
Lecture 08: Compact Sets. Compact Operators.

Theorem 5. Two norms on a finite-dimensional linear space X over K (K = R or K = C) are always
equivalent.

Sketch of the proof. If dim X = 0, any norm on X is the zero function. Therefore, all norms on X are
equivalent.
Let 0 < n = dim X and Î · Î is a norm on X. Suppose {e1, . . . , e

n

} is a basis for X. For each x œ X, there
is a unique tuple – œ Kn such that

x = –1e1 + · · · + –

n

e

n

.

Define ÎxÎŒ := Î–ÎŒ = max
1ÆjÆn

|–
j

|.

• Step 1: Prove that Î · ÎŒ : X æ R,

.....
q

1ÆjÆn

–

j

e

j

.....
Œ

:= max
1ÆjÆn

|–
j

| is a norm on X. (Exercise).

Set S = {– œ Kn : Î–ÎŒ = 1}. Then S is closed and bounded in Kn (Exercise).
Therefore, S is compact. Consider a function

f : S µ Kn æ R, f(–) :=
.....

nÿ

k=1
–

k

e

k

..... .

• Step 2: Prove that f is a continuous function. (Exercise). Hint: Show that

|f(–) ≠ f(—)| Æ Î– ≠ —ÎŒ

nÿ

k=1
Îe

k

Î, for all –, — œ Kn

.

• Step 3: Prove Î · Î is equivalent to Î · ÎŒ.
Applying the Weeirstrass theorem for continuous functions on the compact nonempty subset of S,
we conclude that f : S æ R has a maximum and minimum on S. Let

A = min
–œS

f(–) = min
–œRn

I.....

nÿ

k=1
–

k

e

k

..... s.t. max
1ÆjÆn

|–
j

| = 1
J

and
B = max

–œS

f(–) = max
–œRn

I.....

nÿ

k=1
–

k

e

k

..... s.t. max
1ÆjÆn

|–
j

| = 1
J

Note that A and B are constants that depend on the norm Î · Î of X. Also, since 0 ”œ S, so f(–) > 0
for all – œ S. So 0 < A Æ B and

A Æ f(—) =
.....

nÿ

k=1
—

k

e

k

..... Æ B, for all — œ S.

The above inequalities can be rewritten as

A Æ ÎyÎ Æ B for all y œ X with ÎyÎŒ = 1.
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For any x œ X ≠ {0}, let z = x

ÎxÎŒ
œ X. Then ÎzÎŒ = 1, so

A Æ ÎzÎ Æ B, A Æ ÎxÎ
ÎxÎŒ

Æ B, AÎxÎŒ Æ ÎxÎ Æ BÎxÎŒ.

That inequality also holds for x = 0. So we have

AÎxÎŒ Æ ÎxÎ Æ BÎxÎŒ for all x œ X

• Step 4: Prove that any two norms on X are equivalent. Let Î · Î(2) be another norm on X. Then
there exist positive constants A2, B2 so that

A2ÎxÎŒ Æ ÎxÎ(2) Æ B2ÎxÎŒ for all x œ X

So for every x œ X, we have
A

B2
ÎxÎ(2) Æ ÎxÎ Æ B

A2
ÎxÎ(2)

Corollary 1. All norms on Rn are equivalent.

Theorem 6. In a finite dimensional normed linear space, any subset M is compact i� M is closed and
bounded.

Proof. Assignment 2.

Note: In Assignment 2, we also prove a useful result: All finite dimensional normed spaces are Banach
spaces.

2.8.2 Compactness in Infinite-Dimensional Normed Linear Spaces

Now we present without proof compactness criteria for some infinite dimensional normed spaces: (C[a, b], Î·
ÎŒ) and (L1[a, b], Î · Î1) (see Zeidler’s book page 35; See Oden and Demkowicz’s book page 339-341).

Theorem 7 (The Arzela-Ascoli Theorem). Consider the normed linear space (C[a, b], Î ·ÎŒ) where ≠Œ <

a < b < Œ. Suppose we are given a set S in C[a, b] such that

1. S is bounded.

2. S is equicontinuous, i.e., for each Á > 0, there is a ” > 0 such that

|x ≠ y| < ” and u œ S imply |u(x) ≠ u(y)| Æ Á.

Then S is a relatively compact subset of C[a, b].
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So, for (C[a, b], Î · ÎŒ), we have:
compact sets = closed + bounded + equicontinuous sets.

Theorem 8 (Frechét - Kolmogorov Theorem). A subset F µ (L
p

(R), Î · Î
p

), 1 Æ p < Œ, is relatively
compact in L

p

(R) i� the following conditions hold:

1. F is bounded, i.e., there exists an M > 0 such that ÎfÎ
p

Æ M for every f œ F .

2. For each Á > 0, there is a ” > 0 such that

|t| < ” and f œ F imply
⁄

R
|f(t + s) ≠ f(s)|pds Æ Á.

3. lim
næŒ

s
|s|>n

|f(s)|p ds = 0 for every f œ F .

Below is another useful compactness criteria (see Zeidler’s book pages 38-39 for the proof).

Theorem 9 (Finite Á-net). Let S be a nonempty set in the Banach space X. Then the following two
statements are equivalent:

(i) S is relatively compact.

(ii) S has a finite Á-net ; that is, for each Á > 0, there exists a finite number of points v1, . . . , v

N

œ S

such that
min

1ÆkÆN

Îu ≠ v

k

Î Æ Á for all u œ S.

