Lecture 13: Fréchet Derivative. Hahn-Banach Theorems and Applications.

Recall: An operator $F: X \rightarrow Y$ (between normed linear spaces X and Y) is Fréchet differentiable at $a \in X$ if and only if there exists a bounded linear operator $D F(a): X \rightarrow Y$ such that

$$
\lim _{h \rightarrow 0} \frac{\|F(a+h)-F(a)-D F(a) h\|}{\|h\|}=0 .
$$

If F is Fréchet differentiable, we can write

$$
F(a+h)=F(a)+D F(a) h+R(a, h), \quad \text { where } \quad \lim _{h \rightarrow 0} \frac{\|R(a, h)\|}{\|h\|}=0
$$

or

$$
F(a+h)=F(a)+D F(a) h+\|h\| r(h), \quad \text { where } \quad \lim _{h \rightarrow 0} r(h)=0,
$$

or

$$
F(a+h)=F(a)+D F(a) h+o(\|h\|) .
$$

Remark 2. 1. The Fréchet derivative is a generalization of derivative in \mathbb{R}. That is, if $F: \mathbb{R} \rightarrow \mathbb{R}$ is Fréchet differentiable at $a \in \mathbb{R}$, then F is differentiable at a and

$$
D F(a)(x)=F^{\prime}(a) x, \quad \forall x \in \mathbb{R} .
$$

Proof. Since F is Fréchet differentiable at $a \in \mathbb{R}$, there exists $D F(a) \in B(\mathbb{R}, \mathbb{R})$ such that

$$
0=\lim _{h \rightarrow 0} \frac{|F(a+h)-F(a)-D F(a)(h)|}{|h|}
$$

Since

$$
B(\mathbb{R}, \mathbb{R})=\{L: \mathbb{R} \rightarrow \mathbb{R} \text { s.t. } L(x)=c x, \forall x \in \mathbb{R}, \text { for some } c \in \mathbb{R}\}
$$

there exists some constant $c \in \mathbb{R}$ such that

$$
D F(a)(x)=c x, \forall x \in \mathbb{R} .
$$

So

$$
0=\lim _{h \rightarrow 0} \frac{|F(a+h)-F(a)-D F(a)(h)|}{|h|}=\lim _{h \rightarrow 0} \frac{|F(a+h)-F(a)-c h|}{|h|}=\lim _{h \rightarrow 0}\left|\frac{F(a+h)-F(a)}{h}-c\right| .
$$

So

$$
c=\lim _{h \rightarrow 0} \frac{F(a+h)-F(a)}{h},
$$

which implies F is differentiable at a and $c=F^{\prime}(a)$. Therefore,

$$
D F(a): \mathbb{R} \rightarrow \mathbb{R}, \quad D F(a)(x)=F^{\prime}(a) x, \quad \forall x \in \mathbb{R} .
$$

2. To compute the Fréchet-derivative of an operator $F: X \rightarrow Y$ at $a \in X$, where X and Y are normed linear spaces, we write $F(a+h)-F(a)$ as a summation of a linear operator (w.r.t. h) and a remainder (which is nonlinear in h)

$$
F(a+h)-F(a)=L h+R(a, h),
$$

and prove that L is bounded and

$$
\lim _{h \rightarrow 0} \frac{\|R(a, h)\|}{\|h\|}=0 .
$$

The linear operator $L \in B(X, Y)$ is the $D F(a)$ in the definition.
3. If $F: X \rightarrow Y$ is Fréchet-derivative at $a \in X$, where X and Y are normed linear spaces, then for any $x \in X$, we have

$$
D F(a)(x)=\lim _{t \rightarrow 0} \frac{F(a+t x)-F(a)}{t}, \quad t \in \mathbb{R} . \quad \text { (Prove this) }
$$

Note: This formula is used to compute the Fréchet-derivative of an operator F. After this, we need to check that $D F(a)$ is a bounded linear operator and $R(a, h)=F(a+h)-F(a)-D F(a) h$ satisfies

$$
\lim _{h \rightarrow 0} \frac{\|R(a, h)\|}{\|h\|}=0 .
$$

Here is an example of an operator $F: X \rightarrow Y$, where $\lim _{t \rightarrow 0} \frac{F(a+t x)-F(a)}{t}, t \in \mathbb{R}$ exists for an $a \in X$ but F is not Fréchet differentiable at a. Consider $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by

$$
F\left(x_{1}, x_{2}\right)=\left\{\begin{array}{lll}
0 & \text { if } & x_{2}=0 \\
\frac{x_{1}^{3}}{x_{2}} & \text { if } & x_{2} \neq 0
\end{array}\right.
$$

