Lecture 08: Compact Sets. Compact Operators.

Theorem 5. Two norms on a finite-dimensional linear space X over \mathbb{K} ($\mathbb{K} = \mathbb{R}$ or $\mathbb{K} = \mathbb{C}$) are always equivalent.

Sketch of the proof. If dim X = 0, any norm on X is the zero function. Therefore, all norms on X are equivalent.

Let $0 < n = \dim X$ and $\|\cdot\|$ is a norm on X. Suppose $\{e_1, \ldots, e_n\}$ is a basis for X. For each $x \in X$, there is a unique tuple $\alpha \in \mathbb{K}^n$ such that

$$x = \alpha_1 e_1 + \dots + \alpha_n e_n.$$

Define $||x||_{\infty} := ||\alpha||_{\infty} = \max_{1 \le j \le n} |\alpha_j|.$

• Step 1: Prove that $\|\cdot\|_{\infty}: X \to \mathbb{R}, \ \left\|\sum_{1 \le j \le n} \alpha_j e_j\right\|_{\infty} := \max_{1 \le j \le n} |\alpha_j|$ is a norm on X. (Exercise).

Set $S = \{ \alpha \in \mathbb{K}^n : \|\alpha\|_{\infty} = 1 \}$. Then S is closed and bounded in \mathbb{K}^n (Exercise). Therefore, S is compact. Consider a function

$$f: S \subset \mathbb{K}^n \to \mathbb{R}, \ f(\alpha) := \left\| \sum_{k=1}^n \alpha_k e_k \right\|.$$

• Step 2: Prove that f is a continuous function. (Exercise). Hint: Show that

$$|f(\alpha) - f(\beta)| \le ||\alpha - \beta||_{\infty} \sum_{k=1}^{n} ||e_k||, \text{ for all } \alpha, \beta \in \mathbb{K}^n.$$

• Step 3: Prove $\|\cdot\|$ is equivalent to $\|\cdot\|_{\infty}$.

Applying the Weeirstrass theorem for continuous functions on the compact nonempty subset of S, we conclude that $f: S \to \mathbb{R}$ has a maximum and minimum on S. Let

$$A = \min_{\alpha \in S} f(\alpha) = \min_{\alpha \in \mathbb{R}^n} \left\{ \left\| \sum_{k=1}^n \alpha_k e_k \right\| s.t. \max_{1 \le j \le n} |\alpha_j| = 1 \right\}$$

and

$$B = \max_{\alpha \in S} f(\alpha) = \max_{\alpha \in \mathbb{R}^n} \left\{ \left\| \sum_{k=1}^n \alpha_k e_k \right\| s.t. \max_{1 \le j \le n} |\alpha_j| = 1 \right\}$$

Note that A and B are constants that depend on the norm $\|\cdot\|$ of X. Also, since $0 \notin S$, so $f(\alpha) > 0$ for all $\alpha \in S$. So $0 < A \leq B$ and

$$A \le f(\beta) = \left\|\sum_{k=1}^{n} \beta_k e_k\right\| \le B$$
, for all $\beta \in S$.

The above inequalities can be rewritten as

$$A \le ||y|| \le B$$
 for all $y \in X$ with $||y||_{\infty} = 1$.

For any $x \in X - \{0\}$, let $z = \frac{x}{\|x\|_{\infty}} \in X$. Then $\|z\|_{\infty} = 1$, so

$$A \le ||z|| \le B$$
, $A \le \frac{||x||}{||x||_{\infty}} \le B$, $A||x||_{\infty} \le ||x|| \le B||x||_{\infty}$.

That inequality also holds for x = 0. So we have

$$A||x||_{\infty} \le ||x|| \le B||x||_{\infty} \quad \text{for all } x \in X$$

• Step 4: Prove that any two norms on X are equivalent. Let $\|\cdot\|_{(2)}$ be another norm on X. Then there exist positive constants A_2, B_2 so that

$$A_2 \|x\|_{\infty} \le \|x\|_{(2)} \le B_2 \|x\|_{\infty}$$
 for all $x \in X$

So for every $x \in X$, we have

$$\frac{A}{B_2} \|x\|_{(2)} \le \|x\| \le \frac{B}{A_2} \|x\|_{(2)}$$

Corollary 1. All norms on \mathbb{R}^n are equivalent.

Theorem 6. In a finite dimensional normed linear space, any subset M is compact iff M is closed and bounded.

Proof. Assignment 2.

