
Lecture 13: Fréchet Derivative. Hahn-Banach Theorems and Applications.

Recall: An operator F : X æ Y (between normed linear spaces X and Y ) is Fréchet di�erentiable at
a œ X if and only if there exists a bounded linear operator DF (a) : X æ Y such that

lim
hæ0

ÎF (a + h) ≠ F (a) ≠ DF (a)hÎ
ÎhÎ = 0.

If F is Fréchet di�erentiable, we can write

F (a + h) = F (a) + DF (a)h + R(a, h), where lim
hæ0

ÎR(a, h)Î
ÎhÎ = 0,

or
F (a + h) = F (a) + DF (a)h + ÎhÎr(h), where lim

hæ0
r(h) = 0,

or
F (a + h) = F (a) + DF (a)h + o(ÎhÎ).

Remark 2. 1. The Fréchet derivative is a generalization of derivative in R. That is, if F : R æ R is
Fréchet di�erentiable at a œ R, then F is di�erentiable at a and

DF (a)(x) = F

Õ(a)x, ’ x œ R.

Proof. Since F is Fréchet di�erentiable at a œ R, there exists DF (a) œ B(R,R) such that

0 = lim
hæ0

|F (a + h) ≠ F (a) ≠ DF (a)(h)|
|h|

Since
B(R,R) = {L : R æ R s.t. L(x) = cx, ’x œ R, for some c œ R},

there exists some constant c œ R such that

DF (a)(x) = cx, ’ x œ R.

So

0 = lim
hæ0

|F (a + h) ≠ F (a) ≠ DF (a)(h)|
|h| = lim

hæ0
|F (a + h) ≠ F (a) ≠ ch|

|h| = lim
hæ0

----
F (a + h) ≠ F (a)

h

≠ c

---- .

So
c = lim

hæ0
F (a + h) ≠ F (a)

h

,

which implies F is di�erentiable at a and c = F

Õ(a). Therefore,

DF (a) : R æ R, DF (a)(x) = F

Õ(a)x, ’ x œ R.
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2. To compute the Fréchet-derivative of an operator F : X æ Y at a œ X, where X and Y are normed
linear spaces, we write F (a+h)≠F (a) as a summation of a linear operator (w.r.t. h) and a remainder
(which is nonlinear in h)

F (a + h) ≠ F (a) = Lh + R(a, h),

and prove that L is bounded and
lim
hæ0

ÎR(a, h)Î
ÎhÎ = 0.

The linear operator L œ B(X, Y ) is the DF (a) in the definition.

3. If F : X æ Y is Fréchet-derivative at a œ X, where X and Y are normed linear spaces, then for any
x œ X, we have

DF (a)(x) = lim
tæ0

F (a + tx) ≠ F (a)
t

, t œ R. (Prove this)

Note: This formula is used to compute the Fréchet-derivative of an operator F . After this, we need
to check that DF (a) is a bounded linear operator and R(a, h) = F (a + h) ≠ F (a) ≠ DF (a)h satisfies

lim
hæ0

ÎR(a, h)Î
ÎhÎ = 0.

Here is an example of an operator F : X æ Y , where lim
tæ0

F (a + tx) ≠ F (a)
t

, t œ R exists for an
a œ X but F is not Fréchet di�erentiable at a. Consider F : R2 æ R given by

F (x1, x2) =

Y
_]

_[

0 if x2 = 0,

x

3
1

x2
if x2 ”= 0.

The operator F is not continuous at (0, 0), for example, F (t, t

3) æ 1 as t æ 0, but F (0, 0) = 0. On
the other hand,

F (tx) ≠ F (0, 0)
t

=

Y
_]

_[

0 if x2 = 0,

t

x

3
1

x2
if x2 ”= 0.

So lim
tæ0

F (tx) ≠ F (0, 0)
t

= 0 for any (x1, x2) œ R2.

Example 2. 1. Let X = C

1
0 [0, 1] be the space of all C

1 functions on [0, 1] which vanish at the endpoints
with norm

ÎuÎ =

S

U
1⁄

0

Ë
u

2 + (uÕ)2
È

dx

T

V
1/2

.

Consider an operator K : X æ R defined by

K(u) =
1⁄

0

Ë
u

3 + (uÕ)2
È

dx.

