Lecture 12: Infinite Series. Operator Functions. Neumann Series.
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Definition 3. Let X be a normed space over K and let u; € X for all j. If lijn > uj exists, denote
m—00 ;7
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and the infinite series ) wujis called convergent. This infinite series is called absolutely convergent iff
=0
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Proposition 18. A normed linear space X is a Banach space if and only if every absolutely convergent
infinite series with terms in X is convergent.

o
Proof. (=) Suppose X is a Banach space. Let > u; be an absolutely convergent infinite series in X.

7=0
Then for every € > 0, there exists N > 0 such that for every n > N, kK > 0, we have

n+k

> sl <

j=n+1
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Denote s, = > u; € X, then for every n > N,, k > 0, we have
§=0

n+k n+k
[snis = sall =11 D0 wll < D0 Jull <e

Hence the sequence {s,} is a Cauchy sequence in X. Since X is a Banach space, the limit nh_)rrolo Sy, exists.

[e.°]
Therefore, the infinite series ) u; converges.
j=0
(<) Suppose every absolutely convergent infinite series with terms in X is convergent. We need to

prove that X is a Banach space. Here is the sketch of the proof. Let {z,} C X be a Cauchy sequence.
1
e Construct a subsequence {x,, } so that ||z,, —xpn, || < o" for all & > 1.
[e.°]

e Prove that the series ({L‘no + 2 (T, — :Enk)> is absolutely convergent, hence it is convergent.
k=0

m
e Therefore lim x = lim (z,, + T —x exists. Denote x = lim =z, .
m—soo ~ Ttm+1 m—00 m kz::(]( Mh+1 nk) m—oo " vm

e Combining with the assumption that the sequence {z,} C X is a Cauchy sequence, prove that

lim z; = x.
Jj—o0

o1



Theorem 3 (Theorem and Definition). Let X be a Banach space over K (where K=R or K=C) and a

series

[e.e]
F(z) ::Zajzj, z€K, a; €K forallj

=0
such that
0 .
Z laj| |z]? < oo forall ze€ C with |z| <r and some fized r > 0.
j=0

Then for each A € B(X) with |A|| <, the series Y ajA7 is also an element in B(X).

7=0

0 .

Proof. Let A € B(X) with ||A|| < r. From the assumption on the series, we have Y- |a;| ||A]/ < co. For
j=0

every j > 1, we have

Jaj A9l < laslI AJF.
o0 .
Therefore, by the comparison test, the series > a;A’ is absolutely convergent. Since B(X) is a Banach
=0
00 A ! x .
space, the series ) a;A’ is a convergent series. That is ) a; A7 € B(X). O
§=0 j=0
Definition 4. Let A: X — Y and B : Y — X be linear operators, where X and Y are linear vector
spaces over K. If AB = Iy and BA = Ix, A is said to be bijective and denote A~! = B.

Example 1. Let X # {0} be a Banach space over K.

1. Ezponential Function. For each A € B(X), the infinite series . A7 is also an element in B(X).
j=0J"

Denote
0

1 .
et =3 —A e B(X).
j=07"

Moreover, for allt,s € K, we have
oA gSA _ (t+9)A

2. Neumann Series. Let A € B(X) with ||A|| < 1. Then the following statements hold.

o o
(a) The infinite series 3° A’ is also an element in B(X). The series 3 A’ is called the Neumann

j=0 j=0
series.
(b) The operator (I — A) € B(X) is bijective and (I — A)~L = 3 AJ.
5=0
(0) 107 = 4 < 3=
1—[|A]

(d) Given g € X, the equation (I — A)u = g with the unknown u € X has a unique solution

u=(1-A)"lg= ZAjg.
j=0
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Moreover, u can be approzimated by
Up =g+ Ag+ A%g+ ...+ A" g

with the error

= unll < A2 jgl foratt n=1,2,...
1— Al
© 1 . x 1
Proof. Hint: Using Theorem 3 for F(z) = Y 2/ =e€” and Fz)=> 2 = 1T respectively.

j=0J" j=0 -z

0 1

For Example 2, let’s verify > A% = (I — A)~! and ||(I — A)7} < T Al Obviously,
j=0 -

j=0

(I —A) (ZAj) =1 and (ZAJ’) (I—A)=1.
=0
Hence § AJ = (I — A)~L. From the inequality
5=0

m X . 1
<Y IAP <> A) = T4
=0 =0

> a
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letting m — oo, we have
1

<

>
j=0

(d). Suppose u is a solution for (I — A)u = g. Then

(I-A)lg=T-A) T -Au=Tu=u.

Finally, since
U—u, = A"g+ A" g4 = AT+ A+ )g= A" — A) g,

we have

A"y g1
T [A]

Note: u,, is the iteration generated from the Banach fixed point theorem for v = Tu with Tu = Au+ g

lu = unll < AT = A)~ gl <

and the Lipschitz constant is || A]:

[Tw = To|| = [[Au — Avl| = [|A(u = v)[| < [[Afl[u = v].
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2.13 Fréchet Derivative

Definition 1 (Definition and Theorem). Let X and Y be normed linear spaces over K (where K =R or
K =C). An operator F : X — Y is Fréchet differentiable (F-differentiable) at a € X if and only if there
exists a bounded linear operator DF(a) : X —'Y such that
- F(ath) — F(a) ~ DF(@)(b)]
im
h—0 Il
An operator DF (a) (if exists, i.e., DF (a) € B(X,Y) and DF(a) satisfies Equation (11)) is unique and is
called the Fréchet-derivative of F' at a.

~0. (11)

Proof. Suppose F': X — Y is Fréchet differentiable at a € X and there are two bounded linear operators
Li,Ls : X — Y such that
F h) — F(a) — L1(h F h) — F(a) — La(h
o IP@+ ) = F@ — Ll _ [ Fath) = Flo) = L) _
h—0 Al h—0 IRl
Combining with

[L1(h) = La(W)I| _ [[F(a+R) = Fa) = La(A)|| + || = (Fla+h) = Fa) = L1(R)) |

0<

17l - I17] ’
we have L (B — Lo(h
i L) = La(W)I|
h—0 Rl
L
Let L = L1 — Ly € B(X,Y), then ]1lm% ” ||§L}|L|)H = 0. We will show that L(z) =0 for all z € X. Since L is
—

linear, L(0) = 0. Fix x € X,x # 0. For t € K, if t — 0 then tx € X and tx — 0. Therefore,
0 1im @O HIL@) L)
=0 |tz =0 [ ]| [z

The second equality holds because L is linear. Therefore, ||L(z)|| = O||z|| = 0, so L(z) = 0 for all
x € X \ {0}. Hence L(z) = x for all x € X. In other words, an operator DF'(a) (if exists) is unique. [

Example 1. 1. If F € B(X,Y) then F is F-differentiable everywhere and DF(a) = F for all a € X.

2. Let F : R" — R and suppose F' € C1(R") (i.e., O;f exists and is continuous on R", 1 < i < n).
Then DF(a) € B(R",R) is defined by
DF(a)(h) ==V f(a)-h. (dot product)
of;

L exists and is continuous, 1 < i < n,
Z;

3. Let F : R" — R™ and suppose F € C*(R",R™) (i.e.,
1 <j<m). Then F is F-differentiable and

of1 of1
87;51(@ 873,1(&)
DF(a)(h) := : : : h.  (matriz multiplication)
Afm 9 fm
(Txl(a) o Txn(a)

The matrix itself is the usual Jacobian matrix.
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