Lecture 08: Compact Sets. Compact Operators.

Theorem 5. Two norms on a finite-dimensional linear space X over K (K =R or K = C) are always

equivalent.

Sketch of the proof. If dim X = 0, any norm on X is the zero function. Therefore, all norms on X are
equivalent.

Let 0 <n=dim X and ||| is a norm on X. Suppose {e1,...,e,} is a basis for X. For each = € X, there
is a unique tuple a € K" such that

r=aaier + -+ ape,.

Define [[lo := [lalloc = max |aj].
e Step 1: Prove that || - ||c : X = R, || > «jej|| := max |a;|is a norm on X. (Exercise).
1<j<n o 1SST

Set S ={a € K": ||alloo = 1}. Then S is closed and bounded in K" (Exercise).

Therefore, S is compact. Consider a function

f:SCcK"=R, fla) =

n
Z gl
k=1

e Step 2: Prove that f is a continuous function. (Exercise). Hint: Show that

n

[f(@) = F(B)] < lla—Blloc D llexll, for all o, § € K™

k=1

e Step 3: Prove || - || is equivalent to ||+ ||oo-
Applying the Weeirstrass theorem for continuous functions on the compact nonempty subset of S,

we conclude that f : S — R has a maximum and minimum on S. Let

a€esS acR™

n
A = mi = mi 1. | =1
min f(«) = min {‘ kz_:lakek s.t 1213'82(71 o }

and

B = =
ey ) m{

s.t. max |oj| = 1}
1<j<n

n
E:cmek
k=1 -

Note that A and B are constants that depend on the norm || - || of X. Also, since 0 € S, so f(a) >0
foralla e S. So0< A< B and

< B, forall pges.

> Brew

k=1

AL f(B) =

The above inequalities can be rewritten as

A<|y| < B forall ye X with [yl =1.
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For any z € X — {0}, let z = € X. Then ||z|lc =1, so

A<|z[[<B, A<

< B, Azl < [lz] < Bl]loo-
That inequality also holds for x = 0. So we have

Allz]|oo < |l2|| < Bllz|los for all z € X

e Step 4: Prove that any two norms on X are equivalent. Let || - [|2) be another norm on X. Then

there exist positive constants Ay, By so that
Az ||z]|co < H.T}H(Q) < By||z||ee  for all z € X

So for every z € X, we have

Corollary 1. All norms on R™ are equivalent.

Theorem 6. In a finite dimensional normed linear space, any subset M is compact iff M is closed and
bounded.

Proof. Assignment 2. O

Note: In Assignment 2, we also prove a useful result: All finite dimensional normed spaces are Banach

spaces.

2.8.2 Compactness in Infinite-Dimensional Normed Linear Spaces

Now we present without proof compactness criteria for some infinite dimensional normed spaces: (C|a, b], ||-
lloo) and (Lila,bl,| - |l1) (see Zeidler’s book page 35; See Oden and Demkowicz’s book page 339-341).

Theorem 7 (The Arzela-Ascoli Theorem). Consider the normed linear space (Cla,bl, || ||co) where —oo <

a <b<oo. Suppose we are given a set S in Cla,b] such that
1. S is bounded.

2. S is equicontinuous, i.e., for each € > 0, there is a § > 0 such that

lt—y|<d and weS imply |u(zx)—u(y) <e.

Then S is a relatively compact subset of Cla,b].
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So, for (Cla,b], || - ||s), we have:

compact sets = closed + bounded + equicontinuous sets.

Theorem 8 (Frechét - Kolmogorov Theorem). A subset F C (Lp(R),| - |lp), 1 < p < oo, is relatively
compact in Ly(R) iff the following conditions hold:

1. F is bounded, i.e., there exists an M > 0 such that ||f|, < M for every f € F.

2. For each € > 0, there is a § > 0 such that

[t|] <d and feF imply /R]f(t—l—s)—f(s)\pdsga

3. lim [

nosoo J1sI>n

|f(s)|P ds =0 for every f € F.

Below is another useful compactness criteria (see Zeidler’s book pages 38-39 for the proof).

Theorem 9 (Finite e-net). Let S be a nonempty set in the Banach space X. Then the following two

statements are equivalent:
(i) S is relatively compact.

