Lecture 15 \& 16 : Examples of Hilbert Spaces. Projection Theorem. Riesz Representation Theorem. Adjoint Operators.

Example 1. 1. The space \mathbb{R}^{n} is a Hilbert space over \mathbb{R} with the standard inner product defined by

$$
\langle x, y\rangle:=\sum_{k=1}^{n} x_{k} y_{k} \quad \text { for } x, y \in \mathbb{R}^{n} .
$$

2. The space \mathbb{C}^{n} is a Hilbert space over \mathbb{C} with inner product defined by

$$
\langle x, y\rangle:=\sum_{k=1}^{n} x_{k} \overline{y_{k}} \quad \text { for } x, y \in \mathbb{C}^{n}
$$

3. The space $L_{2}[a, b]=\left\{f:[a, b] \rightarrow \mathbb{K} \quad\right.$ s.t $\left.\quad \int_{a}^{b}|f(t)|^{2} d t<\infty\right\}$ is a Hilbert space over \mathbb{K} with inner product defined by $\langle f, g\rangle:=\int_{a}^{b} f(t) \overline{g(t)} d t$.
4. The space $\ell_{2}=\left\{x=\left(x_{1}, x_{2}, \ldots\right)\right.$ s.t $\left.\sum_{j=1}^{\infty}\left|x_{j}\right|^{2}<\infty\right\}$ is a Hilbert space with inner product defined by

$$
\langle x, y\rangle:=\sum_{k=1}^{\infty} x_{k} \overline{\overline{y_{k}}} \quad \text { for } x=\left(x_{k}\right) \in \ell_{2}, y=\left(y_{k}\right) \in \ell_{2} .
$$

5. The space $\left(\ell^{p},\|\cdot\|_{p}\right)$ with $p \neq 2$ is not an inner product space.

Proof. We will show that the norm does not satisfy the parallelogram equality.
Take $x=(1,1,0,0, \cdots) \in \ell_{p}$ and $y=(1,-1,0,0, \cdots) \in \ell_{p}$. Then

$$
\|x\|=\|y\|=2^{1 / p},\|x+y\|=\|x-y\|=2
$$

So the parallelogram equality is not satisfied.
6. The space $\left(C[a, b],\|\cdot\|_{\infty}\right)$ is not an inner product space, hence not a Hilbert space.

Proof. Take $f(t)=1$ and $g(t)=\frac{t-a}{b-a}$. We have $\|f\|=\|g\|=1$ and $\|f+g\|=2,\|f-g\|=1$. So the parallelogram equality is not satisfied.

Proposition 22. If in an inner product space, $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$ then $\left\langle x_{n}, y_{n}\right\rangle \rightarrow\langle x, y\rangle$.
Proof. We have

$$
\begin{aligned}
& \left|\left\langle x_{n}, y_{n}\right\rangle-\langle x, y\rangle\right|=\left|\left\langle x_{n}, y_{n}\right\rangle-\left\langle x_{n}, y\right\rangle+\left\langle x_{n}, y\right\rangle-\langle x, y\rangle\right|=\left|\left\langle x_{n}, y_{n}-y\right\rangle+\left\langle x_{n}-x, y\right\rangle\right| \leq \\
& \leq\left|\left\langle x_{n}, y_{n}-y\right\rangle\right|+\left|\left\langle x_{n}-x, y\right\rangle\right| \leq\left\|x_{n}\right\|\left\|y_{n}-y\right\|+\left\|x_{n}-x\right\|\|y\|
\end{aligned}
$$

Let $n \rightarrow \infty$, we get

$$
0 \leq \lim _{n \rightarrow \infty}\left|\left\langle x_{n}, y_{n}\right\rangle-\langle x, y\rangle\right| \leq\|x\| 0+0\|y\|=0 .
$$

Hence, $\lim _{n \rightarrow \infty}\left|\left\langle x_{n}, y_{n}\right\rangle-\langle x, y\rangle\right|=0, \lim _{n \rightarrow \infty}\left\langle x_{n}, y_{n}\right\rangle=\langle x, y\rangle$, which completes the proof.

