Lecture 11: Bounded Linear Operator (cont'd). B(X,Y). Dual Spaces

Example 2. Let X = C[a, b] with $\|\cdot\|_{\infty}$, where $-\infty < a < b < \infty$ and $K : [a, b] \times [a, b] \to \mathbb{R}$ be continuous. For each $u \in X$, define the integral operator

$$Tu(x) := \int_a^b K(x, y)u(y) dy$$
 for all $x \in [a, b]$.

From previous lectures, $T: C[a,b] \to C[a,b]$ is a continuous and a compact operator. Moreover, T is linear (prove this!) and

$$||T|| = \max_{a \le x \le b} \int_{a}^{b} |K(x, y)| dy.$$

Sketch of the proof. We will compute the operator norm of T.

• Step 1: Show that

$$||T|| \le \max_{a \le x \le b} \int_a^b |K(x,y)| dy.$$

Let $u \in C[a, b]$ and $x \in [a, b]$. Then

$$|Tu(x)| = \left| \int\limits_a^b K(x,y) u(y) \, dy \right| \leq \int\limits_a^b |K(x,y)| \, |(u(y)| \, dy \leq \|u\|_\infty \int\limits_a^b |K(x,y)| dy \leq \|u\|_\infty \max_{a \leq x \leq b} \int\limits_a^b |K(x,y)| dy.$$

So

$$||Tu||_{\infty} = \max_{a \le x \le b} |Tu(x)| \le ||u||_{\infty} \max_{a \le x \le b} \int_{a}^{b} |K(x, y)| dy.$$

Therefore

$$||T|| \le \max_{a \le x \le b} \int_{a}^{b} |K(x,y)| dy.$$

Suppose $\max_{a \le x \le b} \int_a^b |K(x,y)| dy = \int_a^b |K(x_0,y)| dy$ for some $x_0 \in [a,b]$. Since $K(x_0,y)$ is continuous on a compact set [a,b], $K(x_0,y)$ is uniformly continuous on [a,b]. Therefore, given $\varepsilon > 0$, there exists $\delta > 0$ such that

$$|K(x_0, y_2) - K(x_0, y_1)| \le \varepsilon$$
 for all $|y_1 - y_2| < \delta$, $y_1, y_2 \in [a, b]$.

• Step 2: Now we will construct an $u_{\varepsilon} \in C[a,b]$ with $||u_{\varepsilon}||_{\infty} \leq 1$ such that

$$Tu_{\varepsilon}(x_0) \ge \max_{a \le x \le b} \int_a^b |K(x,y)| dy - 4\varepsilon.$$

Let $A_{\varepsilon} = \{y \in [a, b] : |K(x_0, y)| \leq \varepsilon\}$. Then A_{ε} is a closed and bounded subset in \mathbb{R} (prove this). Therefore, there exists $y_1, \ldots, y_N \in A_{\varepsilon}$ such that

$$A_{\varepsilon} \subset \bigcup_{i=1}^{N} [y_i - \delta, y_i + \delta].$$

Let $V_{\varepsilon} = \left(\bigcup_{i=1}^{N} [y_i - \delta, y_i + \delta]\right) \cap [a, b]$ and $U_{\varepsilon} = [a, b] - V_{\varepsilon}$. Define a function on U_{ε} ,

$$u_{\varepsilon}: U_{\varepsilon} \to \mathbb{R}, \quad u_{\varepsilon}(y) := \frac{K(x_0, y)}{|K(x_0, y)|}.$$

The function is well-defined and continuous since $|K(x_0,y)| > \varepsilon$ for all $y \in U_{\varepsilon}$ and $K(x_0,y)$ is continuous on [a,b]. Moreover, $|u_{\varepsilon}(y)| = 1$ for all $y \in U_{\varepsilon}$. Extend u_{ε} linearly, $u_{\varepsilon} : [a,b] \to \mathbb{R}$ so that $|u_{\varepsilon}(y)| \leq 1$ for all $y \in [a,b]$.

