Lecture 10: Bounded Linear Operators.

2.11 Bounded Linear Operator

Recall: Let X and Y be linear spaces over \mathbb{K} (where $\mathbb{K} = \mathbb{R}$ or $\mathbb{K} = \mathbb{C}$). The operator $L: X \to Y$ is called linear if for every $u, v \in X$ and $\alpha, \beta \in \mathbb{K}$, we have

$$L(\alpha u + \beta v) = \alpha L u + \beta L v.$$

Definition 1. Let X and Y be normed linear spaces. A linear operator $L: X \to Y$ is called a bounded linear operator if there exists a positive constant c > 0 such that

$$||Lx||_Y \le c||x||_X$$
, for all $x \in X$.

Note: We often write ||x|| and ||Lx|| instead of $||x||_X$ and $||Lx||_Y$.

Proposition 13. Let $L: X \to Y$ be a linear operator where X and Y are normed spaces over \mathbb{K} ($\mathbb{K} = \mathbb{R}$ or $\mathbb{K} = \mathbb{C}$). Then the following statements are equivalent:

- 1. L is continuous at 0.
- 2. L is continuous on X.
- 3. There is a number c > 0 such that $||Lx|| \le c$ for all $x \in X$ with $||x|| \le 1$.
- 4. There is a number c > 0 such that $||Lx|| \le c||x||$ for all $x \in X$.

Proof. $(1 \Rightarrow 2)$. Let $x \in X$ and suppose $\{x_n\} \subset X$ such that $\lim_{n \to \infty} x_n = x$. Then $\lim_{n \to \infty} (x_n - x) = 0$. Since L is continuous at 0, we have

$$\lim_{n \to \infty} L(x_n - x) = L(0).$$

Since L is linear, L(0) = 0 and $L(x_n - x) = L(x_n) - L(x)$, for all $n \in \mathbb{N}$. Therefore,

$$0 = L(0) = \lim_{n \to \infty} L(x_n - x) = \lim_{n \to \infty} (L(x_n) - L(x)) = \lim_{n \to \infty} L(x_n) - L(x).$$

Hence $\lim_{n\to\infty} L(x_n) = L(x)$, which means L is continuous at $x\in X$, for any $x\in X$. That completes the proof.

 $(2 \Rightarrow 3)$. Suppose (3) is not true. Then there exists a sequence $\{x_n\} \subset X$ such that

$$||x_n|| \le 1$$
 and $||L(x_n)|| \ge n$, for all $n = 1, 2, \dots$

Let $w_n = n^{-1}x_n$, then

$$||w_n|| \le \frac{1}{n}$$
 and $||Lw_n|| = ||L(n^{-1}x_n)|| = n^{-1}||L(x_n)|| \ge 1$ for all $n = 1, 2, ...$

So $\lim_{n\to\infty} \|w_n\| = 0$ and $\lim_{n\to\infty} w_n = 0$. Since L is continuous at 0, we have $\lim_{n\to\infty} L(w_n) = L(0) = 0$, a contradiction with $\|Lw_n\| \ge 1$.

 $(3 \to 4)$. If x = 0, then $||L(0)|| = 0 \le c||0||$. If $x \neq 0$, let $z = \frac{x}{\|x\|}$. Then $\|z\| = 1$, so $c \geq \|Lz\| = \frac{\|Lx\|}{\|x\|}$. Therefore, $c\|x\| \geq \|Lx\|$. In both cases, we have $\|Lx\| \leq c\|x\|$, for all $x \in X$.

 $(4 \to 1)$. Given $\varepsilon > 0$. Choose $\delta = \varepsilon/c$. Then when $x \in X$ with $||x| < \delta$, we have

$$||Lx|| \le c||x|| < c\delta < \varepsilon.$$

So for linear operators between normed linear spaces, boundedness is equivalent to continuity.

