Lecture 13: Fréchet Derivative. Hahn-Banach Theorems and Applications.

Recall: An operator F' : X — Y (between normed linear spaces X and Y') is Fréchet differentiable at
a € X if and only if there exists a bounded linear operator DF'(a) : X — Y such that

1o IF(@+ 1) = F(a) - DF(a)hl] _

0.
h—0 Al

If F' is Fréchet differentiable, we can write

R(a,h
F(a+h)=F(a)+ DF(a)h+ R(a,h), where lim M =0,
h>0 Al
or
F(a+h) = F(a) + DF(a)h + ||h||r(h), where }lLin%) r(h) =0,
—
or

F(a+h) = F(a) + DF(a)h + o(||h]).

Remark 2. 1. The Fréchet derivative is a generalization of derivative in R. That is, if ' : R — R s
Fréchet differentiable at a € R, then F' is differentiable at a and

DF(a)(z) = F'(a)r, Vz €R.

Proof. Since F is Fréchet differentiable at a € R, there exists DF'(a) € B(R,R) such that

o i [Flath) = Fla) = DF()(h)
h—0 |h‘

Since
B(R,R)={L:R — R s.t. L(x) = cx, Yz € R, for some c € R},

there exists some constant ¢ € R such that

DF(a)(x) = cx,Vx € R.

So
0 = lim |F(a+h)— F(a) — DF(a)(h)| — lim |F(a+h)— F(a) — ch| ~ lim F(a+h)— F(a) d
h—0 |h| h—0 |h| h—0

So .

= lim (a—l—h)—F(a)7

h—0 h
which implies F is differentiable at a and ¢ = F’(a). Therefore,
DF(a):R— R, DF(a)(z)= F'(a)z, VzecR.
0
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2. To compute the Fréchet-derivative of an operator F : X — Y at a € X, where X and Y are normed
linear spaces, we write F(a+h)—F(a) as a summation of a linear operator (w.r.t. h) and a remainder

(which is nonlinear in h)
F(a+ h) — F(a) = Lh+ R(a, h),

and prove that L is bounded and
RG]
h—0  ||A]]

The linear operator L € B(X,Y) is the DF(a) in the definition.

=0.

3. If F: X =Y is Fréchet-derivative at a € X, where X and Y are normed linear spaces, then for any

x € X, we have

F tr) — F
DF(a)(x) = lim T 12) = Fla)
t—0 t
Note: This formula is used to compute the Fréchet-derivative of an operator F. After this, we need

to check that DF(a) is a bounded linear operator and R(a,h) = F(a+ h) — F(a) — DF(a)h satisfies

1o IRGa, )
h—0  ||A]]

, teR. (Prove this)

=0.

F(a+tx) — F(a)

Here is an example of an operator F' : X — Y, where hr% , t € R exists for an

t
a € X but F is not Fréchet differentiable at a. Consider F : R?> — R given by
0 if x5 =0,
L if 1o #0.

F(:El, .TQ) =

The operator F is not continuous at (0,0), for example, F(t,t3) — 1 ast — 0, but F(0,0) =0. On
the other hand,
Fte) - F,0) )0 & #2=0
t 2L if x9#0.

So lim
t—0

Example 2. 1. Let X = C}[0,1] be the space of all C* functions on [0, 1] which vanish at the endpoints

1 1/2
u| = {/ [u? + (u)?] dx] .

0

F(tz) - F
(tz) ; (0.0) =0 for any (z1,72) € R%

with norm

Consider an operator K : X — R defined by

u):/l[u3+(u'2
0

Compute the Fréchet derivative of K.



2. Let X = Cla,b] with || - ||c norm. Let T : X — X be the nonlinear integral operator defined by

b
(Tw)(z) = u() / K(z, s)u(s) ds,
where K (x,s) is continuous on [a,b] X [a,b]. Compute the Fréchet derivative of K.

Proof. Exercise and See Dr. Vrscay’s notes (attached in the next pages). O

Proposition 19. Let X and Y be normed linear spaces over K (where K=R or K= C). If F is Fréchet

differentiable at a € X then F is continuous at a.

Proof. Since F is Fréchet differentiable at a € X, there exists ¢ > 0 such that when [|A|| < d, we have
1F(a+h) = F(a) = DF(a)(h)|| < [|A]].
So for all h € X with ||h]| < 4, we have
[1F(a+h)=F(a)| < [|F(a+h)=F(a)=DF(a)(h)|[+[[DF(a)(R)]| < A+ DF(a)l[[|p] = (L+[[DF ()[Rl
As h — 0, (1 + || DF(a)||)||h]| = 0. Therefore,
lim [[F(a + h) — F(a)|| = 0,
h—0
which means }llir% F(a+ h) = F(a). Therefore F' is continuous at a. O
—>

Proposition 20. Let X,Y and Z be normed linear spaces over K.

1. Let f,g: X — Y be Fréchet derivative at a € X. Then for any o, 5 € K, we have
D(af + B g)(a) = aDf(a) + BDg(a).

2. (Chain Rule) Suppose F : X — Y is Fréchet differentiable at a € X, G :' Y — Z is Fréchet
differentiable at F'(a). Then Go F : X — Z is Fréchet differentiable at a and

D(G o F)(a) = DG(F(a)) DF(a).