Compute the Fréchet derivative of K.
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2. Let X = C[a, b] with Î · ÎŒ norm. Let T : X æ X be the nonlinear integral operator defined by

(Tu)(x) = u(x)
⁄

b

a

K(x, s)u(s) ds,

where K(x, s) is continuous on [a, b] ◊ [a, b]. Compute the Fréchet derivative of K.

Proof. Exercise and See Dr. Vrscay’s notes (attached in the next pages).

Proposition 19. Let X and Y be normed linear spaces over K (where K = R or K = C). If F is Fréchet
di�erentiable at a œ X then F is continuous at a.

Proof. Since F is Fréchet di�erentiable at a œ X, there exists ” > 0 such that when ÎhÎ < ”, we have

ÎF (a + h) ≠ F (a) ≠ DF (a)(h)Î Æ ÎhÎ.

So for all h œ X with ÎhÎ < ”, we have

ÎF (a+h)≠F (a)Î Æ ÎF (a+h)≠F (a)≠DF (a)(h)Î+ÎDF (a)(h)Î Æ ÎhÎ+ÎDF (a)ÎÎhÎ = (1+ÎDF (a)Î)ÎhÎ

As h æ 0, (1 + ÎDF (a)Î)ÎhÎ æ 0. Therefore,

lim
hæ0

ÎF (a + h) ≠ F (a)Î = 0,

which means lim
hæ0

F (a + h) = F (a). Therefore F is continuous at a.

Proposition 20. Let X, Y and Z be normed linear spaces over K.

1. Let f, g : X æ Y be Fréchet derivative at a œ X. Then for any –, — œ K, we have

D(– f + — g)(a) = –Df(a) + —Dg(a).

2. (Chain Rule) Suppose F : X æ Y is Fréchet di�erentiable at a œ X, G : Y æ Z is Fréchet
di�erentiable at F (a). Then G ¶ F : X æ Z is Fréchet di�erentiable at a and

D(G ¶ F )(a) = DG(F (a)) DF (a).

Proof. Set b = F (a). By the assumptions,

F (a + h) ≠ F (a) = DF (a)h + ÎhÎr1(h)

G(b + k) ≠ G(b) = DG(b)k + ÎkÎr2(k),

where Îr1(h)Î æ 0 as h æ 0 and Îr2(k)Î æ 0 as k æ 0, for h œ X, k œ Y .
For h œ X, denote k = DF (a)h + ÎhÎr1(h). Now we compute

G(F (a + h)) ≠ G(F (a)) = G

1
b + DF (a)h + ÎhÎr1(h)

2
≠ G(b)

= DG(b)
1
DF (a)h + ÎhÎr1(h)

2
+ ÎkÎr2(k)

= DG(b)DF (a)h + ÎhÎDG(b)
1
r1(h)

2
+ ÎkÎr2(k)
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The operator DG(F (a))DF (a) : X æ Z is a bounded linear operator since it is the composition of two
bounded linear operators DF (a) and DG(F (a)). Observe that

ÎkÎ Æ
1
ÎDF (a)Î + Îr1(h)Î

2
ÎhÎ, ’h œ X, (12)

and
Îr(h)Î

ÎhÎ Æ ÎDG(b)ÎÎr1(h)Î + ÎkÎ
ÎhÎÎr2(k)Î Æ ÎDG(b)ÎÎr1(h)Î +

1
ÎDF (a)Î + Îr1(h)Î

2
Îr2(k)Î (13)

Now letting h æ 0. Since Îr1(h)Î æ 0 as h æ 0, from (12), we have k æ 0 and hence r2(k) æ 0.
Therefore, from (13), we have

Îr(h)Î
ÎhÎ æ 0 as h æ 0.

2.14 Hahn-Banach Theorems. Generalized Mean Value Theorem. Separation Theo-
rems.

Definition 1. Let X be a vector space over K. We say that p : X æ [0, Œ) is sublinear if it satisfies

p(⁄x) = ⁄p(x) (positive homogeneous),

p(x + y) Æ p(x) + p(y) (triangle inequality),

for any x, y œ X and real ⁄ > 0.

Lemma 6 (Zorn’s Lemma). Suppose S is a nonempty, partially ordered set (reflexivity, antisymmetry,
and transitivity). If every totally ordered subset C (that is, every two elements in C are comparable) of S

has an upper bound; that is, there is some u œ S such that

x Æ u for all x œ C.

Then S has at least one maximal element; that is there is some m œ S such that for any x œ S,

if m Æ x then m = x.