Definition 2. For a bounded linear operator $L: X \to Y$ where X and Y are normed linear spaces, define the operator norm

$$||L|| := \sup_{v \in X, ||v|| \le 1} ||Lv|| < \infty$$

Proposition 14. Let $L: X \to Y$ be a bounded linear operator where X and Y are normed linear spaces. Then

- 1. $||Lu|| \le ||L|| \, ||u||$, for all $u \in X$.
- 2. If there is a constant C > 0 such that $||Lu|| \le C||u||$ for all $u \in X$, then $||L|| \le C$.
- 3. If $X \neq \{0\}$, then

$$||L|| = \sup_{v \in X, ||v|| \le 1} ||Lv|| = \sup_{v \in X, ||v|| = 1} ||Lv|| = \sup_{v \in X, v \ne 0} \frac{||Lv||}{||v||}$$

Proposition 15 (Bounded Linear Operators Between Finite Dimensional Normed Spaces). Let X and Y be finite-dimensional normed spaces over \mathbb{K} (\mathbb{R} or \mathbb{C}) with dim X = N and dim Y = M where $N, M \geq 1$. Then any linear operator $L: X \to Y$ is bounded.

Sketch of the Proof. Let $\{e_1,\ldots,e_N\}$ and $\{f_1,\ldots,f_M\}$ be a basis in X and Y, respectively. Suppose

$$L(e_n) = \sum_{m=1}^{M} a_{mn} f_m, \quad n = 1, \dots, N.$$

Any $x \in X$ can be written as $x = \sum_{n=1}^{N} c_n e_n$, for some $c_1, \ldots, c_N \in \mathbb{K}$. Then

$$L\left(\sum_{n=1}^{N} c_n e_n\right) = \sum_{n=1}^{N} c_n L(e_n) = \sum_{n=1}^{N} c_n \sum_{m=1}^{M} a_{mn} f_m = \sum_{m=1}^{M} \left(\sum_{n=1}^{N} a_{mn} c_n\right) f_m$$

Recall that we have proved in previous lectures that

$$\left\| \sum_{n=1}^{N} c_n e_n \right\| := \max_{1 \le n \le N} |c_n|$$

46

is a norm on the finite dimensional normed space X.

• Using the property that any two norms on a finite dimensional normed linear spaces are equivalent, show that there is a constant C > 0 such that $||Lx|| \le C||x||$ for all $x \in X$.

Example 1. Consider a linear operator $L: \mathbb{R}^N \to \mathbb{R}^M$, L(x) := Ax (matrix multiplication), where A is a matrix of real entries of size $M \times N$.

- 1. If we use the $\|\cdot\|_{\infty}$ norm for both \mathbb{R}^N and \mathbb{R}^M , then $\|L\| = \max_{1 \leq m \leq M} \sum_{n=1}^N |a_{mn}|$.
- 2. If we use the $\|\cdot\|_1$ norm for both \mathbb{R}^N and \mathbb{R}^M , then $\|L\| = \max_{1 \le n \le N} \sum_{m=1}^M |a_{mn}|$.
- 3. If we use the $\|\cdot\|_2$ norm for both \mathbb{R}^N and \mathbb{R}^M , then $\|L\| = \sqrt{\rho(A^T A)}$, where $\rho(B)$ is the maximum of the magnitude of the eigenvalues of the square matrix B.

Proof. (1). For any $x \in \mathbb{R}^N$, then for any $1 \le m \le M$, we have

$$|(Lx)_m| = \left| \sum_{n=1}^N a_{mn} x_n \right| \le \sum_{n=1}^N |a_{mn}| ||x_n| \le ||x||_{\infty} \sum_{n=1}^N |a_{mn}| \le ||x||_{\infty} \max_{1 \le m \le M} \sum_{n=1}^N |a_{mn}|.$$

Therefore,

$$||Lx||_{\infty} = \max_{1 \le m \le M} |(Lx)_m| \le ||x||_{\infty} \max_{1 \le m \le M} \sum_{n=1}^{N} |a_{mn}|.$$

