
Lecture 12: Infinite Series. Operator Functions. Neumann Series.

Definition 3. Let X be a normed space over K and let u

j

œ X for all j. If lim
mæŒ

mq
j=0

u

j

exists, denote

X –
Œÿ

j=0
u

j

:= lim
mæŒ

mÿ

j=0
u

j

,

and the infinite series
Œq

j=0
u

j

is called convergent. This infinite series is called absolutely convergent i�

Œÿ

j=0
Îu

j

Î < Œ.

Proposition 18. A normed linear space X is a Banach space if and only if every absolutely convergent
infinite series with terms in X is convergent.

Proof. (∆) Suppose X is a Banach space. Let
Œq

j=0
u

j

be an absolutely convergent infinite series in X.

Then for every Á > 0, there exists N

Á

> 0 such that for every n > N

Á

, k Ø 0, we have

n+kÿ

j=n+1
Îu

j

Î < Á.

Denote s

m

=
mq

j=0
u

j

œ X, then for every n > N

Á

, k Ø 0, we have

Îs

n+k

≠ s

n

Î = Î
n+kÿ

j=n+1
u

j

Î Æ
n+kÿ

j=n+1
Îu

j

Î < Á.

Hence the sequence {s

n

} is a Cauchy sequence in X. Since X is a Banach space, the limit lim
næŒ

s

n

exists.

Therefore, the infinite series
Œq

j=0
u

j

converges.

(≈) Suppose every absolutely convergent infinite series with terms in X is convergent. We need to
prove that X is a Banach space. Here is the sketch of the proof. Let {x

n

} µ X be a Cauchy sequence.

• Construct a subsequence {x

nk} so that Îx

nk ≠ x

nk≠1Î Æ 1
2k

for all k Ø 1.

• Prove that the series
3

x

n0 +
Œq

k=0
(x

nk+1 ≠ x

nk)
4

is absolutely convergent, hence it is convergent.

• Therefore lim
mæŒ

x

nm+1 = lim
mæŒ

3
x

n1 +
mq

k=0
(x

nk+1 ≠ x

nk)
4

exists. Denote x = lim
mæŒ

x

nm .

• Combining with the assumption that the sequence {x

n

} µ X is a Cauchy sequence, prove that
lim

jæŒ
x

j

= x.
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Theorem 3 (Theorem and Definition). Let X be a Banach space over K (where K = R or K = C) and a
series

F (z) :=
Œÿ

j=0
a

j

z

j

, z œ K, a

j

œ K for all j

such that Œÿ

j=0
|a

j

| |z|j < Œ for all z œ C with |z| < r and some fixed r > 0.

Then for each A œ B(X) with ÎAÎ < r, the series
Œq

j=0
a

j

A

j is also an element in B(X).

Proof. Let A œ B(X) with ÎAÎ < r. From the assumption on the series, we have
Œq

j=0
|a

j

| ÎAÎj

< Œ. For

every j Ø 1, we have
Îa

j

A

jÎ Æ |a
j

|ÎAÎj

.

Therefore, by the comparison test, the series
Œq

j=0
a

j

A

j is absolutely convergent. Since B(X) is a Banach

space, the series
Œq

j=0
a

j

A

j is a convergent series. That is
Œq

j=0
a

j

A

j œ B(X).

Definition 4. Let A : X æ Y and B : Y æ X be linear operators, where X and Y are linear vector
spaces over K. If AB = I

Y

and BA = I

X

, A is said to be bijective and denote A

≠1 = B.

Example 1. Let X ”= {0} be a Banach space over K.

1. Exponential Function. For each A œ B(X), the infinite series
Œq

j=0

1
j!A

j is also an element in B(X).

Denote
e

A :=
Œÿ

j=0

1
j!A

j œ B(X).

Moreover, for all t, s œ K, we have
e

tA

e

sA = e

(t+s)A
.

2. Neumann Series. Let A œ B(X) with ÎAÎ < 1. Then the following statements hold.

(a) The infinite series
Œq

j=0
A

j is also an element in B(X). The series
Œq

j=0
A

j is called the Neumann

series.

(b) The operator (I ≠ A) œ B(X) is bijective and (I ≠ A)≠1 =
Œq

j=0
A

j.

(c) Î(I ≠ A)≠1Î Æ 1
1 ≠ ÎAÎ .

(d) Given g œ X, the equation (I ≠ A)u = g with the unknown u œ X has a unique solution

u = (I ≠ A)≠1
g =

Œÿ

j=0
A

j

g.
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Moreover, u can be approximated by

u

n

= g + Ag + A

2
g + . . . + A

n≠1
g

with the error
Îu ≠ u

n

Î Æ ÎAÎn

1 ≠ ÎAÎÎgÎ, for all n = 1, 2, . . .

Proof. Hint: Using Theorem 3 for F (z) =
Œq

j=0

1
j!z

j = e

z and F (z) =
Œq

j=0
z

j = 1
1 ≠ z

, respectively.

