Lecture 10: Bounded Linear Operators.

2.11 Bounded Linear Operator

Recall: Let X and Y be linear spaces over \mathbb{K} (where $\mathbb{K}=\mathbb{R}$ or $\mathbb{K}=\mathbb{C}$). The operator $L: X \rightarrow Y$ is called linear if for every $u, v \in X$ and $\alpha, \beta \in \mathbb{K}$, we have

$$
L(\alpha u+\beta v)=\alpha L u+\beta L v .
$$

Definition 1. Let X and Y be normed linear spaces. A linear operator $L: X \rightarrow Y$ is called a bounded linear operator if there exists a positive constant $c>0$ such that

$$
\|L x\|_{Y} \leq c\|x\|_{X}, \quad \text { for all } x \in X
$$

Note: We often write $\|x\|$ and $\|L x\|$ instead of $\|x\|_{X}$ and $\|L x\|_{Y}$.
Proposition 13. Let $L: X \rightarrow Y$ be a linear operator where X and Y are normed spaces over $\mathbb{K}(\mathbb{K}=\mathbb{R}$ or $\mathbb{K}=\mathbb{C}$). Then the following statements are equivalent:

1. L is continuous at 0 .
2. L is continuous on X.
3. There is a number $c>0$ such that $\|L x\| \leq c$ for all $x \in X$ with $\|x\| \leq 1$.
4. There is a number $c>0$ such that $\|L x\| \leq c\|x\|$ for all $x \in X$.

Proof. $(1 \Rightarrow 2)$. Let $x \in X$ and suppose $\left\{x_{n}\right\} \subset X$ such that $\lim _{n \rightarrow \infty} x_{n}=x$. Then $\lim _{n \rightarrow \infty}\left(x_{n}-x\right)=0$. Since L is continuous at 0 , we have

$$
\lim _{n \rightarrow \infty} L\left(x_{n}-x\right)=L(0)
$$

Since L is linear, $L(0)=0$ and $L\left(x_{n}-x\right)=L\left(x_{n}\right)-L(x)$, for all $n \in \mathbb{N}$. Therefore,

$$
0=L(0)=\lim _{n \rightarrow \infty} L\left(x_{n}-x\right)=\lim _{n \rightarrow \infty}\left(L\left(x_{n}\right)-L(x)\right)=\lim _{n \rightarrow \infty} L\left(x_{n}\right)-L(x) .
$$

Hence $\lim _{n \rightarrow \infty} L\left(x_{n}\right)=L(x)$, which means L is continuous at $x \in X$, for any $x \in X$. That completes the proof.
$(2 \Rightarrow 3)$.Suppose (3) is not true. Then there exists a sequence $\left\{x_{n}\right\} \subset X$ such that

$$
\left\|x_{n}\right\| \leq 1 \quad \text { and } \quad\left\|L\left(x_{n}\right)\right\| \geq n, \quad \text { for all } n=1,2, \ldots
$$

Let $w_{n}=n^{-1} x_{n}$, then

$$
\left\|w_{n}\right\| \leq \frac{1}{n} \quad \text { and } \quad\left\|L w_{n}\right\|=\left\|L\left(n^{-1} x_{n}\right)\right\|=n^{-1}\left\|L\left(x_{n}\right)\right\| \geq 1 \quad \text { for all } n=1,2, \ldots
$$

So $\lim _{n \rightarrow \infty}\left\|w_{n}\right\|=0$ and $\lim _{n \rightarrow \infty} w_{n}=0$. Since L is continuous at 0 , we have $\lim _{n \rightarrow \infty} L\left(w_{n}\right)=L(0)=0$, a contradiction with $\left\|L w_{n}\right\| \geq 1$.
$(3 \rightarrow 4)$. If $x=0$, then $\|L(0)\|=0 \leq c\|0\|$.
If $x \neq 0$, let $z=\frac{x}{\|x\|}$. Then $\|z\|=1$, so $c \geq\|L z\|=\frac{\|L x\|}{\|x\|}$. Therefore, $c\|x\| \geq\|L x\|$.
In both cases, we have $\|L x\| \leq c\|x\|$, for all $x \in X$.
$(4 \rightarrow 1)$. Given $\varepsilon>0$. Choose $\delta=\varepsilon / c$. Then when $x \in X$ with $\| x \mid<\delta$, we have

$$
\|L x\| \leq c\|x\|<c \delta<\varepsilon
$$

So for linear operators between normed linear spaces, boundedness is equivalent to continuity.
Definition 2. For a bounded linear operator $L: X \rightarrow Y$ where X and Y are normed linear spaces, define the operator norm

$$
\|L\|:=\sup _{v \in X,\|v\| \leq 1}\|L v\|<\infty
$$

Proposition 14. Let $L: X \rightarrow Y$ be a bounded linear operator where X and Y are normed linear spaces. Then

