Lecture 11: Bounded Linear Operator (cont'd). $B(X, Y)$. Dual Spaces

Example 2. Let $X=C[a, b]$ with $\|\cdot\|_{\infty}$, where $-\infty<a<b<\infty$ and $K:[a, b] \times[a, b] \rightarrow \mathbb{R}$ be continuous. For each $u \in X$, define the integral operator

$$
T u(x):=\int_{a}^{b} K(x, y) u(y) d y \quad \text { for all } x \in[a, b] .
$$

From previous lectures, $T: C[a, b] \rightarrow C[a, b]$ is a continuous and a compact operator.
Moreover, T is linear (prove this!) and

$$
\|T\|=\max _{a \leq x \leq b} \int_{a}^{b}|K(x, y)| d y
$$

Sketch of the proof. We will compute the operator norm of T.

- Step 1: Show that

$$
\|T\| \leq \max _{a \leq x \leq b} \int_{a}^{b}|K(x, y)| d y
$$

Let $u \in C[a, b]$ and $x \in[a, b]$. Then

$$
|T u(x)|=\left|\int_{a}^{b} K(x, y) u(y) d y\right| \leq \int_{a}^{b}|K(x, y)| \mid\left(u(y)\left|d y \leq\|u\|_{\infty} \int_{a}^{b}\right| K(x, y)\left|d y \leq\|u\|_{\infty} \max _{a \leq x \leq b} \int_{a}^{b}\right| K(x, y) \mid d y .\right.
$$

So

$$
\|T u\|_{\infty}=\max _{a \leq x \leq b}|T u(x)| \leq\|u\|_{\infty} \max _{a \leq x \leq b} \int_{a}^{b}|K(x, y)| d y .
$$

Therefore

$$
\|T\| \leq \max _{a \leq x \leq b} \int_{a}^{b}|K(x, y)| d y
$$

Suppose $\max _{a \leq x \leq b} \int_{a}^{b}|K(x, y)| d y=\int_{a}^{b}\left|K\left(x_{0}, y\right)\right| d y$ for some $x_{0} \in[a, b]$. Since $K\left(x_{0}, y\right)$ is continuous on a compact set $[a, b], K\left(x_{0}, y\right)$ is uniformly continuous on $[a, b]$. Therefore, given $\varepsilon>0$, there exists $\delta>0$ such that

$$
\mid K\left(x_{0}, y_{2}\right)-K\left(x_{0}, y_{1} \mid \leq \varepsilon \quad \text { for all } \quad\left|y_{1}-y_{2}\right|<\delta, \quad y_{1}, y_{2} \in[a, b] .\right.
$$

- Step 2: Now we will construct an $u_{\varepsilon} \in C[a, b]$ with $\left\|u_{\varepsilon}\right\|_{\infty} \leq 1$ such that

$$
T u_{\varepsilon}\left(x_{0}\right) \geq \max _{a \leq x \leq b} \int_{a}^{b}|K(x, y)| d y-4 \varepsilon .
$$

Let $A_{\varepsilon}=\left\{y \in[a, b]:\left|K\left(x_{0}, y\right)\right| \leq \varepsilon\right\}$. Then A_{ε} is a closed and bounded subset in \mathbb{R} (prove this). Therefore, there exists $y_{1}, \ldots, y_{N} \in A_{\varepsilon}$ such that

$$
A_{\varepsilon} \subset \bigcup_{i=1}^{N}\left[y_{i}-\delta, y_{i}+\delta\right] .
$$

Let $V_{\varepsilon}=\left(\bigcup_{i=1}^{N}\left[y_{i}-\delta, y_{i}+\delta\right]\right) \cap[a, b]$ and $U_{\varepsilon}=[a, b]-V_{\varepsilon}$. Define a function on U_{ε},

$$
u_{\varepsilon}: U_{\varepsilon} \rightarrow \mathbb{R}, \quad u_{\varepsilon}(y):=\frac{K\left(x_{0}, y\right)}{\left|K\left(x_{0}, y\right)\right|}
$$

The function is well-defined and continuous since $\left|K\left(x_{0}, y\right)\right|>\varepsilon$ for all $y \in U_{\varepsilon}$ and $K\left(x_{0}, y\right)$ is continuous on $[a, b]$. Moreover, $\left|u_{\varepsilon}(y)\right|=1$ for all $y \in U_{\varepsilon}$. Extend u_{ε} linearly, $u_{\varepsilon}:[a, b] \rightarrow \mathbb{R}$ so that $\left|u_{\varepsilon}(y)\right| \leq 1$ for all $y \in[a, b]$.
Next, we will evaluate $\int_{V_{\varepsilon}} K\left(x_{0}, y\right) u_{\varepsilon}(y) d y$. For each $y \in V_{\varepsilon}$, we have $\left|y-y_{i}\right| \leq \delta$ for some $y_{i} \in A_{\varepsilon}$, $i \in\{1, \ldots, N\}$. Therefore,

$$
\left|K\left(x_{0}, y\right)\right| \leq\left|K\left(x_{0}, y_{i}\right)\right|+\left|K\left(x_{0}, y\right)-\left|K\left(x_{0}, y_{i}\right)\right|\right| \leq 2 \varepsilon, \quad \text { for all } y \in V_{\varepsilon},
$$

and

$$
\int_{V_{\varepsilon}}\left|K\left(x_{0}, y\right)\right| d y \leq \int_{V_{\varepsilon}} 2 \varepsilon d y \leq 2(b-a) \varepsilon .
$$

