Lecture 14: Applications of Hahn-Banach Theorems. Hilbert Spaces.

Below is another version of the Hahn-Banach theorem for normed spaces.
Theorem 3 (The Hahn-Banach Theorem for normed spaces). Let X_{0} be a subspace of a normed space X over \mathbb{K}, where $\mathbb{K}=\mathbb{R}$ or $\mathbb{K}=\mathbb{C}$. Let $f_{0} \in X_{0}^{*}$. Then there is a linear functional $f: X \rightarrow \mathbb{R}$ such that

$$
\left.f\right|_{X_{0}}=f_{0} \quad \text { and } \quad\|f\|=\left\|f_{0}\right\| .
$$

Proof. In class (use previous theorem with $\left|f_{0}\left(x_{0}\right)\right| \leq\left\|f_{0}\right\|\left\|x_{0}\right\|$ for all $x_{0} \in X_{0}$. Prove that the linear functional extension also preserves the norm, that is, $\|f\|=\left\|f_{0}\right\|$.

Proposition 21 (Supporting Functional). Let X be a normed space. For every $a \in X, a \neq 0$, there exists $f \in X^{*}$ such that

$$
\|f\|=1, f(a)=\|a\| .
$$

The function f is called the supporting functional of a.
Proof. Define $f_{0}: X_{0}=\operatorname{span}(a) \rightarrow \mathbb{R}, f_{0}(t a)=t\|a\|$. Obviously, f_{0} is a linear functional on X_{0} and $\left|f_{0}(u)\right|=\|u\|$ for all $u \in X_{0}$. Applying the Hahn-Banach theorem, there exists $f \in X^{*}$ such that $f(a)=f_{0}(a)=\|a\|$ and $|f(u)| \leq\|u\|$ for all $u \in X$. So $\|f\| \leq 1$.
On the other hand, since $|f(a)|=\|a\|,\|f\|=\sup _{x \neq 0} \frac{|f(x)|}{\|x\|} \geq \frac{|f(a)|}{\|a\|}=1$. Therefore, $\|f\|=1$.
Example 1. For $\left(\mathbb{R}^{n},\|\cdot\|_{2}\right), a \in \mathbb{R}^{n}, a \neq 0$, a supporting functional is $f(x)=\frac{x \cdot a}{\|a\|}$.
Proof. Exercise: Verify that $f \in\left(\mathbb{R}^{n}\right)^{*},\|f\|=1$ and $f(a)=\|a\|$.
Recall: For a linear functional $f \in X^{*}$, where X is a normed linear space, the operator norm of f is

$$
\|f\|=\sup _{x \neq 0} \frac{|f(x)|}{\|x\|}=\sup _{\|z\| \leq 1}|f(z)| .
$$

In general, we may not be able to replace the supremum above by the maximal. That is, there exist a normed linear space X and a linear functional $f \in X^{*}$ such that $|f(x)|<\|f\|\|x\|$ for all $x \in X, x \neq 0$. Find an example. Note that the normed linear space in this example should be infinite dimensional. (Explain!) However, every vector $x \in X$ does attain its norm on some functional $f \in X^{*}$.

Corollary 3. Let X be a normed linear space over \mathbb{K}. Then for all $a \in X$, we have

$$
\|a\|=\max _{g \in X^{*},\|g\| \leq 1}|g(a)| .
$$

Proof. If $a=0, g(a)=0$ for all $g \in X^{*}$. The statement holds.
If $a \neq 0$, from Proposition 21, there exists $f \in X^{*}$ such that $\|f\|=1$ and $f(a)=\|a\|$. So

$$
\sup _{g \in X^{*},\|g\| \leq 1}|g(a)| \geq f(a)=\|a\| .
$$

On the other hand, we have

$$
\sup _{g \in X^{*},\|g\| \leq 1}|g(a)| \leq \sup _{g \in X^{*},\|g\| \leq 1}\|g\|\|a\| \leq\|a\|
$$