1. $\|L u\| \leq\|L\|\|u\|$, for all $u \in X$.
2. If there is a constant $C>0$ such that $\|L u\| \leq C\|u\|$ for all $u \in X$, then $\|L\| \leq C$.
3. If $X \neq\{0\}$, then

$$
\|L\|=\sup _{v \in X,\|v\| \leq 1}\|L v\|=\sup _{v \in X,\|v\|=1}\|L v\|=\sup _{v \in X, v \neq 0} \frac{\|L v\|}{\|v\|}
$$

Proposition 15 (Bounded Linear Operators Between Finite Dimensional Normed Spaces). Let X and Y be finite-dimensional normed spaces over $\mathbb{K}(\mathbb{R}$ or $\mathbb{C})$ with $\operatorname{dim} X=N$ and $\operatorname{dim} Y=M$ where $N, M \geq 1$. Then any linear operator $L: X \rightarrow Y$ is bounded.

Sketch of the Proof. Let $\left\{e_{1}, \ldots, e_{N}\right\}$ and $\left\{f_{1}, \ldots, f_{M}\right\}$ be a basis in X and Y, respectively. Suppose

$$
L\left(e_{n}\right)=\sum_{m=1}^{M} a_{m n} f_{m}, \quad n=1, \ldots, N
$$

Any $x \in X$ can be written as $x=\sum_{n=1}^{N} c_{n} e_{n}$, for some $c_{1}, \ldots, c_{N} \in \mathbb{K}$. Then

$$
L\left(\sum_{n=1}^{N} c_{n} e_{n}\right)=\sum_{n=1}^{N} c_{n} L\left(e_{n}\right)=\sum_{n=1}^{N} c_{n} \sum_{m=1}^{M} a_{m n} f_{m}=\sum_{m=1}^{M}\left(\sum_{n=1}^{N} a_{m n} c_{n}\right) f_{m}
$$

Recall that we have proved in previous lectures that

$$
\left\|\sum_{n=1}^{N} c_{n} e_{n}\right\|:=\max _{1 \leq n \leq N}\left|c_{n}\right|
$$

is a norm on the finite dimensional normed space X.

- Show that $\|L x\|_{\infty} \leq\|x\|_{\infty} \max _{1 \leq m \leq M} \sum_{n=1}^{N}\left|a_{m n}\right|$.
- Using the property that any two norms on a finite dimensional normed linear spaces are equivalent, show that there is a constant $C>0$ such that $\|L x\| \leq C\|x\|$ for all $x \in X$.

Example 1. Consider a linear operator $L: \mathbb{R}^{N} \rightarrow \mathbb{R}^{M}, L(x):=A x$ (matrix multiplication), where A is a matrix of real entries of size $M \times N$.

1. If we use the $\|\cdot\|_{\infty}$ norm for both \mathbb{R}^{N} and \mathbb{R}^{M}, then $\|L\|=\max _{1 \leq m \leq M} \sum_{n=1}^{N}\left|a_{m n}\right|$.
2. If we use the $\|\cdot\|_{1}$ norm for both \mathbb{R}^{N} and \mathbb{R}^{M}, then $\|L\|=\max _{1 \leq n \leq N} \sum_{m=1}^{M}\left|a_{m n}\right|$.
3. If we use the $\|\cdot\|_{2}$ norm for both \mathbb{R}^{N} and \mathbb{R}^{M}, then $\|L\|=\sqrt{\rho\left(A^{T} A\right)}$, where $\rho(B)$ is the maximum of the magnitude of the eigenvalues of the square matrix B.
Proof. (1). For any $x \in \mathbb{R}^{N}$, then for any $1 \leq m \leq M$, we have

$$
\left|(L x)_{m}\right|=\left|\sum_{n=1}^{N} a_{m n} x_{n}\right| \leq \sum_{n=1}^{N}\left|a _ { m n } \left\|x_{n}\left|\leq\|x\|_{\infty} \sum_{n=1}^{N}\right| a_{m n}\left|\leq\|x\|_{\infty} \max _{1 \leq m \leq M} \sum_{n=1}^{N}\right| a_{m n} \mid\right.\right.
$$

Therefore,

$$
\|L x\|_{\infty}=\max _{1 \leq m \leq M}\left|(L x)_{m}\right| \leq\|x\|_{\infty} \max _{1 \leq m \leq M} \sum_{n=1}^{N}\left|a_{m n}\right|
$$

