Lecture 12: Infinite Series. Operator Functions. Neumann Series.

Definition 3. Let X be a normed space over \mathbb{K} and let $u_{j} \in X$ for all j. If $\lim _{m \rightarrow \infty} \sum_{j=0}^{m} u_{j}$ exists, denote

$$
X \ni \sum_{j=0}^{\infty} u_{j}:=\lim _{m \rightarrow \infty} \sum_{j=0}^{m} u_{j}
$$

and the infinite series $\sum_{j=0}^{\infty} u_{j}$ is called convergent. This infinite series is called absolutely convergent iff

$$
\sum_{j=0}^{\infty}\left\|u_{j}\right\|<\infty
$$

Proposition 18. A normed linear space X is a Banach space if and only if every absolutely convergent infinite series with terms in X is convergent.
Proof. (\Rightarrow) Suppose X is a Banach space. Let $\sum_{j=0}^{\infty} u_{j}$ be an absolutely convergent infinite series in X. Then for every $\varepsilon>0$, there exists $N_{\varepsilon}>0$ such that for every $n>N_{\varepsilon}, k \geq 0$, we have

$$
\sum_{j=n+1}^{n+k}\left\|u_{j}\right\|<\varepsilon
$$

Denote $s_{m}=\sum_{j=0}^{m} u_{j} \in X$, then for every $n>N_{\varepsilon}, k \geq 0$, we have

$$
\left\|s_{n+k}-s_{n}\right\|=\left\|\sum_{j=n+1}^{n+k} u_{j}\right\| \leq \sum_{j=n+1}^{n+k}\left\|u_{j}\right\|<\varepsilon .
$$

Hence the sequence $\left\{s_{n}\right\}$ is a Cauchy sequence in X. Since X is a Banach space, the limit $\lim _{n \rightarrow \infty} s_{n}$ exists. Therefore, the infinite series $\sum_{j=0}^{\infty} u_{j}$ converges.
(\Leftarrow) Suppose every absolutely convergent infinite series with terms in X is convergent. We need to prove that X is a Banach space. Here is the sketch of the proof. Let $\left\{x_{n}\right\} \subset X$ be a Cauchy sequence.

- Construct a subsequence $\left\{x_{n_{k}}\right\}$ so that $\left\|x_{n_{k}}-x_{n_{k-1}}\right\| \leq \frac{1}{2^{k}}$ for all $k \geq 1$.
- Prove that the series $\left(x_{n_{0}}+\sum_{k=0}^{\infty}\left(x_{n_{k+1}}-x_{n_{k}}\right)\right)$ is absolutely convergent, hence it is convergent.
- Therefore $\lim _{m \rightarrow \infty} x_{n_{m+1}}=\lim _{m \rightarrow \infty}\left(x_{n_{1}}+\sum_{k=0}^{m}\left(x_{n_{k+1}}-x_{n_{k}}\right)\right)$ exists. Denote $x=\lim _{m \rightarrow \infty} x_{n_{m}}$.
- Combining with the assumption that the sequence $\left\{x_{n}\right\} \subset X$ is a Cauchy sequence, prove that $\lim _{j \rightarrow \infty} x_{j}=x$.

Theorem 3 (Theorem and Definition). Let X be a Banach space over \mathbb{K} (where $\mathbb{K}=\mathbb{R}$ or $\mathbb{K}=\mathbb{C}$) and a series

$$
F(z):=\sum_{j=0}^{\infty} a_{j} z^{j}, z \in \mathbb{K}, \quad a_{j} \in \mathbb{K} \text { for all } j
$$

such that

$$
\sum_{j=0}^{\infty}\left|a_{j}\right||z|^{j}<\infty \quad \text { for all } z \in \mathbb{C} \text { with }|z|<r \quad \text { and some fixed } r>0
$$

Then for each $A \in B(X)$ with $\|A\|<r$, the series $\sum_{j=0}^{\infty} a_{j} A^{j}$ is also an element in $B(X)$.
Proof. Let $A \in B(X)$ with $\|A\|<r$. From the assumption on the series, we have $\sum_{j=0}^{\infty}\left|a_{j}\right|\|A\|^{j}<\infty$. For every $j \geq 1$, we have

$$
\left\|a_{j} A^{j}\right\| \leq\left|a_{j}\right|\|A\|^{j} .
$$

Therefore, by the comparison test, the series $\sum_{j=0}^{\infty} a_{j} A^{j}$ is absolutely convergent. Since $B(X)$ is a Banach space, the series $\sum_{j=0}^{\infty} a_{j} A^{j}$ is a convergent series. That is $\sum_{j=0}^{\infty} a_{j} A^{j} \in B(X)$.