Also, since $\left|u_{\varepsilon}(y)\right| \leq 1$ for all $y \in V_{\varepsilon}$, we have

$$
K\left(x_{0}, y\right) u_{\varepsilon}(y) \geq-\left|K\left(x_{0}, y\right)\right|\left|u_{\varepsilon}(y)\right|=-\left|K\left(x_{0}, y\right) u_{\varepsilon}(y)\right| \geq-\left|K\left(x_{0}, y\right)\right|, \quad \text { for all } y \in V_{\varepsilon} .
$$

Therefore,

$$
\begin{aligned}
T u_{\varepsilon}\left(x_{0}\right) & =\int_{U_{\varepsilon}} K\left(x_{0}, y\right) u_{\varepsilon}(y) d y+\int_{V_{\varepsilon}} K\left(x_{0}, y\right) u_{\varepsilon}(y) d y \\
& =\int_{U_{\varepsilon}}\left|K\left(x_{0}, y\right)\right| d y+\int_{V_{\varepsilon}} K\left(x_{0}, y\right) u_{\varepsilon}(y) d y \\
& \geq \int_{U_{\varepsilon}}\left|K\left(x_{0}, y\right)\right| d y-\int_{V_{\varepsilon}}\left|K\left(x_{0}, y\right)\right| d y \\
& \geq \int_{a}^{b}\left|K\left(x_{0}, y\right)\right| d y-2 \int_{V_{\varepsilon}}\left|K\left(x_{0}, y\right)\right| d y \\
& \geq \int_{a}^{b}\left|K\left(x_{0}, y\right)\right| d y-4(b-a) \varepsilon \\
& \geq \max _{a \leq x \leq b} \int_{a}^{b}|K(x, y)| d y-4(b-a) \varepsilon .
\end{aligned}
$$

Then
$\|T\|=\sup _{u \in C[a, b],\|u\|_{\infty} \leq 1}\|T u\|_{\infty} \geq\left\|T u_{\varepsilon}\right\|_{\infty}=\max _{x \in[a, b]}|T u(x)| \geq T u_{\varepsilon}\left(x_{0}\right) \geq \max _{a \leq x \leq b} \int_{a}^{b}|K(x, y)| d y-4(b-a) \varepsilon$.
Let $\varepsilon \rightarrow 0$, we have $\|T\| \geq \int_{a}^{b}|K(x, y)| d y$, which completes the proof.

Example 3. Here we will show an example of a discontinuous linear operator (hence the operator is not bounded).
Consider the differentiation operator $D=\frac{d}{d t}: X=C^{1}[0,1] \rightarrow Y=C[0,1]$, where $\|\cdot\|_{\infty}$ are used for both spaces. The operator D is not continuous at 0 . Here is a counter example. Consider a sequence $\left\{f_{n}(t)=\frac{1}{n} \sin n \pi t\right\}_{n} \subset X$. Then $\left\|f_{n}\right\|_{\infty}=\frac{1}{n}$. So $\lim _{n \rightarrow \infty}\left\|f_{n}\right\|_{\infty}=0$. Therefore $\lim _{n \rightarrow \infty} f_{n}=0$. On the other hand, $D f_{n}=f_{n}^{\prime}=\pi \cos n \pi t$. So $\left\|D f_{n}\right\|=\pi$ for all $n=1,2, \ldots$, which means $D f_{n} \nrightarrow 0$.
Note: The differentiation operator is continuous (prove this) when Y is equipped with the $\|\cdot\|_{\infty}$ norm and X is equipped with the following norm

$$
\|f\|:=\max \left\{\|f\|_{\infty},\left\|f^{\prime}\right\|_{\infty}\right\} .
$$

2.12 $\mathrm{B}(\mathrm{X}, \mathrm{Y})$ and Dual Spaces

Definition 1. Let X and Y be normed linear spaces. Define the following set

$$
B(X, Y):=\{L: X \rightarrow Y \quad \text { bounded linear operator }\} .
$$

Denote $X^{*}=B(X, \mathbb{R})$ (the dual space of X) and $B(X)=B(X, X)$.
Theorem 1. The set $B(X, Y)$ is a normed linear space with the operator norm.
Proof. Exercise.
Proposition 16. Let X, Y and Z be normed linear spaces. If $T \in B(X, Y)$ and $S \in B(Y, Z)$ then $S T \in B(X, Z)$ and $\|S T\| \leq\|S\|\|T\|$.