Note: In Assignment 2, we also prove a useful result: All finite dimensional normed spaces are Banach spaces.

2.8.2 Compactness in Infinite-Dimensional Normed Linear Spaces

Now we present without proof compactness criteria for some infinite dimensional normed spaces: $(C[a, b], \|\cdot\|_{\infty})$ and $(L_1[a, b], \|\cdot\|_1)$ (see Zeidler's book page 35; See Oden and Demkowicz's book page 339-341).

Theorem 7 (The Arzela-Ascoli Theorem). Consider the normed linear space $(C[a, b], \|\cdot\|_{\infty})$ where $-\infty < a < b < \infty$. Suppose we are given a set S in C[a, b] such that

- 1. S is bounded.
- 2. S is equicontinuous, i.e., for each $\varepsilon > 0$, there is a $\delta > 0$ such that

 $|x-y| < \delta$ and $u \in S$ imply $|u(x) - u(y)| \le \varepsilon$.

Then S is a relatively compact subset of C[a, b].

So, for $(C[a, b], \|\cdot\|_{\infty})$, we have:

compact sets = closed + bounded + equicontinuous sets.

Theorem 8 (Frechét - Kolmogorov Theorem). A subset $\mathcal{F} \subset (L_p(\mathbb{R}), \|\cdot\|_p), \ 1 \leq p < \infty$, is relatively compact in $L_p(\mathbb{R})$ iff the following conditions hold:

- 1. \mathcal{F} is bounded, i.e., there exists an M > 0 such that $||f||_p \leq M$ for every $f \in \mathcal{F}$.
- 2. For each $\varepsilon > 0$, there is a $\delta > 0$ such that

$$|t| < \delta$$
 and $f \in \mathcal{F}$ imply $\int_{\mathbb{R}} |f(t+s) - f(s)|^p ds \le \varepsilon.$

3. $\lim_{n \to \infty} \int_{|s| > n} |f(s)|^p \, ds = 0 \text{ for every } f \in \mathcal{F}.$

Below is another useful compactness criteria (see Zeidler's book pages 38-39 for the proof).

Theorem 9 (Finite ε -net). Let S be a nonempty set in the Banach space X. Then the following two statements are equivalent:

- (i) S is relatively compact.
- (ii) S has a finite ε -net; that is, for each $\varepsilon > 0$, there exists a finite number of points $v_1, \ldots, v_N \in S$ such that

$$\min_{1 \le k \le N} \|u - v_k\| \le \varepsilon \quad \text{for all} \ u \in S.$$

In other words, $S \subset \bigcup_{k=1}^{N} B(v_k, \varepsilon) \subset X$.

Note: The smallest integer N such that S can be covered by $N \varepsilon$ - balls is called the covering number $\mathcal{N}(S, \|\cdot\|, \varepsilon)$. For example, when S is a subset of the unit ball in $(\mathbb{R}^n, \|\cdot\|)$,

$$\mathcal{N}(S, \|\cdot\|, \varepsilon) \le \left(1 + \frac{2}{\varepsilon}\right)^n,$$

See, for example, "A Mathematical Introduction to Compressive Sensing" by Foucart and Rauhut, page 577.

Next, we will study a useful operator, called compact operator, to generalize classical results for operator equations in finite-dimensional normed spaces to infinite-dimensional normed spaces.

2.8.3 Compact Operators

Definition 3. Let X and Y be normed space over \mathbb{K} ($\mathbb{K} = \mathbb{R}$ or $\mathbb{K} = \mathbb{C}$). The operator $A : X \to Y$ is called a compact operator iff

- 1. A is continuous, and
- 2. A transforms bounded sets into relatively compact sets.

Example 2.

Let X = Y = C[0,1] endowed with the $\|\cdot\|_{\infty}$ norm, consider the integral operator $A : C[0,1] \to C[0,1]$, where for every $u \in C[0,1]$, define

$$Au(x) := \int_{0}^{1} K(x, y)u(y) \, dy \quad for \ all \ x \in [0, 1],$$

where K(x, y) is continuous on the square $[0, 1]^2$. We shall show that A is compact.

Since K(x, y) is continuous on $[0, 1]^2$, there exists a constant M such that

$$|K(x,y)| \le M$$
 for all $(x,y) \in [0,1]^2$.

