
Lecture 09: Schauder Fixed-Point Theorem and Applications to ODEs

Theorem 10 (Approximation Theorem for Compact Operators). Let A : S µ X æ Y be a compact
operator, where X and Y are Banach spaces over K and S is a bounded nonempty subset of X. Then for
every n = 1, 2, . . ., there exist a finite dimensional subspace Y

n

of Y and a continuous operator A

n

: S æ Y

n

such that
sup
uœS

ÎAu ≠ A

n

uÎ Æ 1
n

and A

n

(S) µ co(A(S)).

Recall: For a set B in a linear space X, co(B) is the convex hull of B, span B is the spanning set of B.

The idea of the proof is to use the finite Á-net for the set A(S) in the Banach space Y and use those
centers to define the operator A

n

as a linear combination of those Au

k

. The coe�cients are chosen carefully
to achieve the approximation of 1

n

.

Sketch of the Proof. • Since A is compact, and S is bounded, A(S) is relatively compact. Using the
finite Á-net theorem, for every n = 1, 2, . . ., there exists a finite 1

2n

-net for A(S). That is, there are
elements Au1, . . . , Au

N

œ A(S) (i.e., u1, . . . , u

N

œ S) such that

min
1ÆkÆN

ÎAu ≠ Au

k

Î Æ 1
2n

, for all u œ S. (7)

• Define the Schauder operator A

n

: S æ Y ,

A

n

u :=

Nq

k=1
a

k

(u) Au

k

Nq

k=1
a

k

(u)
, for all u œ S, (8)

where
a

k

: S æ R, a

k

(u) := max
; 1

n

≠ ÎAu ≠ Au

k

Î, 0
<

, k = 1, . . . , N.

Claim 1: A

n

: S æ Y is well-defined and continuous. First, a

k

are nonnegative functions and
because of Equation (7), for every u œ S, there is k œ [1, N ] such that a

k

(u) > 0. Therefore, A

n

is
well-defined. For each k, the function a

k

is continuous because a

k

is the composition of continuous
functions:

a

k

: u ‘≠æ (Au ≠ Au

k

) ‘≠æ ÎAu ≠ Au

k

Î ‘≠æ 1
n

≠ ÎAu ≠ Au

k

Î ‘≠æ max
; 1

n

≠ ÎAu ≠ Au

k

Î, 0
<

.

Therefore, A

n

is a continuous function on S. From Equation (8), we also have

A

n

(S) µ co(Au1, . . . , Au

N

) µ Y

n

= Span(Au1, . . . , Au

N

), dim Y

n

< Œ

A

n

(S) µ co(Au1, . . . , Au

N

) µ co(A(S)).
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Claim 2: Show that ÎAu ≠ A

n

uÎ Æ 1
n

for any u œ S. Indeed, we have

ÎAu ≠ A

n

uÎ =

.....
Nq

k=1
a

k

(u) (Au ≠ Au

k

)
.....

Nq

k=1
a

k

(u)
Æ

Nq

k=1
a

k

(u)ÎAu ≠ Au

k

Î

Nq

k=1
a

k

(u)

Due to the construction of a

k

, for any k = 1, 2, . . ., we have

a

k

(u)ÎAu ≠ Au

k

Î Æ 1
n

a

k

(u).

Hence ÎAu ≠ A

n

uÎ Æ 1
n

.

2.9 The Brower and Schauder Fixed-Point Theorems

Rephrased from Zeidlers’book: The Brower Fixed-Point Theorem is one of the most important existence
principles in mathematics. It has interesting applications to game theory, mathematical economics, and
numerical mathematics. Further important existence principles in mathematics are the Hahn-Banach
theorem, the Weierstrass existence theorem for minima, and the Baire category theorem. The Schauder
Fixed Point Theorem is an extension of the Brower Fixed Point Theorem. We state (without proof) the
Brower Fixed-Point Theorem.

Theorem 1 (Brower Fixed Point Theorem - Version 1). Any continuous map of a closed ball in Rn into
itself must have a fixed point.

Example 1. A continuous function f : [a, b] æ [a, b] has a fixed point x œ [a, b].

Below is another variant of the Brower Fixed-Point Theorem (in Zeidler’s book).

Theorem 2 (Brower Fixed Point Theorem - Version 2). Let (X, Î · Î) be a finite-dimensional normed
space and S µ X is compact, convex, and nonempty. Any continuous operator A : S æ S has at least one
fixed point.

Example 2 (Counter Examples). The following counter examples show the essentials of each assumption
in the Brower Fixed-Point Theorem (version 2).

• S = [0, 1] compact, convex and nonempty, but A : S æ S not continuous and the graph y = A(x)
does not cross the diagonal y = x. No fixed point.

• S = R and A : S æ S, A(x) = x + 1. A is continuous, S is convex, nonempty, but not compact. No
fixed point.

