Lecture 12: Infinite Series. Operator Functions. Neumann Series.

Definition 3. Let X be a normed space over \mathbb{K} and let $u_j \in X$ for all j. If $\lim_{m \to \infty} \sum_{j=0}^m u_j$ exists, denote

$$X \ni \sum_{j=0}^{\infty} u_j := \lim_{m \to \infty} \sum_{j=0}^{m} u_j,$$

and the infinite series $\sum_{j=0}^{\infty} u_j$ is called convergent. This infinite series is called absolutely convergent iff

$$\sum_{j=0}^{\infty} \|u_j\| < \infty.$$

Proposition 18. A normed linear space X is a Banach space if and only if every absolutely convergent infinite series with terms in X is convergent.

Proof. (\Rightarrow) Suppose X is a Banach space. Let $\sum_{j=0}^{\infty} u_j$ be an absolutely convergent infinite series in X. Then for every $\varepsilon > 0$, there exists $N_{\varepsilon} > 0$ such that for every $n > N_{\varepsilon}$, $k \ge 0$, we have

$$\sum_{j=n+1}^{n+k} \|u_j\| < \varepsilon$$

Denote $s_m = \sum_{j=0}^m u_j \in X$, then for every $n > N_{\varepsilon}$, $k \ge 0$, we have

$$||s_{n+k} - s_n|| = ||\sum_{j=n+1}^{n+k} u_j|| \le \sum_{j=n+1}^{n+k} ||u_j|| < \varepsilon.$$

Hence the sequence $\{s_n\}$ is a Cauchy sequence in X. Since X is a Banach space, the limit $\lim_{n \to \infty} s_n$ exists. Therefore, the infinite series $\sum_{j=0}^{\infty} u_j$ converges.

(\Leftarrow) Suppose every absolutely convergent infinite series with terms in X is convergent. We need to prove that X is a Banach space. Here is the sketch of the proof. Let $\{x_n\} \subset X$ be a Cauchy sequence.

- Construct a subsequence $\{x_{n_k}\}$ so that $||x_{n_k} x_{n_{k-1}}|| \le \frac{1}{2^k}$ for all $k \ge 1$.
- Prove that the series $\left(x_{n_0} + \sum_{k=0}^{\infty} (x_{n_{k+1}} x_{n_k})\right)$ is absolutely convergent, hence it is convergent.
- Therefore $\lim_{m \to \infty} x_{n_{m+1}} = \lim_{m \to \infty} \left(x_{n_1} + \sum_{k=0}^m (x_{n_{k+1}} x_{n_k}) \right)$ exists. Denote $x = \lim_{m \to \infty} x_{n_m}$.
- Combining with the assumption that the sequence $\{x_n\} \subset X$ is a Cauchy sequence, prove that $\lim_{j\to\infty} x_j = x$.

Theorem 3 (Theorem and Definition). Let X be a Banach space over \mathbb{K} (where $\mathbb{K} = \mathbb{R}$ or $\mathbb{K} = \mathbb{C}$) and a series

$$F(z) := \sum_{j=0}^{\infty} a_j z^j, \ z \in \mathbb{K}, \quad a_j \in \mathbb{K} \text{ for all } j$$

such that

$$\sum_{j=0}^{\infty} |a_j| \, |z|^j < \infty \quad \text{for all} \ z \in \mathbb{C} \ \text{with} \ |z| < r \quad \text{and some fixed } r > 0.$$

Then for each $A \in B(X)$ with ||A|| < r, the series $\sum_{j=0}^{\infty} a_j A^j$ is also an element in B(X).

Proof. Let $A \in B(X)$ with ||A|| < r. From the assumption on the series, we have $\sum_{j=0}^{\infty} |a_j| ||A||^j < \infty$. For every $j \ge 1$, we have

$$||a_j A^j|| \le |a_j|||A||^j.$$

Therefore, by the comparison test, the series $\sum_{j=0}^{\infty} a_j A^j$ is absolutely convergent. Since B(X) is a Banach space, the series $\sum_{j=0}^{\infty} a_j A^j$ is a convergent series. That is $\sum_{j=0}^{\infty} a_j A^j \in B(X)$.