Therefore, $||L|| \le \max_{1 \le m \le M} \sum_{n=1}^{N} |a_{mn}|.$

Next, we will prove that there exists $\hat{x} \in \mathbb{R}^N$ with $||x||_{\infty} = 1$ such that $||L\hat{x}||_{\infty} \ge \max_{1 \le m \le M} \sum_{n=1}^N |a_{mn}|$. Then

$$||L|| = \sup_{||z||=1} ||Lz||_{\infty} \ge ||L\hat{x}||_{\infty} \ge \max_{1 \le m \le M} \sum_{n=1}^{N} |a_{mn}|$$

Therefore, $||L|| = \max_{1 \le m \le M} \sum_{n=1}^{N} |a_{mn}|.$

It remains to construct such \hat{x} . Suppose $\max_{1 \leq m \leq M} \sum_{n=1}^{N} |a_{mn}| = \sum_{n=1}^{N} |a_{m_0n}|$ for some $1 \leq m \leq M$. Let

$$\hat{x}_n = \begin{cases} 1 & \text{if } a_{m_0,n} \ge 0 \\ -1 & \text{if } a_{m_0,n} < 0 \end{cases}.$$

Then $\|\hat{x}\|_{\infty} = 1$ and

$$||L\hat{x}||_{\infty} = \max_{1 \le m \le M} |(L\hat{x})_m| \ge (L\hat{x})_{m_0} = \sum_{n=1}^N a_{m_0n} \hat{x}_n = \sum_{n=1}^N |a_{m_0n}| = \max_{1 \le m \le M} \sum_{n=1}^N |a_{mn}|,$$

which completes the proof.

Example 2. Let X = C[a, b] with $\|\cdot\|_{\infty}$, where $-\infty < a < b < \infty$ and $K : [a, b] \times [a, b] \to \mathbb{R}$ be continuous. For each $u \in X$, define the integral operator

$$Tu(x) := \int_a^b K(x, y)u(y) dy$$
 for all $x \in [a, b]$.

From previous lectures, $T: C[a,b] \to C[a,b]$ is a continuous and a compact operator. Moreover, T is linear (prove this!) and

$$||T|| = \max_{a \le x \le b} \int_a^b |K(x, y)| dy.$$

Sketch of the proof. We will compute the operator norm of T.

• Step 1: Show that

$$||T|| \le \max_{a \le x \le b} \int_{a}^{b} |K(x,y)| dy.$$

Let $u \in C[a, b]$ and $x \in [a, b]$. Then

$$|Tu(x)| = \left| \int_{a}^{b} K(x,y)u(y) \, dy \right| \le \int_{a}^{b} |K(x,y)| \, |(u(y)| \, dy \le ||u||_{\infty} \int_{a}^{b} |K(x,y)| \, dy \le ||u||_{\infty} \max_{a \le x \le b} \int_{a}^{b} |K(x,y)| \, dy.$$

So

$$||Tu||_{\infty} = \max_{a \le x \le b} |Tu(x)| \le ||u||_{\infty} \max_{a \le x \le b} \int_{a}^{b} |K(x, y)| dy.$$

Therefore

$$||T|| \le \max_{a \le x \le b} \int_a^b |K(x,y)| dy.$$

• Step 2: (next lecture) For every $\frac{1}{4} \int_a^b |K(x,y)| dy > \varepsilon > 0$, construct an $u_{\varepsilon} \in C[a,b]$ with $||u_{\varepsilon}||_{\infty} \le 1$ such that

$$||Tu_{\varepsilon}||_{\infty} \ge \max_{a \le x \le b} \int_{\varepsilon}^{b} |K(x,y)| dy - 4\varepsilon.$$

Then

$$||T|| = \sup_{u \in C[a,b], ||u||_{\infty} \le 1} ||Tu||_{\infty} \ge ||Tu||_{\infty} \ge \max_{a \le x \le b} \int_{a}^{b} |K(x,y)| dy - 4\varepsilon.$$

Let $\varepsilon \to 0$, we have $||T|| \ge \int_a^b |K(x,y)| dy$, which completes the proof.