In other words, S µ
Nt

k=1
B(v

k

, Á) µ X.

Note: The smallest integer N such that S can be covered by N Á≠ balls is called the covering number
N (S, Î · Î, Á). For example, when S is a subset of the unit ball in (Rn

, Î · Î),

N (S, Î · Î, Á) Æ
3

1 + 2
Á

4
n

,

See, for example, “A Mathematical Introduction to Compressive Sensing” by Foucart and Rauhut, page
577.

Next, we will study a useful operator, called compact operator, to generalize classical results for
operator equations in finite-dimensional normed spaces to infinite-dimensional normed spaces.

2.8.3 Compact Operators

Definition 3. Let X and Y be normed space over K (K = R or K = C). The operator A : X æ Y is
called a compact operator i�

1. A is continuous, and

2. A transforms bounded sets into relatively compact sets.
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Example 2.

Let X = Y = C[0, 1] endowed with the Î · ÎŒ norm, consider the integral operator A : C[0, 1] æ C[0, 1],
where for every u œ C[0, 1], define

Au(x) :=
1⁄

0

K(x, y)u(y) dy for all x œ [0, 1],

where K(x, y) is continuous on the square [0, 1]2. We shall show that A is compact.

Since K(x, y) is continuous on [0, 1]2, there exists a constant M such that

|K(x, y)| Æ M for all (x, y) œ [0, 1]2.

• Step 1: It is clear that A is well-defined (i.e., Au œ C[0, 1] for all u œ C[0, 1]) since both K(x, y)
and u(y) are continuous functions.

• Step 2: Show that A is continuous. For any u, v œ X, we have

ÎAu≠AvÎŒ = max
xœ[0,1]

------

1⁄

0

K(x, y)(u(y) ≠ v(y)) dy

------
Æ max

xœ[0,1]

1⁄

0

|K(x, y)(u(y) ≠ v(y))| dy Æ MÎu≠vÎŒ.

Therefore, for every Á > 0, pick ” = Á

M

, then whenever u, v œ X with Îu ≠ vÎŒ < ”, we have
ÎAu ≠ AvÎŒ < Á. Therefore, A is continuous.

Suppose S is a bounded set of functions of C[0, 1]. Then there is r > 0 such that ÎuÎŒ Æ r for all
u œ S. We will show that A(S) µ C[0, 1] is relatively compact.

• Step 3: Show that A(S) is bounded. For any u œ S, we have

ÎAuÎŒ = max
xœ[0,1]

------

1⁄

0

K(x, y)u(y) dy

------
Æ Mr,

therefore, A(S) is bounded.

• Step 4: Show that A(S) is equicontinuous.
Since [0, 1]2 is compact and K is continuous on [0, 1]2, K(x, y) is uniformly continuous. (Prove this!)
Therefore, for every Á > 0, there exists ” > 0 such that

|K(x1, y) ≠ K(x2, y)| <

Á

r

, whenever |x1 ≠ x2| < ”.

Then for any x1, x2 œ [0, 1] with |x1 ≠ x2| < ” and for any u œ S, we have

|Au(x1) ≠ Au(x2)| =

------

1⁄

0

(K(x1, y) ≠ K(x2, y))u(y)

------
Æ Á

r

r = Á.

Hence A(S) is equicontinuous. So by the Arzela-Ascoli Theorem, A(S) is a relatively compact set in
C[0, 1].
In conclusion, A is a compact operator.
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Example 3. Let X be an infinite dimensional Banach space, such as (C[0, 1], Î · ÎŒ) or (L1[0, 1], Î · Î1).
Consider the identity operator A : X æ X, A(x) = x. A is continuous, B(0, 1) is bounded but A(B(0, 1)) =
B(0, 1) is not a relatively compact set in X ( Assignment 2). Therefore, the identity is not a compact
operator in this case.

Theorem 10 (Approximation Theorem for Compact Operators). Let A : S µ X æ Y be a compact
operator, where X and Y are Banach spaces over K and S is a bounded nonempty subset of X. Then for
every n = 1, 2, . . ., there exists a continuous operator A

n

: S æ Y such that

sup
uœS

ÎAu ≠ A

n

uÎ Æ 1
n

, dim(span A

n

(S)) < Œ, and A

n

(S) µ co(A(S)).

Recall: For a set B in a linear space X, co(B) is the convex hull of B, span B is the spanning set of B.

Sketch of the Proof. • Since A is compact, and S is bounded, A(S) is relatively compact. Using the
finite Á-net theorem, for every n = 1, 2, . . ., there exists a finite 1

2n

-net for A(S). That is, there are
elements u1, . . . , u

N

œ A(S) such that

min
1ÆkÆN

ÎAu ≠ u

k

Î Æ 1
2n

, for all u œ S.

• Define the Schauder operator on S:

A

n

u :=

Nq

k=1
a

k

(u)u
k

Nq

k=1
a

k

(u)
, for all u œ S,

where
a

k

: S æ R, a

k

(u) := max
; 1

n

≠ ÎAu ≠ u

k

Î, 0
<

, k = 1, . . . , N.

Claim: a

k

: S æ R is continuous and for each u œ S, a

k

(u) do not all vanish simultaneously.
Therefore A

n

: S æ Y is well-defined and continuous.

• Show that ÎAu ≠ A

n

uÎ Æ 1
n

.
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