Lecture 13: Fréchet Derivative. Hahn-Banach Theorems and Applications.

Recall: An operator $F : X \to Y$ (between normed linear spaces X and Y) is Fréchet differentiable at $a \in X$ if and only if there exists a bounded linear operator $DF(a) : X \to Y$ such that

$$\lim_{h \to 0} \frac{\|F(a+h) - F(a) - DF(a)h\|}{\|h\|} = 0.$$

If F is Fréchet differentiable, we can write

$$F(a+h)=F(a)+DF(a)h+R(a,h),\quad \text{where}\quad \lim_{h\to 0}\frac{\|R(a,h)\|}{\|h\|}=0,$$

or

$$F(a+h)=F(a)+DF(a)h+\|h\|r(h),\quad\text{where}\quad \lim_{h\to 0}r(h)=0,$$

or

$$F(a+h) = F(a) + DF(a)h + o(||h||).$$

Remark 2. 1. The Fréchet derivative is a generalization of derivative in \mathbb{R} . That is, if $F : \mathbb{R} \to \mathbb{R}$ is Fréchet differentiable at $a \in \mathbb{R}$, then F is differentiable at a and

$$DF(a)(x) = F'(a)x, \quad \forall x \in \mathbb{R}.$$

Proof. Since F is Fréchet differentiable at $a \in \mathbb{R}$, there exists $DF(a) \in B(\mathbb{R}, \mathbb{R})$ such that

$$0 = \lim_{h \to 0} \frac{|F(a+h) - F(a) - DF(a)(h)|}{|h|}$$

Since

$$B(\mathbb{R},\mathbb{R}) = \{L : \mathbb{R} \to \mathbb{R} \text{ s.t. } L(x) = cx, \forall x \in \mathbb{R}, \text{ for some } c \in \mathbb{R}\},\$$

there exists some constant $c \in \mathbb{R}$ such that

$$DF(a)(x) = cx, \forall x \in \mathbb{R}.$$

 So

$$0 = \lim_{h \to 0} \frac{|F(a+h) - F(a) - DF(a)(h)|}{|h|} = \lim_{h \to 0} \frac{|F(a+h) - F(a) - ch|}{|h|} = \lim_{h \to 0} \left| \frac{F(a+h) - F(a)}{h} - c \right|.$$

So

$$c = \lim_{h \to 0} \frac{F(a+h) - F(a)}{h},$$

which implies F is differentiable at a and c = F'(a). Therefore,

$$DF(a): \mathbb{R} \to \mathbb{R}, \quad DF(a)(x) = F'(a)x, \quad \forall x \in \mathbb{R}.$$

 To compute the Fréchet-derivative of an operator F : X → Y at a ∈ X, where X and Y are normed linear spaces, we write F(a+h)-F(a) as a summation of a linear operator (w.r.t. h) and a remainder (which is nonlinear in h)

$$F(a+h) - F(a) = Lh + R(a,h),$$

and prove that L is bounded and

$$\lim_{h \to 0} \frac{\|R(a,h)\|}{\|h\|} = 0$$

The linear operator $L \in B(X, Y)$ is the DF(a) in the definition.

3. If $F: X \to Y$ is Fréchet-derivative at $a \in X$, where X and Y are normed linear spaces, then for any $x \in X$, we have

$$DF(a)(x) = \lim_{t \to 0} \frac{F(a+tx) - F(a)}{t}, \quad t \in \mathbb{R}.$$
 (Prove this)

Note: This formula is used to compute the Fréchet-derivative of an operator F. After this, we need to check that DF(a) is a bounded linear operator and R(a,h) = F(a+h) - F(a) - DF(a)h satisfies

$$\lim_{h \to 0} \frac{\|R(a,h)\|}{\|h\|} = 0.$$

Here is an example of an operator $F: X \to Y$, where $\lim_{t \to 0} \frac{F(a+tx) - F(a)}{t}$, $t \in \mathbb{R}$ exists for an $a \in X$ but F is not Fréchet differentiable at a. Consider $F: \mathbb{R}^2 \to \mathbb{R}$ given by

$$F(x_1, x_2) = \begin{cases} 0 & \text{if } x_2 = 0, \\ \frac{x_1^3}{x_2} & \text{if } x_2 \neq 0. \end{cases}$$