3.2 Orthogonal Projection

Definition 1. Let A be a subset of an inner product space X. The orthogonal complement of A is defined as

$$
A^{\perp}:=\{x \in X:\langle x, a\rangle=0 \quad \text { for all } a \in A\} .
$$

Proposition 23. Let A be a subset of an inner product space X. Then A^{\perp} is a closed linear subspace of X and $A \cap A^{\perp} \subset\{0\}$.

Proof. Exercise.
Theorem 1. Let Y be a closed linear subspace of the real or complex Hilbert space X and $x \in X$ be given. Then the following holds
(i) There exists a unique $y \in Y$ such that

$$
\|x-y\|=\min _{z \in Y}\|x-z\|
$$

(ii) The point y in part (i) is the unique vector in Y such that $x-y \in Y^{\perp}$.

The point y is called the orthogonal projection of x onto the subspace Y.
Proof. (i) Existence. Denote $d=\inf _{z \in Y}\|x-z\|$. By the definition of the infimum, there exists a sequence $\left\{y_{n}\right\} \subset Y$ such that $\left\|x-y_{n}\right\| \rightarrow d$ as $n \rightarrow \infty$. We will prove that $\left\{y_{n}\right\}$ is a Cauchy sequence. Using parallelogram law, we have

$$
\left\|y_{n}-y_{m}\right\|^{2}+4\left\|x-\frac{1}{2}\left(y_{n}+y_{m}\right)\right\|^{2}=2\left(\left\|x-y_{n}\right\|^{2}+\left\|x-y_{m}\right\|^{2}\right) \quad \text { for } n, m \geq 1 .
$$

Since Y is a linear subspace of X and $y_{n}, y_{m} \in Y$, we have $\frac{1}{2}\left(y_{n}+y_{m}\right) \in Y$. Therefore, $\left\|x-\frac{1}{2}\left(y_{n}+y_{m}\right)\right\| \geq$ d. Hence

$$
\left\|y_{n}-y_{m}\right\|^{2}=2\left(\left\|x-y_{n}\right\|^{2}+\left\|x-y_{m}\right\|^{2}\right)-4\left\|x-\frac{1}{2}\left(y_{n}+y_{m}\right)\right\|^{2} \leq 2\left(\left\|x-y_{n}\right\|^{2}+\left\|x-y_{m}\right\|^{2}\right)-4 d^{2} .
$$

Let $n, m \rightarrow \infty$, we have $\left\|x-y_{n}\right\| \rightarrow d,\left\|x-y_{m}\right\| \rightarrow d$ and

$$
0 \leq \lim _{n, m \rightarrow \infty}\left\|y_{n}-y_{m}\right\|^{2} \leq 4 d^{2}-4 d^{2}=0 .
$$

Therefore, $\lim _{n, m \rightarrow \infty}\left\|y_{n}-y_{m}\right\|=0$ and $\left\{y_{n}\right\}$ is a Cauchy sequence. Since X is a Hilbert space, there exists $y \in X$ such that $\lim _{n \rightarrow \infty} y_{n}=y$. Since $y_{n} \in Y$ and Y is closed, $y \in Y$. In conclusion, we have

$$
\|x-y\|=\min _{z \in Y}\|x-z\| .
$$

Uniqueness. Suppose there is also $\hat{y} \in Y$ such that

$$
\|x-\hat{y}\|=\min _{z \in Y}\|x-z\| .
$$

Applying the parallelogram law and using $\left\|x-\frac{1}{2}(y+\hat{y})\right\| \geq d$ (since $\frac{1}{2}(y+\hat{y}) \in Y$), we have

$$
\begin{gathered}
\|y-\hat{y}\|^{2}+4\left\|x-\frac{1}{2}(y+\hat{y})\right\|^{2}=2\left(\|x-y\|^{2}+\|x-\hat{y}\|^{2}\right)=4 d^{2} \\
0 \leq\|y-\hat{y}\|^{2}=4 d^{2}-4\left\|x-\frac{1}{2}(y+\hat{y})\right\|^{2} \leq 0 .
\end{gathered}
$$

