Lecture 14: Applications of Hahn-Banach Theorems. Hilbert Spaces.

Below is another version of the Hahn-Banach theorem for normed spaces.

Theorem 3 (The Hahn-Banach Theorem for normed spaces). Let Xg be a subspace of a normed space X
over K, where K=R or K= C. Let fo € X;. Then there is a linear functional f : X — R such that

flxo = fo and ||f]| = foll-

Proof. In class (use previous theorem with |fo(zo)| < ||folll|zo] for all xzg € Xy. Prove that the linear

functional extension also preserves the norm, that is, || f|| = || fol|- O

Proposition 21 (Supporting Functional). Let X be a normed space. For every a € X, a # 0, there exists
f € X* such that

£ =1, f(a) = [la].-

The function f is called the supporting functional of a.

Proof. Define fo : Xo = span(a) — R, fo(ta) = t||al|. Obviously, fo is a linear functional on X, and

|fo(uw)] = ||u]| for all w € Xy. Applying the Hahn-Banach theorem, there exists f € X* such that
fla) = fo(a) = [la]| and |f(u)] < [|lu]| for all w € X. So ||f|| < 1.
On the other hand, since |f(a)| = ||a||, || || = sup “‘C'(‘”H)' > |J|c|(“|)| — 1. Therefore, ||f| = 1. O
x#0 [T a
Example 1. For (R", || -||2),a € R",a # 0, a supporting functional is f(x) = ﬁ.
a
Proof. Exercise: Verify that f € (R™)*, || f|| =1 and f(a) = ||a]|. O

Recall: For a linear functional f € X* where X is a normed linear space, the operator norm of f is

11 = sup X — g 151

20 1zl <1

In general, we may not be able to replace the supremum above by the maximal. That is, there exist a
normed linear space Xand a linear functional f € X* such that |f(z)| < ||f||||z| for all z € X, x # 0. Find
an example. Note that the normed linear space in this example should be infinite dimensional. (Explain!)

However, every vector z € X does attain its norm on some functional f € X*.

Corollary 3. Let X be a normed linear space over K. Then for all a € X, we have

aj| = max a)|.
lall = _maxx _ lo(a)

Proof. If a =0, g(a) =0 for all g € X*. The statement holds.
If a # 0, from Proposition 21, there exists f € X* such that ||f|| =1 and f(a) = ||a||. So

sup |g(a)| = f(a) = |a].-
geX llgll<1
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On the other hand, we have

sup |g(a)l < sup lgllllall < o]

geEX™ llgll<1 geX* llgll<1
Therefore,
fla) =llall=" sup g(a)l.
geX™ [lglI<1

Note that f € X* and ||f|| = 1. That means

aj| = max a)l.
la = _max _ lo(a)

The following theorem is useful to prove certain operator is a contraction mapping.

Theorem 4 (Generalized Mean Value Theorem). Let F : X — Y be an operator between normed linear
spaces X andY anda,b € X, a #b. Suppose F is continuous on the closed segment {a+t(b—a),0 <t < 1}
and Fréchet differentiable on the open segment {a +t(b—a),0 <t < 1}. Then

1F(®) = Fla)ll < sup [DF(a+t(b—a))[lb—all

Sketch of the proof. Let g € Y* such that g(F(b) — F(a)) = ||F(b) — F(a)|| and |/g|| = 1. Consider
$:[0,1] - R
O(t) = g(Fla+tb—a)), t €]0,1].