Therefore, $\|L\| \leq \max _{1 \leq m \leq M} \sum_{n=1}^{N}\left|a_{m n}\right|$.
Next, we will prove that there exists $\hat{x} \in \mathbb{R}^{N}$ with $\|x\|_{\infty}=1$ such that $\|L \hat{x}\|_{\infty} \geq \max _{1 \leq m \leq M} \sum_{n=1}^{N}\left|a_{m n}\right|$. Then

$$
\|L\|=\sup _{\|z\|=1}\|L z\|_{\infty} \geq\|L \hat{x}\|_{\infty} \geq \max _{1 \leq m \leq M} \sum_{n=1}^{N}\left|a_{m n}\right|
$$

Therefore, $\|L\|=\max _{1 \leq m \leq M} \sum_{n=1}^{N}\left|a_{m n}\right|$.
It remains to construct such \hat{x}. Suppose $\max _{1 \leq m \leq M} \sum_{n=1}^{N}\left|a_{m n}\right|=\sum_{n=1}^{N}\left|a_{m_{0} n}\right|$ for some $1 \leq m_{0} \leq M$. Let

$$
\hat{x}_{n}= \begin{cases}1 & \text { if } a_{m_{0}, n} \geq 0 \\ -1 & \text { if } \quad a_{m_{0}, n}<0\end{cases}
$$

Then $\|\hat{x}\|_{\infty}=1$ and

$$
\|L \hat{x}\|_{\infty}=\max _{1 \leq m \leq M}\left|(L \hat{x})_{m}\right| \geq(L \hat{x})_{m_{0}}=\sum_{n=1}^{N} a_{m_{0} n} \hat{x}_{n}=\sum_{n=1}^{N}\left|a_{m_{0} n}\right|=\max _{1 \leq m \leq M} \sum_{n=1}^{N}\left|a_{m n}\right|
$$

which completes the proof.
(2) \& (3). Assignment 3

Example 2. Let $X=C[a, b]$ with $\|\cdot\|_{\infty}$, where $-\infty<a<b<\infty$ and $K:[a, b] \times[a, b] \rightarrow \mathbb{R}$ be continuous. For each $u \in X$, define the integral operator

$$
T u(x):=\int_{a}^{b} K(x, y) u(y) d y \quad \text { for all } x \in[a, b]
$$

From previous lectures, $T: C[a, b] \rightarrow C[a, b]$ is a continuous and a compact operator.
Moreover, T is linear (prove this!) and

$$
\|T\|=\max _{a \leq x \leq b} \int_{a}^{b}|K(x, y)| d y
$$

Sketch of the proof. We will compute the operator norm of T.

- Step 1: Show that

$$
\|T\| \leq \max _{a \leq x \leq b} \int_{a}^{b}|K(x, y)| d y
$$

Let $u \in C[a, b]$ and $x \in[a, b]$. Then

$$
|T u(x)|=\left|\int_{a}^{b} K(x, y) u(y) d y\right| \leq \int_{a}^{b}|K(x, y)| \mid\left(u(y)\left|d y \leq\|u\|_{\infty} \int_{a}^{b}\right| K(x, y)\left|d y \leq\|u\|_{\infty} \max _{a \leq x \leq b} \int_{a}^{b}\right| K(x, y) \mid d y\right.
$$

So

$$
\|T u\|_{\infty}=\max _{a \leq x \leq b}|T u(x)| \leq\|u\|_{\infty} \max _{a \leq x \leq b} \int_{a}^{b}|K(x, y)| d y
$$

Therefore

$$
\|T\| \leq \max _{a \leq x \leq b} \int_{a}^{b}|K(x, y)| d y
$$

- Step 2: (next lecture) For every $\frac{1}{4} \int_{a}^{b}|K(x, y)| d y>\varepsilon>0$, construct an $u_{\varepsilon} \in C[a, b]$ with $\left\|u_{\varepsilon}\right\|_{\infty} \leq 1$ such that

$$
\left\|T u_{\varepsilon}\right\|_{\infty} \geq \max _{a \leq x \leq b} \int_{a}^{b}|K(x, y)| d y-4 \varepsilon
$$

Then

$$
\|T\|=\sup _{u \in C[a, b],\|u\|_{\infty} \leq 1}\|T u\|_{\infty} \geq\left\|T u_{\varepsilon}\right\|_{\infty} \geq \max _{a \leq x \leq b} \int_{a}^{b}|K(x, y)| d y-4 \varepsilon
$$

Let $\varepsilon \rightarrow 0$, we have $\|T\| \geq \int_{a}^{b}|K(x, y)| d y$, which completes the proof.