Next, we will evaluate $\int_{V_{\varepsilon}} K(x_0, y) u_{\varepsilon}(y) dy$. For each $y \in V_{\varepsilon}$, we have $|y - y_i| \leq \delta$ for some $y_i \in A_{\varepsilon}$, $i \in \{1, ..., N\}$. Therefore,

$$|K(x_0, y)| \le |K(x_0, y_i)| + |K(x_0, y) - |K(x_0, y_i)|| \le 2\varepsilon$$
, for all $y \in V_{\varepsilon}$,

and

$$\int_{V_{\varepsilon}} |K(x_0, y)| dy \le \int_{V_{\varepsilon}} 2\varepsilon dy \le 2(b - a)\varepsilon.$$

Also, since $|u_{\varepsilon}(y)| \leq 1$ for all $y \in V_{\varepsilon}$, we have

$$K(x_0,y)u_\varepsilon(y) \geq -|K(x_0,y)|\,|u_\varepsilon(y)| = -|K(x_0,y)u_\varepsilon(y)| \geq -|K(x_0,y)|, \quad \text{for all} \ \ y \in V_\varepsilon.$$

Therefore,

$$Tu_{\varepsilon}(x_{0}) = \int_{U_{\varepsilon}} K(x_{0}, y)u_{\varepsilon}(y)dy + \int_{V_{\varepsilon}} K(x_{0}, y)u_{\varepsilon}(y)dy$$

$$= \int_{U_{\varepsilon}} |K(x_{0}, y)|dy + \int_{V_{\varepsilon}} K(x_{0}, y)u_{\varepsilon}(y)dy$$

$$\geq \int_{U_{\varepsilon}} |K(x_{0}, y)|dy - \int_{V_{\varepsilon}} |K(x_{0}, y)|dy$$

$$\geq \int_{a}^{b} |K(x_{0}, y)|dy - 2\int_{V_{\varepsilon}} |K(x_{0}, y)|dy$$

$$\geq \int_{a}^{b} |K(x_{0}, y)|dy - 4(b - a)\varepsilon$$

$$\geq \max_{a \leq x \leq b} \int_{a}^{b} |K(x, y)|dy - 4(b - a)\varepsilon.$$

Then

$$||T|| = \sup_{u \in C[a,b], ||u||_{\infty} \le 1} ||Tu||_{\infty} \ge ||Tu_{\varepsilon}||_{\infty} = \max_{x \in [a,b]} |Tu(x)| \ge Tu_{\varepsilon}(x_0) \ge \max_{a \le x \le b} \int_a^b |K(x,y)| dy - 4(b-a)\varepsilon.$$

Let $\varepsilon \to 0$, we have $||T|| \ge \int_a^b |K(x,y)| dy$, which completes the proof.

Example 3. Here we will show an example of a discontinuous linear operator (hence the operator is not bounded).

Consider the differentiation operator $D = \frac{d}{dt}$: $X = C^1[0,1] \to Y = C[0,1]$, where $\|\cdot\|_{\infty}$ are used for both spaces. The operator D is not continuous at 0. Here is a counter example. Consider a sequence $\{f_n(t) = \frac{1}{n} \sin n\pi t\}_n \subset X$. Then $\|f_n\|_{\infty} = \frac{1}{n}$. So $\lim_{n \to \infty} \|f_n\|_{\infty} = 0$. Therefore $\lim_{n \to \infty} f_n = 0$. On the other hand, $Df_n = f'_n = \pi \cos n\pi t$. So $\|Df_n\| = \pi$ for all $n = 1, 2, \ldots$, which means $Df_n \neq 0$.

Note: The differentiation operator is continuous (prove this) when Y is equipped with the $\|\cdot\|_{\infty}$ norm and X is equipped with the following norm

$$||f|| := \max\{||f||_{\infty}, ||f'||_{\infty}\}.$$

2.12 B(X,Y) and Dual Spaces

Definition 1. Let X and Y be normed linear spaces. Define the following set

$$B(X,Y) := \{L : X \to Y \text{ bounded linear operator}\}.$$

Denote $X^* = B(X, \mathbb{R})$ (the dual space of X) and B(X) = B(X, X).

Theorem 1. The set B(X,Y) is a normed linear space with the operator norm.

Proof. Exercise. \Box

Proposition 16. Let X, Y and Z be normed linear spaces. If $T \in B(X, Y)$ and $S \in B(Y, Z)$ then $ST \in B(X, Z)$ and $||ST|| \le ||S|| ||T||$.