The operator F is not continuous at $(0,0)$, for example, $F\left(t, t^{3}\right) \rightarrow 1$ as $t \rightarrow 0$, but $F(0,0)=0$. On the other hand,

$$
\frac{F(t x)-F(0,0)}{t}= \begin{cases}0 & \text { if } x_{2}=0 \\ t \frac{x_{1}^{3}}{x_{2}} & \text { if } x_{2} \neq 0\end{cases}
$$

So $\lim _{t \rightarrow 0} \frac{F(t x)-F(0,0)}{t}=0$ for any $\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$.
Example 2. 1. Let $X=C_{0}^{1}[0,1]$ be the space of all C^{1} functions on $[0,1]$ which vanish at the endpoints with norm

$$
\|u\|=\left[\int_{0}^{1}\left[u^{2}+\left(u^{\prime}\right)^{2}\right] d x\right]^{1 / 2}
$$

Consider an operator $K: X \rightarrow \mathbb{R}$ defined by

$$
K(u)=\int_{0}^{1}\left[u^{3}+\left(u^{\prime}\right)^{2}\right] d x .
$$

Compute the Fréchet derivative of K.
2. Let $X=C[a, b]$ with $\|\cdot\|_{\infty}$ norm. Let $T: X \rightarrow X$ be the nonlinear integral operator defined by

$$
(T u)(x)=u(x) \int_{a}^{b} K(x, s) u(s) d s
$$

where $K(x, s)$ is continuous on $[a, b] \times[a, b]$. Compute the Fréchet derivative of K.
Proof. Exercise and See Dr. Vrscay's notes (attached in the next pages).
Proposition 19. Let X and Y be normed linear spaces over \mathbb{K} (where $\mathbb{K}=\mathbb{R}$ or $\mathbb{K}=\mathbb{C}$). If F is Fréchet differentiable at $a \in X$ then F is continuous at a.

Proof. Since F is Fréchet differentiable at $a \in X$, there exists $\delta>0$ such that when $\|h\|<\delta$, we have

$$
\|F(a+h)-F(a)-D F(a)(h)\| \leq\|h\| .
$$

So for all $h \in X$ with $\|h\|<\delta$, we have
$\|F(a+h)-F(a)\| \leq\|F(a+h)-F(a)-D F(a)(h)\|+\|D F(a)(h)\| \leq\|h\|+\|D F(a)\|\|h\|=(1+\|D F(a)\|)\|h\|$ As $h \rightarrow 0,(1+\|D F(a)\|)\|h\| \rightarrow 0$. Therefore,

$$
\lim _{h \rightarrow 0}\|F(a+h)-F(a)\|=0,
$$

which means $\lim _{h \rightarrow 0} F(a+h)=F(a)$. Therefore F is continuous at a.
Proposition 20. Let X, Y and Z be normed linear spaces over \mathbb{K}.

1. Let $f, g: X \rightarrow Y$ be Fréchet derivative at $a \in X$. Then for any $\alpha, \beta \in \mathbb{K}$, we have

$$
D(\alpha f+\beta g)(a)=\alpha D f(a)+\beta D g(a)
$$

2. (Chain Rule) Suppose $F: X \rightarrow Y$ is Fréchet differentiable at $a \in X, G: Y \rightarrow Z$ is Fréchet differentiable at $F(a)$. Then $G \circ F: X \rightarrow Z$ is Fréchet differentiable at a and

$$
D(G \circ F)(a)=D G(F(a)) D F(a) .
$$

Proof. Set $b=F(a)$. By the assumptions,

$$
\begin{aligned}
F(a+h)-F(a) & =D F(a) h+\|h\| r_{1}(h) \\
G(b+k)-G(b) & =D G(b) k+\|k\| r_{2}(k)
\end{aligned}
$$

where $\left\|r_{1}(h)\right\| \rightarrow 0$ as $h \rightarrow 0$ and $\left\|r_{2}(k)\right\| \rightarrow 0$ as $k \rightarrow 0$, for $h \in X, k \in Y$.
For $h \in X$, denote $k=D F(a) h+\|h\| r_{1}(h)$. Now we compute

$$
\begin{aligned}
G(F(a+h))-G(F(a)) & =G\left(b+D F(a) h+\|h\| r_{1}(h)\right)-G(b) \\
& =D G(b)\left(D F(a) h+\|h\| r_{1}(h)\right)+\|k\| r_{2}(k) \\
& =D G(b) D F(a) h+\|h\| D G(b)\left(r_{1}(h)\right)+\|k\| r_{2}(k)
\end{aligned}
$$