Since g € Y*, Dg(y) = g for all y € Y. By the chain rule, the Fréchet derivative of ® at ¢t € (0,1) is
DO(t):[0,1] » X 25 v P4 R
DA(t) = Dg(F(a+t(b—a))) [DF(a+tb - a))(b—a)| = g[DF(a+t(b—a)) (b—a)|.
By the mean value theorem,
O(1) — ®(0) = Dd(ty) for some to € (0,1).
g(F(b) —g(F(a)) =g [DF(a +to(b—a)) (b—a)
g(F(b) — F(a)) < |lgll|| DF(a +to(b — ) [0~ al
[F(b) = F(a)|| < Sup, |[DF(a+t(b—a))|[b—all.
O

Theorem 5 (Separating a point from a convex set). Let K be an open convez subset of a normed space

X and consider a point xo & K. Then there exists a linear functional f € X*, f # 0 such that

f(x) < f(zo) VxeK.
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Proof. Assignment 3. O

Theorem 6 (Separating Hyperplane Theorem). Let A and B be disjoint, nonempty, convex subsets of a

normed linear space X.

1. If A is open, then there exists a functional f € X* and ¢ € R such that f(a) < ¢ < f(b) for all
a€ A, beB.

2. If both A and B are open, then there exists a functional f € X* and ¢ € R such that f(a) < ¢ < f(b)
forallae A, be B.

3. If A is compact and B is closed, then there is f € X* and ¢ € R such that f(a) < ¢ < f(b) for all
ac€ A, beB.

Proof. Assignment 3. O

3 Inner Product Spaces

Hilbert spaces are an important and simplest class of Banach spaces, where the concept of orthogonality
is defined. With a view to applications, the most important Hilbert spaces are the real and complex
Lebesgue spaces Lo(G) and the related Sobolev spaces Wi (@) and Wi (@), where G ¢ KV and K = R or
K=C.

3.1 Inner Product Spaces

In this chapter, the scalar field K is R or C.

Definition 1 (Inner Product). Let X be a vector space over K. An inner product on X is a function
()X x X = K that satisfies

i <x+y7z>:<x7z>+<y?z>? vw?y?’zeX

o (az,y) =a(z,y), Vz,yeX, ackK

o (x,2) >0, (xr,z)=0 iff =0

Then (X, (,)) is an inner product space.

Note: If (X, (,)) is an inner product space, then
(x,ay) =alx,y), Ve,ye X, ackK
(ax + Py, z) = oz, z) + By, z), Va,y,z€ X,Va,5 € K.
(r,ay + Bz) = alx,y) + Blz,2), Vz,y,2z€ X,Va, B € K.
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Definition 2 (Orthogonality). Let (X, (,)) be an inner product space and x,y € X. Then x is called
orthogonal to y if (x,y) = 0.

Theorem 1 (Cauchy-Schwarz Inequality). Let X be an inner product space. Then every two vectors

z,y € X satisfy
(@, y)| < (2, 2) 2y, y) 2.

Sketch of the proof. The inequality is true if = 0 or y = 0. For fixed x # 0 and y # 0, we have
(x —ay,x—ay) >0 VaeckK

(z,2) —a(z,y) —a({y,z) —a(y,y)) >0
(y, )
(y, )

Corollary 4. Let X be an inner product space. Then X is a normed space with the norm defined as

Choose a = . Then simplifying the left hand side, we get the result. O

]| == (2, z)"/>.
Proof. Exercise. O

Definition 3. Let (X, (,)) be an inner product space. X is called a Hilbert space if X is a Banach space

with the normed induced by the inner product.

Theorem 2. Let (X, || -||) be a normed space. The norm || - || is generated by an inner product if and only

if the parallelogram equality holds:
o +yl2 + e —yl2 =2 (Jal + Jy)?), Vauye X
Sketch of the proof. (=) Suppose ||z|| = \/{x,z) for some inner product (,) on X. Then verify that
lo+yl? + llz = yl* = 2 (ll21* + ly]®) ,  Vay e X
(<) Suppose the norm || - || satisfies the parallelogram equality. For x,y € X, define
(w.9) = 5 (Je + I~ o — o).
We will verify that (,) is an inner product on X (prove this). O

Remark 3. Not all normed spaces are inner product spaces. For example, the space £P with p # 2 and
the space (Cla,bl, | - |loo)-
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