Proof. Set b= F(a). By the assumptions,
F(a+ h) — F(a) = DF(a)h + ||h||r1(h)
G(b+ k) — G(b) = DG(b)k + ||k||r2(k),

where ||ri(h)|| = 0 as h — 0 and ||re(k)|| - 0as k — 0, for h € X,k €Y.
For h € X, denote k = DF(a)h + ||h|/r1(h). Now we compute

G(F(a+h)) = G(F(a) = G(b+ DF(a)h + |[hr1(h)) = G(b)
= DG(b)(DF(a)h + ||Bllr1(h)) + [Kllrs(k)

= DG(b)DF(a)h + [ DG () (ri(h)) + k|ra(k)

o7



The operator DG(F(a))DF(a) : X — Z is a bounded linear operator since it is the composition of two
bounded linear operators DF(a) and DG(F'(a)). Observe that

16l < (IPF@ + M) R, ¥h € X, (12)
and
Il < IDGOIIA ] + ] < IDEOI®] -+ (IDF@I -+ In @)@ (3

Now letting h — 0. Since ||r1(h)|| — 0 as h — 0, from (12), we have k — 0 and hence ro(k) — 0.

Therefore, from (13), we have
(Rl
2]

—0 as h—0.

O

2.14 Hahn-Banach Theorems. Generalized Mean Value Theorem. Separation Theo-

rems.
Definition 1. Let X be a vector space over K. We say that p : X — [0,00) is sublinear if it satisfies

p(Az) = Ap(z)  (positive homogeneous),
plz+y) <plx)+ply) (triangle inequality),

for any x,y € X and real X > 0.

Lemma 6 (Zorn’s Lemma). Suppose S is a nonempty, partially ordered set (reflexivity, antisymmetry,
and transitivity). If every totally ordered subset C (that is, every two elements in C are comparable) of S

has an upper bound; that is, there is some u € S such that
x<u forall z€C.
Then S has at least one mazimal element; that is there is some m € S such that for any x € S,
if m<zxz then m==x.

Theorem 1 (The Hahn-Banach Theorem for linear spaces). Let X be a subspace of a real vector space

X and p be a sublinear on X. If fo: Xo — R is a linear functional such that
fo(z) <p(z), Ve Xo,
then there is a linear functional f : X — R such that

flx, = fo, (i.e., f is a linear extension of fo)

and
f(z) <p(z), VzrelX.

o8



Sketch of the proof. Step 1: We first prove the statement in the special case when X = X + span(v)
with a fixed v € X(. Set

f()\v + .f()) = fo(.’Eo) 4+ Ae, Vzg€ Xg, VA ER,
where ¢ € R is a fixed number satisfying

sup (fo(u) —plu —v)) <ec< in)f( (p(w +v) — fo(w)).
ueXo wEXQ

We first show that such c exists. Indeed, for all u,w € X, we have
fo(u) + fo(w) = fo(u+w) < p(u+w) < p(u —v) + p(w + v).
Therefore,
Jo(u) = p(u—v) < p(w+v) = fo(w), Vu,w e Xo,

which means such c exists. Next, we will verify that the defined f is a linear functional on X | f|x, = fo
(leave it as an exercise).
Finally, we will prove that f(Av + x¢) < p(Av + zp) for all g € X and for all A € R. The statement is

true for A = 0. For A > 0, from the requirement on c,
¢ < p(w+v) - fo(w), Ywe X
we have
¢ <p(Atmo+0) — fo(Alwe) = 47! (p(xo + Av) — fo(xo)),
f(xo + Av) = Ae+ fo(zo) < p(xo + Av).

Similarly, for A < 0, from the requirement on c,
¢ = fo(u) —p(u—v), Vue X,

we have
¢ > fo(=A""wo) — p(=A""wo — v) = =X (folzo) — plao + Mv)),

f(zo 4+ Av) = Ae+ fo(zo) < p(xo + Mv).

Step 2: Let S be the set of all linear extensions g of fy defined on a vector space X, C X and satisfying
the property g(z) < p(x) for all € X,. Since fp € S, S is not empty. Define a partial ordering on S by
g < h means that h is a linear extension of g. For any totally ordered subset C C S, let
Y = U Xy, gc(x) =g(x) for any g € C such that z € X,.
geC
Since C is totally ordered, g¢ is well-defined. Moreover g¢ € S and is an upper bound for C. Applying
the Zorn’s lemma, S has at least one maximal element f. By definition, f is a linear extension of fy and
f(x) < p(x) for all x € Xy. It remains to show that Xy = X. If not, there exists v € X \ Xy. Applying
results from Step 1, we can construct a linear extension of f to f on Xy + Rv. This contradicts the

maximality of f. Therefore, Xy = X, which completes the proof. O
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Theorem 2 (The Hahn-Banach Theorem for normed spaces). Let Xo be a subspace of a normed space X
over K, where K=R or K=C. Let fo: Xog = R be a linear functional such that

|fo(z)] < a|z|]| Vze Xy and firzed o> 0.
Then there is a linear functional f : X — R such that

flx, = fo, (i.e., f is a linear extension of fo)

and
If(z)| < allz|]| VzeX.

Sketch of the proof. We prove the case K = R. Define
p(x) :=a|z| Vxe X.

We can verify that p(x) is sublinear (Prove this). Since fo(z) < |fo(x)| < p(z), by the Hahn-Banach
theorem for linear spaces, there is a linear functional f : X — R such that f|x, = fo and f(z) < afz|.

Since
—f(z) = f(—z) < of —z|| = |z,

we also have f(x) > —a||z| for all z € X. Therefore, |f(z)| < afz| for all x € X. O

60