The operator $D G(F(a)) D F(a): X \rightarrow Z$ is a bounded linear operator since it is the composition of two bounded linear operators $D F(a)$ and $D G(F(a))$. Observe that

$$
\begin{equation*}
\|k\| \leq\left(\|D F(a)\|+\left\|r_{1}(h)\right\|\right)\|h\|, \quad \forall h \in X \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\|r(h)\|}{\|h\|} \leq\|D G(b)\|\left\|r_{1}(h)\right\|+\frac{\|k\|}{\|h\|}\left\|r_{2}(k)\right\| \leq\|D G(b)\|\left\|r_{1}(h)\right\|+\left(\|D F(a)\|+\left\|r_{1}(h)\right\|\right)\left\|r_{2}(k)\right\| \tag{13}
\end{equation*}
$$

Now letting $h \rightarrow 0$. Since $\left\|r_{1}(h)\right\| \rightarrow 0$ as $h \rightarrow 0$, from (12), we have $k \rightarrow 0$ and hence $r_{2}(k) \rightarrow 0$. Therefore, from (13), we have

$$
\frac{\|r(h)\|}{\|h\|} \rightarrow 0 \quad \text { as } \quad h \rightarrow 0
$$

2.14 Hahn-Banach Theorems. Generalized Mean Value Theorem. Separation Theorems.

Definition 1. Let X be a vector space over \mathbb{K}. We say that $p: X \rightarrow[0, \infty)$ is sublinear if it satisfies

$$
\begin{aligned}
& p(\lambda x)=\lambda p(x) \quad \text { (positive homogeneous), } \\
& p(x+y) \leq p(x)+p(y) \quad(\text { triangle inequality })
\end{aligned}
$$

for any $x, y \in X$ and real $\lambda>0$.
Lemma 6 (Zorn's Lemma). Suppose S is a nonempty, partially ordered set (reflexivity, antisymmetry, and transitivity). If every totally ordered subset C (that is, every two elements in C are comparable) of S has an upper bound; that is, there is some $u \in S$ such that

$$
x \leq u \quad \text { for all } \quad x \in C .
$$

Then S has at least one maximal element; that is there is some $m \in S$ such that for any $x \in S$,

$$
\text { if } m \leq x \quad \text { then } \quad m=x \text {. }
$$

Theorem 1 (The Hahn-Banach Theorem for linear spaces). Let X_{0} be a subspace of a real vector space X and p be a sublinear on X. If $f_{0}: X_{0} \rightarrow \mathbb{R}$ is a linear functional such that

$$
f_{0}(x) \leq p(x), \quad \forall x \in X_{0}
$$

then there is a linear functional $f: X \rightarrow \mathbb{R}$ such that

$$
\left.\left.f\right|_{X_{0}}=f_{0}, \quad \text { (i.e., } f \text { is a linear extension of } f_{0}\right)
$$

and

$$
f(x) \leq p(x), \quad \forall x \in X
$$

Sketch of the proof. Step 1: We first prove the statement in the special case when $X=X_{0}+\operatorname{span}(v)$ with a fixed $v \notin X_{0}$. Set

$$
f\left(\lambda v+x_{0}\right)=f_{0}\left(x_{0}\right)+\lambda c, \quad \forall x_{0} \in X_{0}, \forall \lambda \in \mathbb{R},
$$

where $c \in \mathbb{R}$ is a fixed number satisfying

$$
\sup _{u \in X_{0}}\left(f_{0}(u)-p(u-v)\right) \leq c \leq \inf _{w \in X_{0}}\left(p(w+v)-f_{0}(w)\right) .
$$

We first show that such c exists. Indeed, for all $u, w \in X_{0}$, we have

$$
f_{0}(u)+f_{0}(w)=f_{0}(u+w) \leq p(u+w) \leq p(u-v)+p(w+v) .
$$

Therefore,

$$
f_{0}(u)-p(u-v) \leq p(w+v)-f_{0}(w), \quad \forall u, w \in X_{0}
$$

which means such c exists. Next, we will verify that the defined f is a linear functional on $X,\left.f\right|_{X_{0}}=f_{0}$ (leave it as an exercise).
Finally, we will prove that $f\left(\lambda v+x_{0}\right) \leq p\left(\lambda v+x_{0}\right)$ for all $x_{0} \in X_{0}$ and for all $\lambda \in \mathbb{R}$. The statement is true for $\lambda=0$. For $\lambda>0$, from the requirement on c,