The operator F is not continuous at (0,0), for example, $F(t,t^3) \rightarrow 1$ as $t \rightarrow 0$, but F(0,0) = 0. On the other hand,

$$\frac{F(tx) - F(0,0)}{t} = \begin{cases} 0 & \text{if } x_2 = 0, \\ t\frac{x_1^3}{x_2} & \text{if } x_2 \neq 0. \end{cases}$$

So $\lim_{t \to 0} \frac{F(tx) - F(0,0)}{t} = 0$ for any $(x_1, x_2) \in \mathbb{R}^2$.

Example 2. 1. Let $X = C_0^1[0,1]$ be the space of all C^1 functions on [0,1] which vanish at the endpoints with norm

$$||u|| = \left[\int_{0}^{1} \left[u^{2} + (u')^{2}\right] dx\right]^{1/2}$$

Consider an operator $K: X \to \mathbb{R}$ defined by

$$K(u) = \int_{0}^{1} \left[u^{3} + (u')^{2} \right] dx.$$

Compute the Fréchet derivative of K.

2. Let X = C[a, b] with $\|\cdot\|_{\infty}$ norm. Let $T: X \to X$ be the nonlinear integral operator defined by

$$(Tu)(x) = u(x) \int_a^b K(x,s)u(s) \, ds$$

where K(x,s) is continuous on $[a,b] \times [a,b]$. Compute the Fréchet derivative of K.

Proof. Exercise and See Dr. Vrscay's notes (attached in the next pages).

Proposition 19. Let X and Y be normed linear spaces over \mathbb{K} (where $\mathbb{K} = \mathbb{R}$ or $\mathbb{K} = \mathbb{C}$). If F is Fréchet differentiable at $a \in X$ then F is continuous at a.

Proof. Since F is Fréchet differentiable at $a \in X$, there exists $\delta > 0$ such that when $||h|| < \delta$, we have

$$||F(a+h) - F(a) - DF(a)(h)|| \le ||h||.$$

So for all $h \in X$ with $||h|| < \delta$, we have

$$\|F(a+h) - F(a)\| \le \|F(a+h) - F(a) - DF(a)(h)\| + \|DF(a)(h)\| \le \|h\| + \|DF(a)\|\|h\| = (1 + \|DF(a)\|)\|h\|$$

As $h \to 0$, $(1 + \|DF(a)\|)\|h\| \to 0$. Therefore,

$$\lim_{h \to 0} \|F(a+h) - F(a)\| = 0,$$

which means $\lim_{h\to 0} F(a+h) = F(a)$. Therefore F is continuous at a.

Proposition 20. Let X, Y and Z be normed linear spaces over \mathbb{K} .

1. Let $f, g: X \to Y$ be Fréchet derivative at $a \in X$. Then for any $\alpha, \beta \in \mathbb{K}$, we have

$$D(\alpha f + \beta g)(a) = \alpha Df(a) + \beta Dg(a).$$

2. (Chain Rule) Suppose $F : X \to Y$ is Fréchet differentiable at $a \in X$, $G : Y \to Z$ is Fréchet differentiable at F(a). Then $G \circ F : X \to Z$ is Fréchet differentiable at a and

$$D(G \circ F)(a) = DG(F(a)) DF(a).$$

Proof. Set b = F(a). By the assumptions,

$$F(a+h) - F(a) = DF(a)h + ||h||r_1(h)$$

$$G(b+k) - G(b) = DG(b)k + ||k||r_2(k),$$

where $||r_1(h)|| \to 0$ as $h \to 0$ and $||r_2(k)|| \to 0$ as $k \to 0$, for $h \in X, k \in Y$. For $h \in X$, denote $k = DF(a)h + ||h||r_1(h)$. Now we compute

$$G(F(a+h)) - G(F(a)) = G(b + DF(a)h + ||h||r_1(h)) - G(b)$$

= $DG(b)(DF(a)h + ||h||r_1(h)) + ||k||r_2(k)$
= $DG(b)DF(a)h + ||h||DG(b)(r_1(h)) + ||k||r_2(k)$

