Lecture 14: Applications of Hahn-Banach Theorems. Hilbert Spaces.

Below is another version of the Hahn-Banach theorem for normed spaces.

Theorem 3 (The Hahn-Banach Theorem for normed spaces). Let X_0 be a subspace of a normed space X over \mathbb{K} , where $\mathbb{K} = \mathbb{R}$ or $\mathbb{K} = \mathbb{C}$. Let $f_0 \in X_0^*$. Then there is a linear functional $f: X \to \mathbb{R}$ such that

$$f|_{X_0} = f_0$$
 and $||f|| = ||f_0||$.

Proof. In class (use previous theorem with $|f_0(x_0)| \le ||f_0|| ||x_0||$ for all $x_0 \in X_0$. Prove that the linear functional extension also preserves the norm, that is, $||f|| = ||f_0||$.

Proposition 21 (Supporting Functional). Let X be a normed space. For every $a \in X$, $a \neq 0$, there exists $f \in X^*$ such that

$$||f|| = 1, f(a) = ||a||.$$

The function f is called the supporting functional of a.

Proof. Define $f_0: X_0 = span(a) \to \mathbb{R}$, $f_0(ta) = t||a||$. Obviously, f_0 is a linear functional on X_0 and $|f_0(u)| = ||u||$ for all $u \in X_0$. Applying the Hahn-Banach theorem, there exists $f \in X^*$ such that $f(a) = f_0(a) = ||a||$ and $|f(u)| \le ||u||$ for all $u \in X$. So $||f|| \le 1$.

On the other hand, since
$$|f(a)| = ||a||$$
, $||f|| = \sup_{x \neq 0} \frac{|f(x)|}{||x||} \ge \frac{|f(a)|}{||a||} = 1$. Therefore, $||f|| = 1$.

Example 1. For $(\mathbb{R}^n, \|\cdot\|_2)$, $a \in \mathbb{R}^n$, $a \neq 0$, a supporting functional is $f(x) = \frac{x \cdot a}{\|a\|}$.

Proof. Exercise: Verify that $f \in (\mathbb{R}^n)^*$, ||f|| = 1 and f(a) = ||a||.

Recall: For a linear functional $f \in X^*$, where X is a normed linear space, the operator norm of f is

$$||f|| = \sup_{x \neq 0} \frac{|f(x)|}{||x||} = \sup_{||z|| < 1} |f(z)|.$$

In general, we may not be able to replace the supremum above by the maximal. That is, there exist a normed linear space X and a linear functional $f \in X^*$ such that |f(x)| < ||f|||x|| for all $x \in X$, $x \neq 0$. Find an example. Note that the normed linear space in this example should be infinite dimensional. (Explain!) However, every vector $x \in X$ does attain its norm on some functional $f \in X^*$.

Corollary 3. Let X be a normed linear space over \mathbb{K} . Then for all $a \in X$, we have

$$||a|| = \max_{g \in X^*, ||g|| \le 1} |g(a)|.$$

Proof. If a = 0, g(a) = 0 for all $g \in X^*$. The statement holds.

If $a \neq 0$, from Proposition 21, there exists $f \in X^*$ such that ||f|| = 1 and f(a) = ||a||. So

$$\sup_{g \in X^*, \|g\| \le 1} |g(a)| \ge f(a) = \|a\|.$$

On the other hand, we have

$$\sup_{g \in X^*, \|g\| \le 1} |g(a)| \le \sup_{g \in X^*, \|g\| \le 1} \|g\| \|a\| \le \|a\|.$$

Therefore,

$$f(a) = ||a|| = \sup_{g \in X^*, ||g|| \le 1} |g(a)|.$$

Note that $f \in X^*$ and ||f|| = 1. That means

$$||a|| = \max_{g \in X^*, ||g|| \le 1} |g(a)|.$$

The following theorem is useful to prove certain operator is a contraction mapping.

Theorem 4 (Generalized Mean Value Theorem). Let $F: X \to Y$ be an operator between normed linear spaces X and Y and $a, b \in X$, $a \neq b$. Suppose F is continuous on the closed segment $\{a+t(b-a), 0 \leq t \leq 1\}$ and Fréchet differentiable on the open segment $\{a+t(b-a), 0 < t < 1\}$. Then

$$||F(b) - F(a)|| \le \sup_{0 < t < 1} ||DF(a + t(b - a))|| ||b - a||.$$

Sketch of the proof. Let $g \in Y^*$ such that g(F(b) - F(a)) = ||F(b) - F(a)|| and ||g|| = 1. Consider $\Phi: [0,1] \to \mathbb{R}$

$$\Phi(t) = q(F(a + t(b - a)), t \in [0, 1].$$

Since $g \in Y^*$, Dg(y) = g for all $y \in Y$. By the chain rule, the Fréchet derivative of Φ at $t \in (0,1)$ is

$$D\Phi(t): [0,1] \to X \xrightarrow{DF} Y \xrightarrow{Dg} \mathbb{R}$$

$$D\Phi(t) = Dg(F(a+t(b-a))) \Big[DF(a+t(b-a))(b-a)\Big] = g\Big[DF(a+t(b-a))\,(b-a)\Big].$$

By the mean value theorem,

$$\Phi(1) - \Phi(0) = D\Phi(t_0) \quad \text{for some} \quad t_0 \in (0, 1).$$

$$g(F(b)) - g(F(a)) = g \Big[DF(a + t_0(b - a)) (b - a) \\$$

$$g(F(b) - F(a)) \le ||g|| \Big\| DF(a + t_0(b - a)) \Big\| ||b - a||$$

$$||F(b) - F(a)|| \le \sup_{0 < t < 1} ||DF(a + t(b - a))|| ||b - a||.$$

Theorem 5 (Separating a point from a convex set). Let K be an open convex subset of a normed space X and consider a point $x_0 \notin K$. Then there exists a linear functional $f \in X^*$, $f \neq 0$ such that

$$f(x) \le f(x_0) \quad \forall x \in K.$$

Proof. Assignment 3.