(i1) S has a finite e-net ; that is, for each € > 0, there exists a finite number of points vy,...,ony € S
such that

i — g < 1 S.
1£IIICISHNHU vl| < e forall ue

N
In other words, S C |J B(vg,e) C X.
k=1

Note: The smallest integer N such that .S can be covered by N — balls is called the covering number
N(S, || - |],&). For example, when S is a subset of the unit ball in (R™, || - ||),

NS e < (1+2)

See, for example, “A Mathematical Introduction to Compressive Sensing” by Foucart and Rauhut, page
577.

Next, we will study a useful operator, called compact operator, to generalize classical results for
operator equations in finite-dimensional normed spaces to infinite-dimensional normed spaces.

2.8.3 Compact Operators

Definition 3. Let X and Y be normed space over K (K =R or K = C). The operator A : X —'Y s

called a compact operator iff
1. A is continuous, and

2. A transforms bounded sets into relatively compact sets.
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Example 2.

Let X =Y = C[0,1] endowed with the || - ||oc norm, consider the integral operator A : C[0,1] — C[0, 1],
where for every u € C[0,1], define

1
Au(zx) := /K(a},y)u(y) dy for all x €[0,1],
0

where K (z,y) is continuous on the square [0,1]2. We shall show that A is compact.

Since K (x,y) is continuous on [0, 1], there exists a constant M such that
[K(z,9)l <M forall (z,y)€[0,1]"

e Step 1: It is clear that A is well-defined (i.e., Au € C[0,1] for all u € C[0,1]) since both K(x,y)

and u(y) are continuous functions.

e Step 2: Show that A is continuous. For any u,v € X, we have

1

[ Au—Av]o = max | [ K(o,y)(u(y) - v(y) dy

xz€[0,1]
0

1
< max [ | (2) (u(y) ~ v(w)] dy < M=),
0

€
Therefore, for every e > 0, pick 0 = i then whenever u,v € X with ||lu — v|le < 0, we have
|Au — Av||so < €. Therefore, A is continuous.

Suppose S is a bounded set of functions of C[0,1]. Then there is v > 0 such that ||u|lcc < 7 for all
u € S. We will show that A(S) C CI0,1] is relatively compact.

e Step 3: Show that A(S) is bounded. For any u € S, we have

1

[ K@ty dy

0

|Au)|cc = max < Mr,

z€[0,1]

therefore, A(S) is bounded.

e Step 4: Show that A(S) is equicontinuous.
Since [0, 1)? is compact and K is continuous on [0,1]?, K(x,y) is uniformly continuous. (Prove this!)

Therefore, for every e > 0, there exists d > 0 such that
€
|K(x1,y) — K(2z2,y)| < . whenever |xy — xa| < 4.

Then for any x1,x2 € [0,1] with |x1 — x2| < 0 and for any u € S, we have
1

[ 1) = Kz put)| < Sr =
0

|Au(ar) — Au(as)| =

Hence A(S) is equicontinuous. So by the Arzela-Ascoli Theorem, A(S) is a relatively compact set in
1o, 1].

In conclusion, A is a compact operator.
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Example 3. Let X be an infinite dimensional Banach space, such as (C[0,1], ]| - |loo) or (L1[0,1],] - |]1)-
Consider the identity operator A : X — X, A(x) = x. A is continuous, B(0, 1) is bounded but A(B(0,1)) =
B(0,1) is not a relatively compact set in X ( Assignment 2). Therefore, the identity is not a compact

operator in this case.

Theorem 10 (Approximation Theorem for Compact Operators). Let A : S € X — Y be a compact
operator, where X and Y are Banach spaces over K and S is a bounded nonempty subset of X. Then for

everyn =1,2,..., there exists a continuous operator A, : S — Y such that

1
sup ||Au — Apul|| < —, dim(span A,(5)) < 0o, and A,(S) C co(A(S5)).
u€esS n
Recall: For a set B in a linear space X, co(B) is the convex hull of B, span B is the spanning set of B.

Sketch of the Proof. e Since A is compact, and S is bounded, A(S) is relatively compact. Using the
1

finite e-net theorem, for every n = 1,2,..., there exists a finite 2——net for A(S). That is, there are
n

elements uq,...,uy € A(S) such that

1
min _||Au —ug|| < —, forallue S.
1<k<N 2n

e Define the Schauder operator on S:

= foralluesS,

where

1
ar S =R, ag(u) ::max{n—HAu—ukH,O}, k=1,...,N.

Claim: a; : S — R is continuous and for each u € S, ax(u) do not all vanish simultaneously.

Therefore A, : S — Y is well-defined and continuous.

1
e Show that ||Au — Apul| < —.
n
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