The operator $DG(F(a))DF(a) : X \to Z$ is a bounded linear operator since it is the composition of two bounded linear operators DF(a) and DG(F(a)). Observe that

$$||k|| \le \left(||DF(a)|| + ||r_1(h)|| \right) ||h||, \quad \forall h \in X,$$
(12)

and

$$\frac{|r(h)||}{\|h\|} \le \|DG(b)\|\|r_1(h)\| + \frac{\|k\|}{\|h\|}\|r_2(k)\| \le \|DG(b)\|\|r_1(h)\| + \left(\|DF(a)\| + \|r_1(h)\|\right)\|r_2(k)\|$$
(13)

Now letting $h \to 0$. Since $||r_1(h)|| \to 0$ as $h \to 0$, from (12), we have $k \to 0$ and hence $r_2(k) \to 0$. Therefore, from (13), we have

$$\frac{\|r(h)\|}{\|h\|} \to 0 \quad \text{as} \quad h \to 0.$$

2.14 Hahn-Banach Theorems. Generalized Mean Value Theorem. Separation Theorems.

Definition 1. Let X be a vector space over \mathbb{K} . We say that $p: X \to [0, \infty)$ is sublinear if it satisfies

$$\begin{split} p(\lambda x) &= \lambda p(x) \quad (\textit{positive homogeneous}), \\ p(x+y) &\leq p(x) + p(y) \quad (\textit{triangle inequality}), \end{split}$$

for any $x, y \in X$ and real $\lambda > 0$.

Lemma 6 (Zorn's Lemma). Suppose S is a nonempty, partially ordered set (reflexivity, antisymmetry, and transitivity). If every totally ordered subset C (that is, every two elements in C are comparable) of S has an upper bound; that is, there is some $u \in S$ such that

$$x \leq u$$
 for all $x \in C$.

Then S has at least one maximal element; that is there is some $m \in S$ such that for any $x \in S$,

if
$$m \leq x$$
 then $m = x$.

Theorem 1 (The Hahn-Banach Theorem for linear spaces). Let X_0 be a subspace of a real vector space X and p be a sublinear on X. If $f_0: X_0 \to \mathbb{R}$ is a linear functional such that

$$f_0(x) \le p(x), \quad \forall x \in X_0,$$

then there is a linear functional $f: X \to \mathbb{R}$ such that

$$f|_{X_0} = f_0$$
, (i.e., f is a linear extension of f_0)

and

$$f(x) \le p(x), \quad \forall x \in X.$$

Sketch of the proof. Step 1: We first prove the statement in the special case when $X = X_0 + \operatorname{span}(v)$ with a fixed $v \notin X_0$. Set

$$f(\lambda v + x_0) = f_0(x_0) + \lambda c, \quad \forall x_0 \in X_0, \ \forall \lambda \in \mathbb{R},$$

where $c \in \mathbb{R}$ is a fixed number satisfying

$$\sup_{u \in X_0} (f_0(u) - p(u - v)) \le c \le \inf_{w \in X_0} (p(w + v) - f_0(w)).$$

We first show that such c exists. Indeed, for all $u, w \in X_0$, we have

$$f_0(u) + f_0(w) = f_0(u+w) \le p(u+w) \le p(u-v) + p(w+v).$$

Therefore,

$$f_0(u) - p(u - v) \le p(w + v) - f_0(w), \quad \forall u, w \in X_0,$$

which means such c exists. Next, we will verify that the defined f is a linear functional on X, $f|_{X_0} = f_0$ (leave it as an exercise).