So $\|y-\hat{y}\|^{2}=0, y=\hat{y}$.
(ii). Orthogonality. Clearly, $\langle x-y, 0\rangle=0$. Take $z \in Y, z \neq 0$. We will prove that $\langle x-y, z\rangle=0$. By the construction of y in part (i), we have

$$
\begin{gathered}
\|x-y\|^{2} \leq\|x-(y+\lambda z)\|^{2}=\|x-y\|^{2}+|\lambda|^{2}\|z\|^{2}-\lambda\langle z, x-y\rangle-\bar{\lambda}\langle x-y, z\rangle, \\
0 \leq|\lambda|^{2}\|z\|^{2}-\lambda \overline{\langle x-y, z\rangle}-\bar{\lambda}\langle x-y, z\rangle .
\end{gathered}
$$

Plugging $\lambda=\frac{\langle x-y, z\rangle}{\|z\|^{2}}$ into the above inequality, we conclude

$$
\frac{|\langle x-y, z\rangle|^{2}}{\|z\|^{2}} \leq 0
$$

which only happens when $\langle x-y, z\rangle=0$.
Uniqueness. Assume there is also $y^{*} \in Y$ such that $x-y^{*} \in Y^{\perp}$. Then $y-y^{*}=\left(x-y^{*}\right)-(x-y) \in Y^{\perp}$. On the other hand, $y-y^{*} \in Y$ since $y, y^{*} \in Y$. So $y-y^{*} \in Y \cap Y^{\perp} \subset\{0\}$. Therefore, $y-y^{*}=0$ and $y=y^{*}$.

Note in part (i), we only need the condition that if $y_{n}, y_{m} \in Y$ then its average is also in Y. Therefore, we have a more general result for part (i).

Theorem 2 (Hilbert's Projection Theorem). Given a closed convex set Y in a Hilbert space X and $x \in X$.
There exists a unique $y \in Y$ such that

$$
\|x-y\|=\min _{z \in Y}\|x-z\|
$$

Corollary 5 (Orthogonal Decomposition). Let Y be a closed linear subspace of the real or complex Hilbert space X. Then every vector $x \in X$ can be uniquely represented as

$$
x=y+w, \quad y \in Y, w \in Y^{\perp}
$$

The orthogonal decomposition is usually written as $X=Y \oplus Y^{\perp}$.
Note: We can prove that $X / Y \cong Y^{\perp}$ (linear isomorphism).
Definition 2 (Orthogonal Projection). Let Y be a closed linear subspace of the real or complex Hilbert space X. The map $P_{Y}: X \rightarrow X, P_{Y}(x)=y$, where $x=y+w$ and $(y, w) \in Y \times Y^{\perp}$, is called the orthogonal projection in X onto Y.

3.3 Riesz Representation Theorem

Lemma 7. Let $(X,\langle\rangle$,$) be an inner product space. Then$

1. $\langle x, 0\rangle=\langle 0, x\rangle=0, \quad \forall x \in X$
2. If there are $y_{1}, y_{2} \in X$ such that $\left\langle x, y_{1}\right\rangle=\left\langle x, y_{2}\right\rangle$ for all $x \in X$, then $y_{1}=y_{2}$.

Proof. Exercise.
Theorem 1 (Riesz Representation Theorem). Let X be a Hilbert space over \mathbb{K}, where $\mathbb{K}=\mathbb{R}$ or $\mathbb{K}=\mathbb{C}$.

1. For every $y \in X$, the functional $f: X \rightarrow \mathbb{K}, f(x)=\langle x, y\rangle$ is an element in X^{*} and $\|f\|=\|y\|$.
2. Conversely, for every $f \in X^{*}$, there exists a unique $y \in X$ such that $f(x)=\langle x, y\rangle$ for every $x \in X$. Moreover, $\|f\|=\|y\|$.

Proof. (1). If $y=0$, then the function $f(x)=\langle x, 0\rangle=0$, for every $x \in X$, is an element in X^{*} and $\|f\|=0=\|y\|$.
If $y \neq 0$, we first verify that $f(x)=\langle x, y\rangle$ is linear. (prove this).
Using Cauchy-Schwarz inequality, we have

$$
|f(x)|=|\langle x, y\rangle| \leq\|x\|\|y\| .
$$

So f is bounded and $\|f\| \leq\|y\|$.
On the other hand, $\|f\|=\sup _{x \neq 0} \frac{|f(x)|}{\|x\|} \geq \frac{|f(y)|}{\|y\|}=\|y\|$. Therefore, $\|f\|=\|y\|$.
(2). Existence. Consider $f \in X^{*}$. If $f=0$, we can take $y=0$ and $f(x)=\langle x, 0\rangle$ for every $x \in X$.