Definition 4. Let $A: X \rightarrow Y$ and $B: Y \rightarrow X$ be linear operators, where X and Y are linear vector spaces over \mathbb{K}. If $A B=I_{Y}$ and $B A=I_{X}, A$ is said to be bijective and denote $A^{-1}=B$.

Example 1. Let $X \neq\{0\}$ be a Banach space over \mathbb{K}.

1. Exponential Function. For each $A \in B(X)$, the infinite series $\sum_{j=0}^{\infty} \frac{1}{j!} A^{j}$ is also an element in $B(X)$. Denote

$$
e^{A}:=\sum_{j=0}^{\infty} \frac{1}{j!} A^{j} \in B(X)
$$

Moreover, for all $t, s \in \mathbb{K}$, we have

$$
e^{t A} e^{s A}=e^{(t+s) A}
$$

2. Neumann Series. Let $A \in B(X)$ with $\|A\|<1$. Then the following statements hold.
(a) The infinite series $\sum_{j=0}^{\infty} A^{j}$ is also an element in $B(X)$. The series $\sum_{j=0}^{\infty} A^{j}$ is called the Neumann series.
(b) The operator $(I-A) \in B(X)$ is bijective and $(I-A)^{-1}=\sum_{j=0}^{\infty} A^{j}$.
(c) $\left\|(I-A)^{-1}\right\| \leq \frac{1}{1-\|A\|}$.
(d) Given $g \in X$, the equation $(I-A) u=g$ with the unknown $u \in X$ has a unique solution

$$
u=(I-A)^{-1} g=\sum_{j=0}^{\infty} A^{j} g
$$

Moreover, u can be approximated by

$$
u_{n}=g+A g+A^{2} g+\ldots+A^{n-1} g
$$

with the error

$$
\left\|u-u_{n}\right\| \leq \frac{\|A\|^{n}}{1-\|A\|}\|g\|, \quad \text { for all } n=1,2, \ldots
$$

Proof. Hint: Using Theorem 3 for $F(z)=\sum_{j=0}^{\infty} \frac{1}{j!} z^{j}=e^{z}$ and $F(z)=\sum_{j=0}^{\infty} z^{j}=\frac{1}{1-z}$, respectively.
For Example 2, let's verify $\sum_{j=0}^{\infty} A^{j}=(I-A)^{-1}$ and $\left\|(I-A)^{-1}\right\| \leq \frac{1}{1-\|A\|}$. Obviously,

$$
(I-A)\left(\sum_{j=0}^{\infty} A^{j}\right)=I \quad \text { and } \quad\left(\sum_{j=0}^{\infty} A^{j}\right)(I-A)=I
$$

Hence $\sum_{j=0}^{\infty} A^{j}=(I-A)^{-1}$. From the inequality

$$
\left\|\sum_{j=0}^{m} A^{j}\right\| \leq \sum_{j=0}^{m}\|A\|^{j} \leq \sum_{j=0}^{\infty}\|A\|^{j}=\frac{1}{1-\|A\|},
$$

letting $m \rightarrow \infty$, we have

$$
\left\|(I-A)^{-1}\right\|=\left\|\sum_{j=0}^{\infty} A^{j}\right\| \leq \frac{1}{1-\|A\|}
$$

(d). Suppose u is a solution for $(I-A) u=g$. Then

$$
(I-A)^{-1} g=(I-A)^{-1}(I-A) u=I u=u .
$$

Finally, since

$$
u-u_{n}=A^{n} g+A^{n+1} g+\cdots=A^{n}(I+A+\cdots) g=A^{n}(I-A)^{-1} g,
$$

we have

$$
\left\|u-u_{n}\right\| \leq\left\|A^{n}\right\|\left\|(I-A)^{-1}\right\|\|g\| \leq \frac{\|A\|^{n}}{1-\|A\|}\|g\| .
$$