For Example 2, let’s verify
Œq

j=0
A

j = (I ≠ A)≠1 and Î(I ≠ A)≠1Î Æ 1
1 ≠ ÎAÎ . Obviously,

(I ≠ A)

Q

a
Œÿ

j=0
A

j

R

b = I and

Q

a
Œÿ

j=0
A

j

R

b (I ≠ A) = I.

Hence
Œq

j=0
A

j = (I ≠ A)≠1. From the inequality

......

mÿ

j=0
A

j

......
Æ

mÿ

j=0
ÎAÎj Æ

Œÿ

j=0
ÎAÎj = 1

1 ≠ ÎAÎ ,

letting m æ Œ, we have

Î(I ≠ A)≠1Î =

......

Œÿ

j=0
A

j

......
Æ 1

1 ≠ ÎAÎ .

(d). Suppose u is a solution for (I ≠ A)u = g. Then

(I ≠ A)≠1
g = (I ≠ A)≠1(I ≠ A)u = Iu = u.

Finally, since
u ≠ u

n

= A

n

g + A

n+1
g + · · · = A

n(I + A + · · · )g = A

n(I ≠ A)≠1
g,

we have
Îu ≠ u

n

Î Æ ÎA

nÎÎ(I ≠ A)≠1ÎÎgÎ Æ ÎAÎn

1 ≠ ÎAÎÎgÎ.

Note: u

n

is the iteration generated from the Banach fixed point theorem for u = Tu with Tu = Au + g

and the Lipschitz constant is ÎAÎ:

ÎTu ≠ TvÎ = ÎAu ≠ AvÎ = ÎA(u ≠ v)Î Æ ÎAÎÎu ≠ vÎ.
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2.13 Fréchet Derivative

Definition 1 (Definition and Theorem). Let X and Y be normed linear spaces over K (where K = R or
K = C). An operator F : X æ Y is Fréchet di�erentiable (F-di�erentiable) at a œ X if and only if there
exists a bounded linear operator DF (a) : X æ Y such that

lim
hæ0

ÎF (a + h) ≠ F (a) ≠ DF (a)(h)Î
ÎhÎ = 0. (11)

An operator DF (a) (if exists, i.e., DF (a) œ B(X, Y ) and DF (a) satisfies Equation (11)) is unique and is
called the Fréchet-derivative of F at a.

Proof. Suppose F : X æ Y is Fréchet di�erentiable at a œ X and there are two bounded linear operators
L1, L2 : X æ Y such that

lim
hæ0

ÎF (a + h) ≠ F (a) ≠ L1(h)Î
ÎhÎ = 0 and lim

hæ0
ÎF (a + h) ≠ F (a) ≠ L2(h)Î

ÎhÎ = 0.

Combining with

0 Æ ÎL1(h) ≠ L2(h)Î
ÎhÎ Æ ÎF (a + h) ≠ F (a) ≠ L2(h)Î + Î ≠ (F (a + h) ≠ F (a) ≠ L1(h)) Î

ÎhÎ ,

we have
lim
hæ0

ÎL1(h) ≠ L2(h)Î
ÎhÎ = 0.

Let L = L1 ≠ L2 œ B(X, Y ), then lim
hæ0

ÎL(h)Î
ÎhÎ = 0. We will show that L(x) = 0 for all x œ X. Since L is

linear, L(0) = 0. Fix x œ X, x ”= 0. For t œ K, if t æ 0 then tx œ X and tx æ 0. Therefore,

0 = lim
tæ0

ÎL(tx)Î
ÎtxÎ = lim

tæ0
|t|ÎL(x)Î

|t|ÎxÎ = ÎL(x)Î
ÎxÎ .

The second equality holds because L is linear. Therefore, ÎL(x)Î = 0ÎxÎ = 0, so L(x) = 0 for all
x œ X \ {0}. Hence L(x) = x for all x œ X. In other words, an operator DF (a) (if exists) is unique.

Example 1. 1. If F œ B(X, Y ) then F is F-di�erentiable everywhere and DF (a) = F for all a œ X.

2. Let F : Rn æ R and suppose F œ C

1(Rn) (i.e., ˆ

i

f exists and is continuous on Rn

, 1 Æ i Æ n).
Then DF (a) œ B(Rn

,R) is defined by

DF (a)(h) := Òf(a) · h. (dot product)

3. Let F : Rn æ Rm and suppose F œ C

1(Rn

,Rm) (i.e., ˆf

j

x

i

exists and is continuous, 1 Æ i Æ n,
1 Æ j Æ m). Then F is F-di�erentiable and

DF (a)(h) :=

S

WWWWWU

ˆf1
ˆx1

(a) · · · ˆf1
ˆx

n

(a)
...

...
...

ˆf

m

ˆx1
(a) · · · ˆf

m

ˆx

n

(a)

T

XXXXXV
h. (matrix multiplication)

The matrix itself is the usual Jacobian matrix.
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