Definition 4. Let $A : X \to Y$ and $B : Y \to X$ be linear operators, where X and Y are linear vector spaces over \mathbb{K} . If $AB = I_Y$ and $BA = I_X$, A is said to be bijective and denote $A^{-1} = B$.

Example 1. Let $X \neq \{0\}$ be a Banach space over \mathbb{K} .

1. Exponential Function. For each $A \in B(X)$, the infinite series $\sum_{j=0}^{\infty} \frac{1}{j!} A^j$ is also an element in B(X). Denote

$$e^A := \sum_{j=0}^{\infty} \frac{1}{j!} A^j \in B(X).$$

Moreover, for all $t, s \in \mathbb{K}$, we have

$$e^{tA} e^{sA} = e^{(t+s)A}.$$

- 2. Neumann Series. Let $A \in B(X)$ with ||A|| < 1. Then the following statements hold.
 - (a) The infinite series $\sum_{j=0}^{\infty} A^j$ is also an element in B(X). The series $\sum_{j=0}^{\infty} A^j$ is called the Neumann series.
 - (b) The operator $(I A) \in B(X)$ is bijective and $(I A)^{-1} = \sum_{j=0}^{\infty} A^j$.
 - (c) $||(I-A)^{-1}|| \le \frac{1}{1-||A||}.$
 - (d) Given $g \in X$, the equation (I A)u = g with the unknown $u \in X$ has a unique solution

$$u = (I - A)^{-1}g = \sum_{j=0}^{\infty} A^j g$$

Moreover, u can be approximated by

$$u_n = g + Ag + A^2g + \ldots + A^{n-1}g$$

with the error

$$||u - u_n|| \le \frac{||A||^n}{1 - ||A||} ||g||, \text{ for all } n = 1, 2, \dots$$

Proof. Hint: Using Theorem 3 for $F(z) = \sum_{j=0}^{\infty} \frac{1}{j!} z^j = e^z$ and $F(z) = \sum_{j=0}^{\infty} z^j = \frac{1}{1-z}$, respectively. For Example 2, let's verify $\sum_{j=0}^{\infty} A^j = (I-A)^{-1}$ and $\|(I-A)^{-1}\| \le \frac{1}{1-\|A\|}$. Obviously,

$$(I-A)\left(\sum_{j=0}^{\infty}A^{j}\right) = I \text{ and } \left(\sum_{j=0}^{\infty}A^{j}\right)(I-A) = I.$$

Hence $\sum_{j=0}^{\infty} A^j = (I - A)^{-1}$. From the inequality

$$\left\|\sum_{j=0}^{m} A^{j}\right\| \leq \sum_{j=0}^{m} \|A\|^{j} \leq \sum_{j=0}^{\infty} \|A\|^{j} = \frac{1}{1 - \|A\|},$$

letting $m \to \infty$, we have

$$\|(I-A)^{-1}\| = \left\|\sum_{j=0}^{\infty} A^{j}\right\| \le \frac{1}{1-\|A\|}.$$

(d). Suppose u is a solution for (I - A)u = g. Then

$$(I - A)^{-1}g = (I - A)^{-1}(I - A)u = Iu = u.$$

Finally, since

$$u - u_n = A^n g + A^{n+1} g + \dots = A^n (I + A + \dots) g = A^n (I - A)^{-1} g,$$

we have

$$||u - u_n|| \le ||A^n|| ||(I - A)^{-1}||||g|| \le \frac{||A||^n}{1 - ||A||} ||g||.$$