Consider $f \in X^{*}, f \neq 0$.

- Step 1: Prove that $\operatorname{dim}(X / \operatorname{ker} f)=1$.

Since $f \neq 0, \operatorname{Im} f \neq\{0\}$. Moreover, since $\operatorname{Im} f$ is a subspace of \mathbb{K} and $\operatorname{dim}_{\mathbb{K}} \mathbb{K}=1$, we have $\operatorname{dim} \operatorname{Im} f \leq$ 1. So $\operatorname{dim} \operatorname{Im} f=1$. From the linear isomorphism $X / \operatorname{ker} f \cong \operatorname{Im} f$, we have $\operatorname{dim}(X / \operatorname{ker} f)=1$.

- Step 2: Verify ker f is a closed subspace of X. Indeed, we know that ker f is a linear subspace of X. Also, since f is continuous and $\{0\} \subset \mathbb{K}$ is a closed set of \mathbb{K}, $\operatorname{ker} f=f^{-1}\{0\}$ is a closed set of X.
- Step 3: By the orthogonal decomposition theorem, we have $X=\operatorname{ker} f \oplus(\operatorname{ker} f)^{\perp}$ and $\operatorname{dim}(\operatorname{ker} f)^{\perp}=$ $\operatorname{dim}(X / \operatorname{ker} f)=1$. Without loss of generality (by scaling), we can assume that $(\operatorname{ker} f)=\operatorname{Span}\left(y_{0}\right)$ for some $y_{0} \in X$ and $f\left(y_{0}\right)=1$ (note that $y_{0} \notin \operatorname{ker} f$ so $f\left(y_{0}\right) \neq 0$, therefore we do the scaling).
- Step 4: Find y.

Take $x \in X$. Then

$$
f\left(x-f(x) y_{0}\right)=f(x)-f(x) f\left(y_{0}\right)=f(x)-f(x)=0 .
$$

Therefore, $w=x-f(x) y_{0} \in \operatorname{ker} f$. So $\left\langle w, y_{0}\right\rangle=0$. Now compute

$$
\begin{gathered}
\left\langle x, y_{0}\right\rangle=\left\langle w+f(x) y_{0}, y_{0}\right\rangle=\left\langle w, y_{0}\right\rangle+f(x)\left\langle y_{0}, y_{0}\right\rangle=f(x)\left\langle y_{0}, y_{0}\right\rangle, \\
f(x)=\left\langle x, \frac{y_{0}}{\left\|y_{0}\right\|^{2}}\right\rangle .
\end{gathered}
$$

Set $y=\frac{y_{0}}{\left\|y_{0}\right\|^{2}}$.
Uniqueness If there is alo \hat{y} such that $f(x)=\langle x, \hat{y}\rangle$ for all $x \in X$, then

$$
\langle x, y\rangle=\langle x, \hat{y}\rangle \quad \text { for every } \quad x \in X .
$$

By above lemma, $y=\hat{y}$.

3.4 Hilbert Adjoint Operator

Definition 1. Let $T: H \rightarrow H$ be a bounded linear operator, where H is a Hilbert space. Then the Hilbert adjoint operator T^{*} of T is an operator $T^{*}: H \rightarrow H$ such that

$$
\langle T x, y\rangle=\left\langle x, T^{*} y\right\rangle \quad \text { for all } x, y \in H
$$

Theorem 1. Let $T: H \rightarrow H$ be a bounded linear operator, where H is a Hilbert space. Then the Hilbert adjoint operator T^{*} of T exists and moreover, T^{*} is also a bounded linear operator and $\left\|T^{*}\right\|=\|T\|$.