- Step 1: It is clear that A is well-defined (i.e., $Au \in C[0,1]$ for all $u \in C[0,1]$) since both K(x,y)and u(y) are continuous functions.
- Step 2: Show that A is continuous. For any $u, v \in X$, we have

$$\|Au - Av\|_{\infty} = \max_{x \in [0,1]} \left| \int_{0}^{1} K(x,y)(u(y) - v(y)) \, dy \right| \le \max_{x \in [0,1]} \int_{0}^{1} |K(x,y)(u(y) - v(y))| \, dy \le M \|u - v\|_{\infty}.$$

Therefore, for every $\varepsilon > 0$, pick $\delta = \frac{\varepsilon}{M}$, then whenever $u, v \in X$ with $||u - v||_{\infty} < \delta$, we have $||Au - Av||_{\infty} < \varepsilon$. Therefore, A is continuous.

Suppose S is a bounded set of functions of C[0,1]. Then there is r > 0 such that $||u||_{\infty} \leq r$ for all $u \in S$. We will show that $A(S) \subset C[0,1]$ is relatively compact.

• Step 3: Show that A(S) is bounded. For any $u \in S$, we have

$$||Au||_{\infty} = \max_{x \in [0,1]} \left| \int_{0}^{1} K(x,y)u(y) \, dy \right| \le Mr,$$

therefore, A(S) is bounded.

• Step 4: Show that A(S) is equicontinuous.

Since $[0,1]^2$ is compact and K is continuous on $[0,1]^2$, K(x,y) is uniformly continuous. (Prove this!) Therefore, for every $\varepsilon > 0$, there exists $\delta > 0$ such that

$$|K(x_1,y) - K(x_2,y)| < \frac{\varepsilon}{r}, \quad whenever \quad |x_1 - x_2| < \delta.$$

Then for any $x_1, x_2 \in [0, 1]$ with $|x_1 - x_2| < \delta$ and for any $u \in S$, we have

$$|Au(x_1) - Au(x_2)| = \left| \int_0^1 (K(x_1, y) - K(x_2, y))u(y) \right| \le \frac{\varepsilon}{r}r = \varepsilon.$$

Hence A(S) is equicontinuous. So by the Arzela-Ascoli Theorem, A(S) is a relatively compact set in C[0,1].

In conclusion, A is a compact operator.

Example 3. Let X be an infinite dimensional Banach space, such as $(C[0,1], \|\cdot\|_{\infty})$ or $(L_1[0,1], \|\cdot\|_1)$. Consider the identity operator $A: X \to X$, A(x) = x. A is continuous, $\overline{B(0,1)}$ is bounded but $A(\overline{B(0,1)}) = \overline{B(0,1)}$ is not a relatively compact set in X (Assignment 2). Therefore, the identity is not a compact operator in this case.

Theorem 10 (Approximation Theorem for Compact Operators). Let $A : S \subset X \to Y$ be a compact operator, where X and Y are Banach spaces over K and S is a bounded nonempty subset of X. Then for every n = 1, 2, ..., there exists a continuous operator $A_n : S \to Y$ such that

$$\sup_{u \in S} \|Au - A_n u\| \le \frac{1}{n}, \quad \dim(\operatorname{span} A_n(S)) < \infty, \quad and \quad A_n(S) \subset \operatorname{co}(A(S)).$$

Recall: For a set B in a linear space X, co(B) is the convex hull of B, span B is the spanning set of B.

Sketch of the Proof. • Since A is compact, and S is bounded, A(S) is relatively compact. Using the finite ε -net theorem, for every n = 1, 2, ..., there exists a finite $\frac{1}{2n}$ -net for A(S). That is, there are elements $u_1, \ldots, u_N \in A(S)$ such that

$$\min_{1 \le k \le N} \|Au - u_k\| \le \frac{1}{2n}, \quad \text{for all } u \in S.$$

• Define the Schauder operator on S:

$$A_n u := \frac{\sum\limits_{k=1}^N a_k(u)u_k}{\sum\limits_{k=1}^N a_k(u)}, \quad \text{for all } u \in S,$$

where

$$a_k: S \to \mathbb{R}, \quad a_k(u) := \max\left\{\frac{1}{n} - \|Au - u_k\|, 0\right\}, \quad k = 1, \dots, N.$$

Claim: $a_k : S \to \mathbb{R}$ is continuous and for each $u \in S$, $a_k(u)$ do not all vanish simultaneously. Therefore $A_n : S \to Y$ is well-defined and continuous.

• Show that
$$||Au - A_n u|| \le \frac{1}{n}$$
.