Lecture 11: Bounded Linear Operator (cont’d). B(X,Y). Dual Spaces

Example 2. Let X = Cla,b] with |||, where —oo < a < b < 0o and K : [a,b] X [a,b] — R be continuous.
For each v € X, define the integral operator

/K:By y)dy for all x € |a,b.

From previous lectures, T : Cla,b] — Cla,b] is a continuous and a compact operator.

Moreover, T is linear (prove this!) and

I7) = max. [ IK(w.y)ldy.

Sketch of the proof. We will compute the operator norm of 7T'.

e Step 1: Show that
b

T| < K dy.
|7 < mavx [ 1K (2,9)ldy
a

Let u € Cla,b] and x € [a,b]. Then

b b b b
Tute)| =| [ K@pu)dy| < [ 1K@ dy < Jule [ 18 pldy < lullo wax, [ 1K yldy.
So
b
ITullow = max, [Tu(e)| < lulloo max. [ |K(zy)ldy.
Therefore

7| < K dy.
17l < g, | Vol

Suppose max f K (x,y)|dy = f]K(xo y)|dy for some zg € [a,b]. Since K(xo,y) is continuous on

a compact set [a b], K(xo,y) is unlformly continuous on [a, b]. Therefore, given £ > 0, there exists
0 > 0 such that

|K (x0,y2) — K(wo,y1| < e forall [y —y2| <6, y1,92 € [a,b].

e Step 2: Now we will construct an u. € Cla,b] with ||uec|lo < 1 such that

Tu.(w) > max [ K (z,y)ldy— .
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Let A, = {y € [a,b] : |K(z0,y)| < €}. Then A; is a closed and bounded subset in R (prove this).
Therefore, there exists y1,...,yn € A. such that

A, cU —0,y; +9].

N
Let V, = (U [yi — 0, yi + (5]) N [a,b] and U = [a,b] — V. Define a function on U,
i=1
K(xg,
ue 1 Ue = R, we(y) := ]KE:L‘E zi‘

The function is well-defined and continuous since |K(xo,y)| > € for all y € U. and K(zg,y) is
continuous on [a, b]. Moreover, |u.(y)| =1 for all y € U.. Extend u, linearly, u. : [a,b] — R so that

lue(y)| < 1 for all y € [a, b].

Next, we will evaluate [y, K(zo,y)u:(y)dy. For each y € V, we have |y — y;| < § for some y; € A,
i€ {l,...,N}. Therefore,

‘K(x07y)| < |K(x07y7/)‘ + ’K(‘Tan) - |K(aj0)yl)” < 28) for all RS Vv&a

and
[ Ko pldy < [ 20y < 20— a)e.
Ve Ve
Also, since |u:(y)| < 1 for all y € V., we have

K(xo,y)ues(y) > —|K(zo,y)| [us(y)| = =K (zo,y)ue(y)| > —|K(zo,y)|, forall ye V..

Therefore,
Tue () = /U K (20, y)ue(y)dy + /V K (0, y)us () dy

= [ 1K@y + [ Ko,y)ue)dy

> [ K @oy)ldy— [ 1K (0. p)ldy
U. Ve
b

> [C 1w y)ldy =2 [ 1K (@o.)ldy
b

> / K (0, y)ldy — 4(b — a)e

> max /|K z,y)|dy —4(b — a)e.

Then

1T = sup [Tulloo > || Tuelloo = max [Tu(x)| > Tuc(xo) > max /|K(w,y)|dy—4(b—a)s.
u€C|a,b],||ulloo <1 z€[a,b] agxgba

b
Let € — 0, we have ||T'|| > [ |K(x,y)|dy, which completes the proof.
a
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Example 3. Here we will show an example of a discontinuous linear operator (hence the operator is not

bounded).

d
Consider the differentiation operator D = i X = CY0,1] = Y = C[0,1], where || - || are used for
both spaces. The operator D is not continuous at 0. Here is a counter example. Consider a sequence