Finally, we will prove that $f(\lambda v + x_0) \leq p(\lambda v + x_0)$ for all $x_0 \in X_0$ and for all $\lambda \in \mathbb{R}$. The statement is true for $\lambda = 0$. For $\lambda > 0$, from the requirement on c,

$$c \le p(w+v) - f_0(w), \quad \forall w \in X_0$$

we have

$$c \le p(\lambda^{-1}x_0 + v) - f_0(\lambda^{-1}x_0) = \lambda^{-1} \Big(p(x_0 + \lambda v) - f_0(x_0) \Big),$$
$$f(x_0 + \lambda v) = \lambda c + f_0(x_0) \le p(x_0 + \lambda v).$$

Similarly, for $\lambda < 0$, from the requirement on c,

$$c \ge f_0(u) - p(u-v), \quad \forall u \in X_0,$$

we have

$$c \ge f_0(-\lambda^{-1}x_0) - p(-\lambda^{-1}x_0 - v) = -\lambda^{-1}(f_0(x_0) - p(x_0 + \lambda v)),$$
$$f(x_0 + \lambda v) = \lambda c + f_0(x_0) \le p(x_0 + \lambda v).$$

Step 2: Let S be the set of all linear extensions g of f_0 defined on a vector space $X_g \subset X$ and satisfying the property $g(x) \leq p(x)$ for all $x \in X_g$. Since $f_0 \in S$, S is not empty. Define a partial ordering on S by $g \leq h$ means that h is a linear extension of g. For any totally ordered subset $C \subset S$, let

$$Y = \bigcup_{g \in \mathcal{C}} X_g, \quad g_{\mathcal{C}}(x) = g(x) \quad \text{for any } g \in \mathcal{C} \text{ such that } x \in X_g.$$

Since C is totally ordered, g_C is well-defined. Moreover $g_C \in S$ and is an upper bound for C. Applying the Zorn's lemma, S has at least one maximal element f. By definition, f is a linear extension of f_0 and $f(x) \leq p(x)$ for all $x \in X_f$. It remains to show that $X_f = X$. If not, there exists $v \in X \setminus X_f$. Applying results from Step 1, we can construct a linear extension of f to \tilde{f} on $X_f + \mathbb{R}v$. This contradicts the maximality of f. Therefore, $X_f = X$, which completes the proof. **Theorem 2** (The Hahn-Banach Theorem for normed spaces). Let X_0 be a subspace of a normed space X over \mathbb{K} , where $\mathbb{K} = \mathbb{R}$ or $\mathbb{K} = \mathbb{C}$. Let $f_0 : X_0 \to \mathbb{R}$ be a linear functional such that

$$|f_0(x)| \le \alpha ||x|| \quad \forall x \in X_0 \text{ and fixed } \alpha \ge 0.$$

Then there is a linear functional $f: X \to \mathbb{R}$ such that

$$f|_{X_0} = f_0$$
, (i.e., f is a linear extension of f_0)

and

$$|f(x)| \le \alpha ||x|| \quad \forall x \in X.$$

Sketch of the proof. We prove the case $\mathbb{K} = \mathbb{R}$. Define

$$p(x) := \alpha \|x\| \quad \forall x \in X.$$

We can verify that p(x) is sublinear (Prove this). Since $f_0(x) \leq |f_0(x)| \leq p(x)$, by the Hahn-Banach theorem for linear spaces, there is a linear functional $f: X \to \mathbb{R}$ such that $f|_{X_0} = f_0$ and $f(x) \leq \alpha ||x||$. Since

$$-f(x) = f(-x) \le \alpha || - x || = \alpha ||x||,$$

we also have $f(x) \ge -\alpha \|x\|$ for all $x \in X$. Therefore, $|f(x)| \le \alpha \|x\|$ for all $x \in X$.