Theorem 1 (The Hahn-Banach Theorem for linear spaces). Let X0 be a subspace of a real vector space
X and p be a sublinear on X. If f0 : X0 æ R is a linear functional such that

f0(x) Æ p(x), ’ x œ X0,

then there is a linear functional f : X æ R such that

f |
X0 = f0, (i.e., f is a linear extension of f0)

and
f(x) Æ p(x), ’ x œ X.
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Sketch of the proof. Step 1: We first prove the statement in the special case when X = X0 + span(v)
with a fixed v ”œ X0. Set

f(⁄v + x0) = f0(x0) + ⁄c, ’ x0 œ X0, ’⁄ œ R,

where c œ R is a fixed number satisfying

sup
uœX0

(f0(u) ≠ p(u ≠ v)) Æ c Æ inf
wœX0

(p(w + v) ≠ f0(w)).

We first show that such c exists. Indeed, for all u, w œ X0, we have

f0(u) + f0(w) = f0(u + w) Æ p(u + w) Æ p(u ≠ v) + p(w + v).

Therefore,
f0(u) ≠ p(u ≠ v) Æ p(w + v) ≠ f0(w), ’u, w œ X0,

which means such c exists. Next, we will verify that the defined f is a linear functional on X , f |
X0 = f0

(leave it as an exercise).
Finally, we will prove that f(⁄v + x0) Æ p(⁄v + x0) for all x0 œ X0 and for all ⁄ œ R. The statement is
true for ⁄ = 0. For ⁄ > 0, from the requirement on c,

c Æ p(w + v) ≠ f0(w), ’w œ X0

we have
c Æ p(⁄≠1

x0 + v) ≠ f0(⁄≠1
x0) = ⁄

≠1
1
p(x0 + ⁄v) ≠ f0(x0)

2
,

f(x0 + ⁄v) = ⁄c + f0(x0) Æ p(x0 + ⁄v).

Similarly, for ⁄ < 0, from the requirement on c,

c Ø f0(u) ≠ p(u ≠ v), ’u œ X0,

we have
c Ø f0(≠⁄

≠1
x0) ≠ p(≠⁄

≠1
x0 ≠ v) = ≠⁄

≠1(f0(x0) ≠ p(x0 + ⁄v)),

f(x0 + ⁄v) = ⁄c + f0(x0) Æ p(x0 + ⁄v).

Step 2: Let S be the set of all linear extensions g of f0 defined on a vector space X

g

µ X and satisfying
the property g(x) Æ p(x) for all x œ X

g

. Since f0 œ S, S is not empty. Define a partial ordering on S by
g Æ h means that h is a linear extension of g. For any totally ordered subset C µ S, let

Y =
€

gœC
X

g

, gC(x) = g(x) for any g œ C such that x œ X

g

.

Since C is totally ordered, gC is well-defined. Moreover gC œ S and is an upper bound for C. Applying
the Zorn’s lemma, S has at least one maximal element f . By definition, f is a linear extension of f0 and
f(x) Æ p(x) for all x œ X

f

. It remains to show that X

f

= X. If not, there exists v œ X \ X

f

. Applying
results from Step 1, we can construct a linear extension of f to Â

f on X

f

+ Rv. This contradicts the
maximality of f . Therefore, X

f

= X, which completes the proof.
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Theorem 2 (The Hahn-Banach Theorem for normed spaces). Let X0 be a subspace of a normed space X

over K, where K = R or K = C. Let f0 : X0 æ R be a linear functional such that

|f0(x)| Æ –ÎxÎ ’ x œ X0 and fixed – Ø 0.

Then there is a linear functional f : X æ R such that

f |
X0 = f0, (i.e., f is a linear extension of f0)

and
|f(x)| Æ –ÎxÎ ’ x œ X.

Sketch of the proof. We prove the case K = R. Define

p(x) := –ÎxÎ ’x œ X.

We can verify that p(x) is sublinear (Prove this). Since f0(x) Æ |f0(x)| Æ p(x), by the Hahn-Banach
theorem for linear spaces, there is a linear functional f : X æ R such that f |

X0 = f0 and f(x) Æ –ÎxÎ.
Since

≠f(x) = f(≠x) Æ –Î ≠ xÎ = –ÎxÎ,

we also have f(x) Ø ≠–ÎxÎ for all x œ X. Therefore, |f(x)| Æ –ÎxÎ for all x œ X.

60