Therefore,

$$
f(a)=\|a\|=\sup _{g \in X^{*},\|g\| \leq 1}|g(a)|
$$

Note that $f \in X^{*}$ and $\|f\|=1$. That means

$$
\|a\|=\max _{g \in X^{*},\|g\| \leq 1}|g(a)|
$$

The following theorem is useful to prove certain operator is a contraction mapping.
Theorem 4 (Generalized Mean Value Theorem). Let $F: X \rightarrow Y$ be an operator between normed linear spaces X and Y and $a, b \in X, a \neq b$. Suppose F is continuous on the closed segment $\{a+t(b-a), 0 \leq t \leq 1\}$ and Fréchet differentiable on the open segment $\{a+t(b-a), 0<t<1\}$. Then

$$
\|F(b)-F(a)\| \leq \sup _{0<t<1}\|D F(a+t(b-a))\|\|b-a\|
$$

Sketch of the proof. Let $g \in Y^{*}$ such that $g(F(b)-F(a))=\|F(b)-F(a)\|$ and $\|g\|=1$. Consider $\Phi:[0,1] \rightarrow \mathbb{R}$

$$
\Phi(t)=g(F(a+t(b-a)), t \in[0,1]
$$

Since $g \in Y^{*}, D g(y)=g$ for all $y \in Y$. By the chain rule, the Fréchet derivative of Φ at $t \in(0,1)$ is

$$
\begin{gathered}
D \Phi(t):[0,1] \rightarrow X \xrightarrow{D F} Y \xrightarrow{D g} \mathbb{R} \\
D \Phi(t)=D g(F(a+t(b-a)))[D F(a+t(b-a))(b-a)]=g[D F(a+t(b-a))(b-a)] .
\end{gathered}
$$

By the mean value theorem,

$$
\begin{aligned}
\Phi(1)-\Phi(0) & =D \Phi\left(t_{0}\right) \quad \text { for some } t_{0} \in(0,1) \\
g(F(b))-g(F(a)) & =g\left[D F\left(a+t_{0}(b-a)\right)(b-a)\right. \\
g(F(b)-F(a)) & \leq\|g\|\left\|D F\left(a+t_{0}(b-a)\right)\right\|\|b-a\| \\
\|F(b)-F(a)\| & \leq \sup _{0<t<1}\|D F(a+t(b-a))\|\|b-a\| .
\end{aligned}
$$

Theorem 5 (Separating a point from a convex set). Let K be an open convex subset of a normed space X and consider a point $x_{0} \notin K$. Then there exists a linear functional $f \in X^{*}, f \neq 0$ such that

$$
f(x) \leq f\left(x_{0}\right) \quad \forall x \in K
$$

Proof. Assignment 3.
Theorem 6 (Separating Hyperplane Theorem). Let A and B be disjoint, nonempty, convex subsets of a normed linear space X.

1. If A is open, then there exists a functional $f \in X^{*}$ and $c \in \mathbb{R}$ such that $f(a) \leq c \leq f(b)$ for all $a \in A, b \in B$.
2. If both A and B are open, then there exists a functional $f \in X^{*}$ and $c \in \mathbb{R}$ such that $f(a)<c<f(b)$ for all $a \in A, b \in B$.
3. If A is compact and B is closed, then there is $f \in X^{*}$ and $c \in \mathbb{R}$ such that $f(a)<c<f(b)$ for all $a \in A, b \in B$.

Proof. Assignment 3.

3 Inner Product Spaces

Hilbert spaces are an important and simplest class of Banach spaces, where the concept of orthogonality is defined. With a view to applications, the most important Hilbert spaces are the real and complex Lebesgue spaces $L_{2}(G)$ and the related Sobolev spaces $W_{2}^{1}(G)$ and $\dot{W}_{2}^{1}(G)$, where $G \subset \mathbb{K}^{N}$ and $\mathbb{K}=\mathbb{R}$ or $\mathbb{K}=\mathbb{C}$.