$$
c \leq p(w+v)-f_{0}(w), \quad \forall w \in X_{0}
$$

we have

$$
\begin{gathered}
c \leq p\left(\lambda^{-1} x_{0}+v\right)-f_{0}\left(\lambda^{-1} x_{0}\right)=\lambda^{-1}\left(p\left(x_{0}+\lambda v\right)-f_{0}\left(x_{0}\right)\right), \\
f\left(x_{0}+\lambda v\right)=\lambda c+f_{0}\left(x_{0}\right) \leq p\left(x_{0}+\lambda v\right) .
\end{gathered}
$$

Similarly, for $\lambda<0$, from the requirement on c,

$$
c \geq f_{0}(u)-p(u-v), \quad \forall u \in X_{0},
$$

we have

$$
\begin{gathered}
c \geq f_{0}\left(-\lambda^{-1} x_{0}\right)-p\left(-\lambda^{-1} x_{0}-v\right)=-\lambda^{-1}\left(f_{0}\left(x_{0}\right)-p\left(x_{0}+\lambda v\right)\right), \\
f\left(x_{0}+\lambda v\right)=\lambda c+f_{0}\left(x_{0}\right) \leq p\left(x_{0}+\lambda v\right) .
\end{gathered}
$$

Step 2: Let \mathcal{S} be the set of all linear extensions g of f_{0} defined on a vector space $X_{g} \subset X$ and satisfying the property $g(x) \leq p(x)$ for all $x \in X_{g}$. Since $f_{0} \in \mathcal{S}, \mathcal{S}$ is not empty. Define a partial ordering on S by $g \leq h$ means that h is a linear extension of g. For any totally ordered subset $\mathcal{C} \subset \mathcal{S}$, let

$$
Y=\bigcup_{g \in \mathcal{C}} X_{g}, \quad g_{\mathcal{C}}(x)=g(x) \quad \text { for any } g \in \mathcal{C} \text { such that } x \in X_{g} .
$$

Since \mathcal{C} is totally ordered, $g_{\mathcal{C}}$ is well-defined. Moreover $g_{\mathcal{C}} \in \mathcal{S}$ and is an upper bound for \mathcal{C}. Applying the Zorn's lemma, \mathcal{S} has at least one maximal element f. By definition, f is a linear extension of f_{0} and $f(x) \leq p(x)$ for all $x \in X_{f}$. It remains to show that $X_{f}=X$. If not, there exists $v \in X \backslash X_{f}$. Applying results from Step 1, we can construct a linear extension of f to \tilde{f} on $X_{f}+\mathbb{R} v$. This contradicts the maximality of f. Therefore, $X_{f}=X$, which completes the proof.

Theorem 2 (The Hahn-Banach Theorem for normed spaces). Let X_{0} be a subspace of a normed space X over \mathbb{K}, where $\mathbb{K}=\mathbb{R}$ or $\mathbb{K}=\mathbb{C}$. Let $f_{0}: X_{0} \rightarrow \mathbb{R}$ be a linear functional such that

$$
\left|f_{0}(x)\right| \leq \alpha\|x\| \quad \forall x \in X_{0} \text { and fixed } \alpha \geq 0
$$

Then there is a linear functional $f: X \rightarrow \mathbb{R}$ such that

$$
\left.\left.f\right|_{X_{0}}=f_{0}, \quad \text { (i.e., } f \text { is a linear extension of } f_{0}\right)
$$

and

$$
|f(x)| \leq \alpha\|x\| \quad \forall x \in X .
$$

Sketch of the proof. We prove the case $\mathbb{K}=\mathbb{R}$. Define

$$
p(x):=\alpha\|x\| \quad \forall x \in X
$$

We can verify that $p(x)$ is sublinear (Prove this). Since $f_{0}(x) \leq\left|f_{0}(x)\right| \leq p(x)$, by the Hahn-Banach theorem for linear spaces, there is a linear functional $f: X \rightarrow \mathbb{R}$ such that $\left.f\right|_{X_{0}}=f_{0}$ and $f(x) \leq \alpha\|x\|$. Since

$$
-f(x)=f(-x) \leq \alpha\|-x\|=\alpha\|x\|,
$$

we also have $f(x) \geq-\alpha\|x\|$ for all $x \in X$. Therefore, $|f(x)| \leq \alpha\|x\|$ for all $x \in X$.