• Let S be a closed annulus and A : S æ S is a rotation of the annulus around the center. A proper
rotation is fixed-point free. In this case, S is compact, nonempty but not convex.
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Theorem 3 (Schauder Fixed Point Theorem - Version 1). Let (X, Î ·Î) be a Banach space over K (K = R
or K = C) and S µ X is closed, bounded, convex, and nonempty. Any compact operator A : S æ S has at
least one fixed point.

The idea here is to find a fixed point for each approximation operator. Then using the compactness of
the operator A to show that the limit of the convergent subsequence is the fixed point of A.

Proof. From the approximation theorem for compact operators, for every n = 1, 2, . . . , there exists a finite
dimensional subspace X

n

of X and a continuous operator A

n

: S æ X

n

such that A

n

(S) µ co(A(S)) and

ÎAu ≠ A

n

uÎ Æ 1
n

for all u œ S.

Let S

n

= X

n

fl S.

• Step 1: Show that A

n

|
Sn : S

n

æ S

n

and S

n

is a compact and convex set of X. Therefore,
we can apply the Brower fixed point theorem.

Step 1.1: Show that A

n

|
Sn : S

n

æ S

n

Indeed,
A

n

(S) µ co(A(S)) µ co(S) µ S,

where the first inclusion comes from the construction of A

n

, the second one is because A : S æ S,
and the third one is derived from the convexity of S.

Therefore, A

n

|
Sn : S

n

æ S

n

.

Step 1.2: Show that S

n

is a compact and convex set of X.

• S is bounded, so S

n

is bounded.

• Since X

n

is a finite dimensional subspace of X, X

n

is a closed subset of X. Since the intersection
of two closed subsets of X is a closed subset of X, S

n

is closed.

• Since X

n

is a finite dimensional space and S

n

µ X

n

is closed and bounded, S

n

must be a
compact set.

• Since S and X

n

are convex, S

n

is convex.

By the Brower fixed-point theorem, the operator A

n

: S

n

æ S

n

has a fixed point u

n

, i.e.,

A

n

u

n

= u

n

, u

n

œ S

n

, for all n = 1, 2, . . .

• Step 2: Show that {u

n

} and {Au

n

} have convergent subsequences and the limit is the
fixed-point of A.

Since u

n

œ S

n

µ S and S is bounded, the sequence {u

n

} is bounded. Since A is compact, {Au

n

}
n

is
relatively compact in X. Therefore, there is a subsequence {Au

nk}
k

of {Au

n

} such that

lim
kæŒ

Au

nk = v œ X.
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Since Au

nk œ S and S is closed, v œ S. Moreover,

Îv ≠ u

nkÎ Æ Îv ≠ Au

nkÎ + ÎAu

nk ≠ u

nkÎ = Îv ≠ Au

nkÎ + ÎAu

nk ≠ A

nku

nkÎ æ 0 as k æ Œ.

Hence u

nk æ v as k æ Œ. Since A is continuous, Au

nk æ Av. Therefore, Av = v.

Since a continuous operator on a compact set is always a compact operator, the Schauder fixed point
theorem - version 1 yields the Schauder fixed point theorem - version 2.

Theorem 4 (Schauder Fixed Point Theorem - Version 2). Let (X, Î · Î) be a Banach space and S µ X is
compact, convex, and nonempty. Any continuous operator A : S æ S has at least one fixed point.

2.10 Applications to Ordinary Di�erential Equations

Theorem 1 (The Peano Theorem). Given (x0, u0) œ R2, let F (x, w) be a real-valued continuous function
on a rectangle

S = {(x, w) œ R2 : |x ≠ x0| Æ a and |w ≠ u0| Æ b},

Denote c = max
(x,w)œS

|F (x, w)|. Then for 0 < h Æ a and hc Æ b, the following initial value problem
Y
_]

_[

u

Õ = F (x, u), x0 ≠ h Æ x Æ x0 + h

u(x0) = u0.

(9)

has at least one solution.

Proof. Denote X := C[x0 ≠ h, x0 + h] and M := {u œ X : Îu ≠ u0ÎŒ Æ b}.
For each u œ M , consider the following operator A

Au(x) := u0 +
x⁄

x0

F (y, u(y))dy, for x œ [x0 ≠ h, x0 + h].

Similar to the part of the Picard-Lindelöf theorem, we have A : M æ M . Next, we will prove that A is
continuous and A(M) is bounded and equicontinuous. Since A(M) µ M , the set A(M) is bounded. The
continuous of A and the equicontinuous of A(M) come from the following inequality:

|Au(x) ≠ Au(z)| =
----
⁄

x

z

F (y, u(y)) dy

---- Æ c|z ≠ x|.

By the Arzela Ascoli Theorem, the set A(M) is relatively compact in X. Since M is bounded, this implies
A : M æ M is a compact operator. Moreover, the closed ball M is closed, bounded, convex, and nonempty.
By the Schauder fixed point theorem, the equation

Au = u, u œ M

has a solution uú œ M . Di�erentiating the integral equation with respect to x, we see that uú is also a
solution of the IVP (9).
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