Proof. For each $x \in X$, we have

$$
\|S T(x)\| \leq\|S\|\|T(x)\| \leq\|S\|\|T\|\|x\| .
$$

Therefore, $S T$ is bounded and

$$
\|S T\|=\sup _{\|x\|=1}\|S T(x)\| \leq \sup _{\|x\|=1}\|S\|\|T\|\|x\|=\|S\|\|T\| .
$$

Corollary 2. Let X be a normed linear space. If $T \in B(X)$, then $T^{n} \in B(X)$ and $\left\|T^{n}\right\| \leq\|T\|^{n}$ for all $n=1,2, \ldots$.

Definition 2 (Convergence in Operator Norm). Let X and Y be normed linear spaces. A sequence $\left\{T_{n}\right\} \subset B(X, Y)$ is said to converge in operator norm to $T \in B(X, Y)$ if $\left\|T_{n}-T\right\| \rightarrow 0$ as $n \rightarrow 0$.

Proposition 17. Let X, Y and Z be normed linear spaces. If $T_{n}, T \in B(X, Y)$ and $S_{n}, S \in B(Y, Z)$ with $T_{n} \rightarrow T$ and $S_{n} \rightarrow S$ as $n \rightarrow \infty$, then $S_{n} T_{n} \rightarrow S T \in B(X, Z)$.

Proof. We have

$$
\left\|S_{n} T_{n}-S T\right\| \leq\left\|S_{n} T_{n}-S_{n} T\right\|+\left\|S_{n} T-S T\right\| \leq\left\|S_{n}\right\|\left\|T_{n}-T\right\|+\left\|S_{n}-S\right\|\|T\|
$$

Since $\lim _{n \rightarrow \infty} S_{n}=S$ and the norm is a continuous function, $\lim _{n \rightarrow \infty}\left\|S_{n}\right\|=\|S\|$. We also have $\lim _{n \rightarrow \infty}\left\|S_{n}-S\right\|=0$ and $\lim _{n \rightarrow \infty}\left\|T_{n}-T\right\|=0$. Therefore,

$$
0 \leq \lim _{n \rightarrow \infty}\left\|S_{n} T_{n}-S T\right\| \leq\|S\| 0+0\|T\|=0
$$

So $\lim _{n \rightarrow \infty}\left\|S_{n} T_{n}-S T\right\|=0$ and $\lim _{n \rightarrow \infty} S_{n} T_{n}=S T$.
Theorem 2. Let X be a normed linear space and Y be a Banach space. Then $B(X, Y)$ is a Banach space. In particular, X^{*} is a Banach space.

Proof. Let $\left\{T_{n}\right\} \subset B(X, Y)$ be a Cauchy sequence in $B(X, Y)$. Given $\varepsilon>0$, there exists $N_{\varepsilon}>0$ such that $\left\|T_{n}-T_{m}\right\|<\varepsilon$ for all $n, m \geq N_{\varepsilon}$.

- Step 1: Construct the limit pointwise. Indeed, for each $x \in X$ and $n, m>N_{\varepsilon}$, we have

$$
\begin{equation*}
\left\|T_{n}(x)-T_{m}(x)\right\| \leq\left\|T_{n}-T_{m}\right\|\|x\|<\varepsilon\|x\| . \tag{10}
\end{equation*}
$$

Therefore, for each $x \in X$, the sequence $\left\{T_{n}(x)\right\}_{n}$ is a Cauchy sequence in Y. Since Y is Banach, the sequence $\left\{T_{n}(x)\right\}_{n}$ converges. Denote $T(x):=\lim _{n \rightarrow \infty} T_{n}(x)$. We have defined a function $T: X \rightarrow Y$ such that for each $x \in X, T(x):=\lim _{n \rightarrow \infty} T_{n}(x)$.

- Step 2: Show that T is linear. Indeed, let $c_{1}, c_{2} \in \mathbb{K}$ and $x_{1}, x_{2} \in X$. For each $n=1,2, \ldots, T_{n}$ is linear, so

$$
T_{n}\left(c_{1} x_{1}+c_{2} x_{2}\right)=c_{1} T_{n}\left(x_{1}\right)+c_{2} T_{n}\left(x_{2}\right)
$$

Letting $n \rightarrow \infty$, we have

$$
T\left(c_{1} x_{1}+c_{2} x_{2}\right)=c_{1} T\left(x_{1}\right)+c_{2} T\left(x_{2}\right),
$$

because of the construction of T.

- Step 3: We will show that $T_{n}-T \in B(X, Y)$ for all n sufficiently large, $T \in B(X, Y)$, and $\left\|T_{n}-T\right\| \rightarrow$ 0 as $n \rightarrow \infty$. From (10), letting $m \rightarrow \infty$ and keeping everything else, we get

$$
\left\|T_{n}(x)-T(x)\right\| \leq \varepsilon\|x\|, \quad \text { for all } x \in X \quad \text { and for all } n \geq N_{\varepsilon}
$$

Therefore for every $n \geq N_{\varepsilon}, T_{n}-T \in B(X, Y)$ and $\left\|T_{n}-T\right\| \leq \varepsilon$. Therefore,

$$
T=T_{N_{\varepsilon}}-\left(T_{N_{\varepsilon}}-T\right) \in B(X, Y)
$$

and $T_{n} \rightarrow T$ as $n \rightarrow \infty$.