Note: u_n is the iteration generated from the Banach fixed point theorem for u = Tu with Tu = Au + gand the Lipschitz constant is ||A||:

$$||Tu - Tv|| = ||Au - Av|| = ||A(u - v)|| \le ||A|| ||u - v||.$$

2.13 Fréchet Derivative

Definition 1 (Definition and Theorem). Let X and Y be normed linear spaces over \mathbb{K} (where $\mathbb{K} = \mathbb{R}$ or $\mathbb{K} = \mathbb{C}$). An operator $F : X \to Y$ is Fréchet differentiable (F-differentiable) at $a \in X$ if and only if there exists a bounded linear operator $DF(a) : X \to Y$ such that

$$\lim_{h \to 0} \frac{\|F(a+h) - F(a) - DF(a)(h)\|}{\|h\|} = 0.$$
(11)

An operator DF(a) (if exists, i.e., $DF(a) \in B(X,Y)$ and DF(a) satisfies Equation (11)) is unique and is called the Fréchet-derivative of F at a.

Proof. Suppose $F: X \to Y$ is Fréchet differentiable at $a \in X$ and there are two bounded linear operators $L_1, L_2: X \to Y$ such that

$$\lim_{h \to 0} \frac{\|F(a+h) - F(a) - L_1(h)\|}{\|h\|} = 0 \quad \text{and} \quad \lim_{h \to 0} \frac{\|F(a+h) - F(a) - L_2(h)\|}{\|h\|} = 0$$

Combining with

$$0 \le \frac{\|L_1(h) - L_2(h)\|}{\|h\|} \le \frac{\|F(a+h) - F(a) - L_2(h)\| + \| - (F(a+h) - F(a) - L_1(h))\|}{\|h\|},$$

we have

$$\lim_{h \to 0} \frac{\|L_1(h) - L_2(h)\|}{\|h\|} = 0.$$

Let $L = L_1 - L_2 \in B(X, Y)$, then $\lim_{h \to 0} \frac{\|L(h)\|}{\|h\|} = 0$. We will show that L(x) = 0 for all $x \in X$. Since L is linear, L(0) = 0. Fix $x \in X, x \neq 0$. For $t \in \mathbb{K}$, if $t \to 0$ then $tx \in X$ and $tx \to 0$. Therefore,

$$0 = \lim_{t \to 0} \frac{\|L(tx)\|}{\|tx\|} = \lim_{t \to 0} \frac{|t|\|L(x)\|}{|t|\|x\|} = \frac{\|L(x)\|}{\|x\|}.$$

The second equality holds because L is linear. Therefore, ||L(x)|| = 0||x|| = 0, so L(x) = 0 for all $x \in X \setminus \{0\}$. Hence L(x) = x for all $x \in X$. In other words, an operator DF(a) (if exists) is unique. \Box

Example 1. 1. If $F \in B(X, Y)$ then F is F-differentiable everywhere and DF(a) = F for all $a \in X$.

2. Let $F : \mathbb{R}^n \to \mathbb{R}$ and suppose $F \in C^1(\mathbb{R}^n)$ (i.e., $\partial_i f$ exists and is continuous on \mathbb{R}^n , $1 \le i \le n$). Then $DF(a) \in B(\mathbb{R}^n, \mathbb{R})$ is defined by

$$DF(a)(h) := \nabla f(a) \cdot h.$$
 (dot product)

3. Let $F : \mathbb{R}^n \to \mathbb{R}^m$ and suppose $F \in C^1(\mathbb{R}^n, \mathbb{R}^m)$ (i.e., $\frac{\partial f_j}{x_i}$ exists and is continuous, $1 \le i \le n$, $1 \le j \le m$). Then F is F-differentiable and

$$DF(a)(h) := \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(a) & \cdots & \frac{\partial f_1}{\partial x_n}(a) \\ \vdots & \vdots & \vdots \\ \frac{\partial f_m}{\partial x_1}(a) & \cdots & \frac{\partial f_m}{\partial x_n}(a) \end{bmatrix} h. \quad (matrix multiplication)$$

The matrix itself is the usual Jacobian matrix.