1. 1 : .
{fn(t) = Esmmrt}n C X. Then || fulloo = e So Jim | fnllco = 0. Therefore Jim fn = 0. On the other
hand, Df, = f], = wcosnwt. So |Df,||=m foralln=1,2,..., which means Df, + 0.
Note: The differentiation operator is continuous (prove this) when'Y is equipped with the || - ||coc norm and

X is equipped with the following norm

1£1] = max{{[ flloos [1f'lloc}-

2.12 B(X,Y) and Dual Spaces
Definition 1. Let X and Y be normed linear spaces. Define the following set
B(X,Y):={L: X =Y bounded linear operator}.
Denote X* = B(X,R) (the dual space of X ) and B(X) = B(X, X).
Theorem 1. The set B(X,Y) is a normed linear space with the operator norm.
Proof. Exercise. O

Proposition 16. Let XY and Z be normed linear spaces. If T € B(X,Y) and S € B(Y,Z) then
ST € B(X,Z) and ||ST| < |ISINT|-

Proof. For each x € X, we have
1ST (@) < ST (@) < ISTIT N |]-
Therefore, ST is bounded and

IST|| = sup [[ST(z)[| < sup [S[[T[l«] = [ISIHTI-

jall=1 al=1

O]

Corollary 2. Let X be a normed linear space. If T € B(X), then T" € B(X) and || T"| < ||T||" for all
n=12,....

Definition 2 (Convergence in Operator Norm). Let X and Y be normed linear spaces. A sequence
{T,} C B(X,Y) is said to converge in operator norm to T' € B(X,Y) if | T, — T| - 0 as n — 0.

Proposition 17. Let X, Y and Z be normed linear spaces. If T,,,T € B(X,Y) and S,, S € B(Y, Z) with
T, — T and S,, — S as n — oo, then S,T,, — ST € B(X,Z).
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Proof. We have
150 T = ST|| < [|SnT = SnT|| + [|SnT = ST < [[SullI T — TNl + 1150 = SIITY|-

Since lim S, = S and the norm is a continuous function, lim ||S,| = ||S]. We also have lim ||.S,,—S|| =0
n—oo n—oo n—oo
and lim ||7,, — T'|| = 0. Therefore,
n—oo

0< lim |Sn T — ST < ||S]|0+0||T|| =0,
So lim ||S,T;, — ST| =0 and lim S,7, = ST. O
n—oo n—oo

Theorem 2. Let X be a normed linear space and'Y be a Banach space. Then B(X,Y) is a Banach space.

In particular, X* is a Banach space.

Proof. Let {T,,} C B(X,Y) be a Cauchy sequence in B(X,Y’). Given € > 0, there exists N; > 0 such that
T, — Tl < € for all n,m > N,.

e Step 1: Construct the limit pointwise. Indeed, for each x € X and n,m > N., we have
[Tn(z) = Ton (@) || < |70 — Tl || < el|]]- (10)

Therefore, for each € X, the sequence {T),(z)}, is a Cauchy sequence in Y. Since Y is Banach, the
sequence {T,,(x)}, converges. Denote T'(x) := 1Lm T, (x). We have defined a function 7': X — Y
n—oo
such that for each x € X, T'(z) := li_>m T, (x).

n—oo

e Step 2: Show that T is linear. Indeed, let ¢i,co € K and 1,22 € X. For each n = 1,2,..., T, is
linear, so

Th(ciz1 + cax) = c1Tp (1) + 2T (22).

Letting n — oo, we have
T(Cl.%'l + Cg.rg) = clT(:pl) + CQT(Z’Q),

because of the construction of 7.

e Step 3: We will show that 7,,—T € B(X,Y) for all n sufficiently large, T' € B(X,Y), and ||T,,—T|| —

0 as n — oo. From (10), letting m — oo and keeping everything else, we get
T (x) — T(x)|| <ellz||, forall z€ X and foralln> N,.
Therefore for every n > N, T, — T € B(X,Y) and ||T,, — T'|| < €. Therefore,
T=Ty.—(ITn. —T) € B(X,Y),

and T,, — T as n — oo.
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