Note: u_{n} is the iteration generated from the Banach fixed point theorem for $u=T u$ with $T u=A u+g$ and the Lipschitz constant is $\|A\|$:

$$
\|T u-T v\|=\|A u-A v\|=\|A(u-v)\| \leq\|A\|\|u-v\| .
$$

2.13 Fréchet Derivative

Definition 1 (Definition and Theorem). Let X and Y be normed linear spaces over \mathbb{K} (where $\mathbb{K}=\mathbb{R}$ or $\mathbb{K}=\mathbb{C}$). An operator $F: X \rightarrow Y$ is Fréchet differentiable (F-differentiable) at $a \in X$ if and only if there exists a bounded linear operator $D F(a): X \rightarrow Y$ such that

$$
\begin{equation*}
\lim _{h \rightarrow 0} \frac{\|F(a+h)-F(a)-D F(a)(h)\|}{\|h\|}=0 . \tag{11}
\end{equation*}
$$

An operator $D F(a)$ (if exists, i.e., $D F(a) \in B(X, Y)$ and $D F(a)$ satisfies Equation (11)) is unique and is called the Fréchet-derivative of F at a.

Proof. Suppose $F: X \rightarrow Y$ is Fréchet differentiable at $a \in X$ and there are two bounded linear operators $L_{1}, L_{2}: X \rightarrow Y$ such that

$$
\lim _{h \rightarrow 0} \frac{\left\|F(a+h)-F(a)-L_{1}(h)\right\|}{\|h\|}=0 \quad \text { and } \quad \lim _{h \rightarrow 0} \frac{\left\|F(a+h)-F(a)-L_{2}(h)\right\|}{\|h\|}=0 .
$$

Combining with

$$
0 \leq \frac{\left\|L_{1}(h)-L_{2}(h)\right\|}{\|h\|} \leq \frac{\left\|F(a+h)-F(a)-L_{2}(h)\right\|+\left\|-\left(F(a+h)-F(a)-L_{1}(h)\right)\right\|}{\|h\|},
$$

we have

$$
\lim _{h \rightarrow 0} \frac{\left\|L_{1}(h)-L_{2}(h)\right\|}{\|h\|}=0 .
$$

Let $L=L_{1}-L_{2} \in B(X, Y)$, then $\lim _{h \rightarrow 0} \frac{\|L(h)\|}{\|h\|}=0$. We will show that $L(x)=0$ for all $x \in X$. Since L is linear, $L(0)=0$. Fix $x \in X, x \neq 0$. For $t \in \mathbb{K}$, if $t \rightarrow 0$ then $t x \in X$ and $t x \rightarrow 0$. Therefore,

$$
0=\lim _{t \rightarrow 0} \frac{\|L(t x)\|}{\|t x\|}=\lim _{t \rightarrow 0} \frac{|t|\|L(x)\|}{|t|\|x\|}=\frac{\|L(x)\|}{\|x\|} .
$$

The second equality holds because L is linear. Therefore, $\|L(x)\|=0\|x\|=0$, so $L(x)=0$ for all $x \in X \backslash\{0\}$. Hence $L(x)=x$ for all $x \in X$. In other words, an operator $D F(a)$ (if exists) is unique.

Example 1. 1. If $F \in B(X, Y)$ then F is F-differentiable everywhere and $D F(a)=F$ for all $a \in X$.
2. Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and suppose $F \in C^{1}\left(\mathbb{R}^{n}\right)$ (i.e., $\partial_{i} f$ exists and is continuous on $\mathbb{R}^{n}, 1 \leq i \leq n$). Then $D F(a) \in B\left(\mathbb{R}^{n}, \mathbb{R}\right)$ is defined by

$$
D F(a)(h):=\nabla f(a) \cdot h . \quad \text { (dot product) }
$$

3. Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and suppose $F \in C^{1}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$ (i.e., $\frac{\partial f_{j}}{x_{i}}$ exists and is continuous, $1 \leq i \leq n$, $1 \leq j \leq m$). Then F is F-differentiable and

$$
D F(a)(h):=\left[\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}}(a) & \cdots & \frac{\partial f_{1}}{\partial x_{n}}(a) \\
\vdots & \vdots & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}}(a) & \cdots & \frac{\partial f_{m}}{\partial x_{n}}(a)
\end{array}\right] h . \quad \text { (matrix multiplication) }
$$

The matrix itself is the usual Jacobian matrix.