Theorem 6 (Separating Hyperplane Theorem). Let A and B be disjoint, nonempty, convex subsets of a normed linear space X.

- 1. If A is open, then there exists a functional $f \in X^*$ and $c \in \mathbb{R}$ such that $f(a) \leq c \leq f(b)$ for all $a \in A, b \in B$.
- 2. If both A and B are open, then there exists a functional $f \in X^*$ and $c \in \mathbb{R}$ such that f(a) < c < f(b) for all $a \in A$, $b \in B$.
- 3. If A is compact and B is closed, then there is $f \in X^*$ and $c \in \mathbb{R}$ such that f(a) < c < f(b) for all $a \in A$, $b \in B$.

Proof. Assignment 3. \Box

3 Inner Product Spaces

Hilbert spaces are an important and simplest class of Banach spaces, where the concept of orthogonality is defined. With a view to applications, the most important Hilbert spaces are the real and complex Lebesgue spaces $L_2(G)$ and the related Sobolev spaces $W_2^1(G)$ and $\mathring{W}_2^1(G)$, where $G \subset \mathbb{K}^N$ and $\mathbb{K} = \mathbb{R}$ or $\mathbb{K} = \mathbb{C}$.

3.1 Inner Product Spaces

In this chapter, the scalar field \mathbb{K} is \mathbb{R} or \mathbb{C} .

Definition 1 (Inner Product). Let X be a vector space over \mathbb{K} . An inner product on X is a function $\langle , \rangle X \times X \to \mathbb{K}$ that satisfies

- $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$, $\forall x, y, z \in X$
- $\langle \alpha x, y \rangle = \alpha \langle x, y \rangle$, $\forall x, y \in X$, $\alpha \in \mathbb{K}$
- $\bullet \ \langle x,y\rangle = \overline{\langle y,x\rangle}, \quad \forall \, x,y \in X$
- $\langle x, x \rangle \ge 0$, $\langle x, x \rangle = 0$ iff x = 0

Then (X, \langle, \rangle) is an inner product space.

Note: If (X, \langle, \rangle) is an inner product space, then

$$\langle x,\alpha y\rangle = \overline{\alpha}\langle x,y\rangle, \quad \forall \, x,y \in X, \quad \alpha \in \mathbb{K}$$

$$\langle \alpha x + \beta y,z\rangle = \alpha \langle x,z\rangle + \beta \langle y,z\rangle, \quad \forall \, x,y,z \in X, \forall \alpha,\beta \in \mathbb{K}.$$

$$\langle x,\alpha y + \beta z\rangle = \overline{\alpha}\langle x,y\rangle + \overline{\beta}\langle x,z\rangle, \quad \forall \, x,y,z \in X, \forall \alpha,\beta \in \mathbb{K}.$$

Definition 2 (Orthogonality). Let (X, \langle, \rangle) be an inner product space and $x, y \in X$. Then x is called orthogonal to y if $\langle x, y \rangle = 0$.

Theorem 1 (Cauchy-Schwarz Inequality). Let X be an inner product space. Then every two vectors $x, y \in X$ satisfy

$$|\langle x, y \rangle| \le \langle x, x \rangle^{1/2} \langle y, y \rangle^{1/2}.$$

Sketch of the proof. The inequality is true if x = 0 or y = 0. For fixed $x \neq 0$ and $y \neq 0$, we have

$$\langle x - \alpha y, x - \alpha y \rangle \ge 0 \quad \forall \alpha \in \mathbb{K}$$

$$\langle x, x \rangle - \overline{\alpha} \langle x, y \rangle - \alpha \left(\langle y, x \rangle - \overline{\alpha} \langle y, y \rangle \right) \ge 0$$

Choose $\overline{\alpha} = \frac{\langle y, x \rangle}{\langle y, y \rangle}$. Then simplifying the left hand side, we get the result.

Corollary 4. Let X be an inner product space. Then X is a normed space with the norm defined as

$$||x|| := \langle x, x \rangle^{1/2}.$$

Proof. Exercise. \Box

Definition 3. Let (X, \langle, \rangle) be an inner product space. X is called a Hilbert space if X is a Banach space with the normed induced by the inner product.

Theorem 2. Let $(X, \|\cdot\|)$ be a normed space. The norm $\|\cdot\|$ is generated by an inner product if and only if the parallelogram equality holds:

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2), \quad \forall x, y \in X$$

Sketch of the proof. (\Rightarrow) Suppose $||x|| = \sqrt{\langle x, x \rangle}$ for some inner product \langle , \rangle on X. Then verify that

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2), \quad \forall x, y \in X$$

 (\Leftarrow) Suppose the norm $\|\cdot\|$ satisfies the parallelogram equality. For $x,y\in X$, define

$$\langle x, y \rangle := \frac{1}{4} (\|x + y\|^2 - \|x - y\|^2).$$

We will verify that \langle , \rangle is an inner product on X (prove this).

Remark 3. Not all normed spaces are inner product spaces. For example, the space ℓ^p with $p \neq 2$ and the space $(C[a,b], \|\cdot\|_{\infty})$.