Proof. For each $x \in X$, we have

$$||ST(x)|| \le ||S|| ||T(x)|| \le ||S|| ||T|| ||x||.$$

Therefore, ST is bounded and

$$||ST|| = \sup_{||x||=1} ||ST(x)|| \le \sup_{||x||=1} ||S|| ||T|| ||x|| = ||S|| ||T||.$$

Corollary 2. Let X be a normed linear space. If $T \in B(X)$, then $T^n \in B(X)$ and $||T^n|| \le ||T||^n$ for all n = 1, 2, ...

Definition 2 (Convergence in Operator Norm). Let X and Y be normed linear spaces. A sequence $\{T_n\} \subset B(X,Y)$ is said to converge in operator norm to $T \in B(X,Y)$ if $||T_n - T|| \to 0$ as $n \to 0$.

Proposition 17. Let X, Y and Z be normed linear spaces. If $T_n, T \in B(X, Y)$ and $S_n, S \in B(Y, Z)$ with $T_n \to T$ and $S_n \to S$ as $n \to \infty$, then $S_n T_n \to ST \in B(X, Z)$.

50

Proof. We have

$$||S_n T_n - ST|| \le ||S_n T_n - S_n T|| + ||S_n T - ST|| \le ||S_n|| ||T_n - T|| + ||S_n - S|| ||T||.$$

Since $\lim_{n\to\infty} S_n = S$ and the norm is a continuous function, $\lim_{n\to\infty} \|S_n\| = \|S\|$. We also have $\lim_{n\to\infty} \|S_n - S\| = 0$ and $\lim_{n\to\infty} \|T_n - T\| = 0$. Therefore,

$$0 \le \lim_{n \to \infty} ||S_n T_n - ST|| \le ||S|| + 0||T|| = 0,$$

So
$$\lim_{n\to\infty} ||S_n T_n - ST|| = 0$$
 and $\lim_{n\to\infty} S_n T_n = ST$.

Theorem 2. Let X be a normed linear space and Y be a Banach space. Then B(X,Y) is a Banach space. In particular, X^* is a Banach space.

Proof. Let $\{T_n\} \subset B(X,Y)$ be a Cauchy sequence in B(X,Y). Given $\varepsilon > 0$, there exists $N_{\varepsilon} > 0$ such that $||T_n - T_m|| < \varepsilon$ for all $n, m \ge N_{\varepsilon}$.

• Step 1: Construct the limit pointwise. Indeed, for each $x \in X$ and $n, m > N_{\varepsilon}$, we have

$$||T_n(x) - T_m(x)|| \le ||T_n - T_m|| ||x|| < \varepsilon ||x||.$$
 (10)

Therefore, for each $x \in X$, the sequence $\{T_n(x)\}_n$ is a Cauchy sequence in Y. Since Y is Banach, the sequence $\{T_n(x)\}_n$ converges. Denote $T(x) := \lim_{n \to \infty} T_n(x)$. We have defined a function $T: X \to Y$ such that for each $x \in X$, $T(x) := \lim_{n \to \infty} T_n(x)$.

• Step 2: Show that T is linear. Indeed, let $c_1, c_2 \in \mathbb{K}$ and $x_1, x_2 \in X$. For each $n = 1, 2, ..., T_n$ is linear, so

$$T_n(c_1x_1 + c_2x_2) = c_1T_n(x_1) + c_2T_n(x_2).$$

Letting $n \to \infty$, we have

$$T(c_1x_1 + c_2x_2) = c_1T(x_1) + c_2T(x_2),$$

because of the construction of T.

• Step 3: We will show that $T_n - T \in B(X, Y)$ for all n sufficiently large, $T \in B(X, Y)$, and $||T_n - T|| \to 0$ as $n \to \infty$. From (10), letting $m \to \infty$ and keeping everything else, we get

$$||T_n(x) - T(x)|| \le \varepsilon ||x||$$
, for all $x \in X$ and for all $n \ge N_{\varepsilon}$.

Therefore for every $n \geq N_{\varepsilon}$, $T_n - T \in B(X, Y)$ and $||T_n - T|| \leq \varepsilon$. Therefore,

$$T = T_{N_{\varepsilon}} - (T_{N_{\varepsilon}} - T) \in B(X, Y),$$

and $T_n \to T$ as $n \to \infty$.