3.1 Inner Product Spaces

In this chapter, the scalar field \mathbb{K} is \mathbb{R} or \mathbb{C}.
Definition 1 (Inner Product). Let X be a vector space over \mathbb{K}. An inner product on X is a function $\langle\rangle , X \times X \rightarrow \mathbb{K}$ that satisfies

- $\langle x+y, z\rangle=\langle x, z\rangle+\langle y, z\rangle, \quad \forall x, y, z \in X$
- $\langle\alpha x, y\rangle=\alpha\langle x, y\rangle, \quad \forall x, y \in X, \quad \alpha \in \mathbb{K}$
- $\langle x, y\rangle=\overline{\langle y, x\rangle}, \quad \forall x, y \in X$
- $\langle x, x\rangle \geq 0, \quad\langle x, x\rangle=0 \quad$ iff $\quad x=0$

Then $(X,\langle\rangle$,$) is an inner product space.$

Note: If $(X,\langle\rangle$,$) is an inner product space, then$

$$
\begin{gathered}
\langle x, \alpha y\rangle=\bar{\alpha}\langle x, y\rangle, \quad \forall x, y \in X, \quad \alpha \in \mathbb{K} \\
\langle\alpha x+\beta y, z\rangle=\alpha\langle x, z\rangle+\beta\langle y, z\rangle, \quad \forall x, y, z \in X, \forall \alpha, \beta \in \mathbb{K} . \\
\langle x, \alpha y+\beta z\rangle=\bar{\alpha}\langle x, y\rangle+\bar{\beta}\langle x, z\rangle, \quad \forall x, y, z \in X, \forall \alpha, \beta \in \mathbb{K} .
\end{gathered}
$$

Definition 2 (Orthogonality). Let $(X,\langle\rangle$,$) be an inner product space and x, y \in X$. Then x is called orthogonal to y if $\langle x, y\rangle=0$.

Theorem 1 (Cauchy-Schwarz Inequality). Let X be an inner product space. Then every two vectors x, $y \in X$ satisfy

$$
|\langle x, y\rangle| \leq\langle x, x\rangle^{1 / 2}\langle y, y\rangle^{1 / 2} .
$$

Sketch of the proof. The inequality is true if $x=0$ or $y=0$. For fixed $x \neq 0$ and $y \neq 0$, we have

$$
\begin{gathered}
\langle x-\alpha y, x-\alpha y\rangle \geq 0 \quad \forall \alpha \in \mathbb{K} \\
\langle x, x\rangle-\bar{\alpha}\langle x, y\rangle-\alpha(\langle y, x\rangle-\bar{\alpha}\langle y, y\rangle) \geq 0
\end{gathered}
$$

Choose $\bar{\alpha}=\frac{\langle y, x\rangle}{\langle y, y\rangle}$. Then simplifying the left hand side, we get the result.
Corollary 4. Let X be an inner product space. Then X is a normed space with the norm defined as

$$
\|x\|:=\langle x, x\rangle^{1 / 2} .
$$

Proof. Exercise.
Definition 3. Let $(X,\langle\rangle$,$) be an inner product space. X$ is called a Hilbert space if X is a Banach space with the normed induced by the inner product.

Theorem 2. Let $(X,\|\cdot\|)$ be a normed space. The norm $\|\cdot\|$ is generated by an inner product if and only if the parallelogram equality holds:

$$
\left.\|x+y\|^{2}+\|x-y\|^{2}=2\left(\|x\|^{2}+\|y\|^{2}\right)\right), \quad \forall x, y \in X
$$

Sketch of the proof. (\Rightarrow) Suppose $\|x\|=\sqrt{\langle x, x\rangle}$ for some inner product \langle,$\rangle on X$. Then verify that

$$
\left.\|x+y\|^{2}+\|x-y\|^{2}=2\left(\|x\|^{2}+\|y\|^{2}\right)\right), \quad \forall x, y \in X
$$

(\Leftarrow) Suppose the norm $\|\cdot\|$ satisfies the parallelogram equality. For $x, y \in X$, define

$$
\langle x, y\rangle:=\frac{1}{4}\left(\|x+y\|^{2}-\|x-y\|^{2}\right) .
$$

We will verify that \langle,$\rangle is an inner product on X$ (prove this).
Remark 3. Not all normed spaces are inner product spaces. For example, the space ℓ^{p} with $p \neq 2$ and the space $\left(C[a, b],\|\cdot\|_{\infty}\right)$.

