2. Two norms || - ||1 and || - ||2 on a linear space X are called equivalent iff there are positive
numbers a, 8 > 0 such that
allzl|i < x|z < Bllzl|1, for all z € X.
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