Proof. - Step 1: Construct T^{*}. Let $y \in H$. Define $l: H \rightarrow \mathbb{K}, l(x):=\langle T x, y\rangle$. We can verify that $l \in H^{*}$ (check this). Moreover, using Cauchy-Schwarz inequality and the boundedness of T, we have

$$
|l(x)| \leq\|T x\|\|y\| \leq\|T\|\|x\|\|y\|=\mid T\| \| y\| \| x \| .
$$

Therefore l is bounded. By the Riesz representation theorem, there exists a unique $y^{*} \in H$ such that

$$
l(x)=\left\langle x, y^{*}\right\rangle \quad \text { for every } \quad x \in X
$$

and $\|l\|=\left\|y^{*}\right\|$. We define $T^{*}: H \rightarrow H, T^{*}(y)=y^{*}$. Then clearly,

$$
\langle T x, y\rangle=l(x)=\left\langle x, y^{*}\right\rangle=\left\langle x, T^{*} y\right\rangle .
$$

- Step 2: Verify T^{*} is linear. Indeed, let $\alpha, \beta \in \mathbb{K}$ and $y, z \in H$. We have

$$
\begin{aligned}
\left\langle x, T^{*}(\alpha y+\beta z)\right\rangle & =\langle T x, \alpha y+\beta z\rangle=\langle T x, \alpha y\rangle+\langle T x, \beta z\rangle=\bar{\alpha}\langle T x, y\rangle+\bar{\beta}\langle T x, z\rangle \\
& =\bar{\alpha}\left\langle x, T^{*} y\right\rangle+\bar{\beta}\left\langle x, T^{*} z\right\rangle=\left\langle x, \alpha T^{*} y+\beta T^{*} z\right\rangle .
\end{aligned}
$$

Since this equality holds for every $x \in H$, from Lemma 7 , we have

$$
T^{*}(\alpha y+\beta z)=\alpha T^{*} y+\beta T^{*} z \quad \text { for all } y, z \in H, \alpha, \beta \in \mathbb{K}
$$

- Verify T^{*} is bounded. Indeed, we have

$$
\left\|T^{*} y\right\|^{2}=\left\langle T^{*} y, T^{*} y\right\rangle=\left\langle T T^{*} y, y\right\rangle \leq\left\|T T^{*} y\right\|\|y\| \leq\|T\|\left\|T^{*} y\right\|\|y\|
$$

So $\left\|T^{*} y\right\| \leq\|T\|\|y\|$ for every $y \in Y$. Therefore T^{*} is bounded and $\left\|T^{*}\right\| \leq\|T\|$.

- Show that $\left\|T^{*}\right\|=\|T\|$.

Since $T^{*} \in B(H)$, we can apply steps $1,2,3$ and have $T^{* *} \in B(H)$ and $\left\|T^{* *}\right\| \leq\left\|T^{*}\right\|$.
On the other hand, for every $x, y \in H$, we get

$$
\langle T x, y\rangle=\left\langle x, T^{*} y\right\rangle=\overline{\left\langle T^{*} y, x\right\rangle}=\overline{\left\langle y, T^{* *} x\right\rangle}=\left\langle T^{* *} x, y\right\rangle,
$$

where the first and the third equalities come from the definition of T^{*} and $T^{* *}$. Since $\langle T x, y\rangle=$ $\left\langle T^{* *} x, y\right\rangle$ for all $y \in H$, we have $T x=T^{* *} x$ for all $x \in H$. Therefore, $T=T^{* *}$. In conclusion, we have

$$
\|T\| \geq\left\|T^{*}\right\| \geq\left\|T^{* *}\right\|=\|T\|,
$$

which implies $\|T\|=\left\|T^{*}\right\|$.

Lemma 8. Let X and Y be inner product spaces and $T \in B(X, Y)$. Then

1. $T=0$ if and only if $\langle T x, y\rangle=0$ for all $x \in X, y \in Y$.
2. If $T: X \rightarrow X$ and X is a complex inner product space and $\langle T x, x\rangle=0$ for all $x \in X$, then $T=0$.

Proof. Exercise.
Definition 2. A bounded linear operator $T: H \rightarrow H$ on a Hilbert space H is said to be

- self-adjoint (Hermitian) if $T^{*}=T$, i.e., $\langle T x, y\rangle=\langle x, T y\rangle$ for every $x, y \in H$.
- unitary if T is bijective and $T^{*}=T^{-1}$.
- normal if $T T^{*}=T^{*} T$.

Clearly, if T is self-adjoint or unitary, T is normal.
Proposition 24. Let $T: H \rightarrow H$ be a bounded linear operator on a Hilbert space H and T be onto. Then T is unitary if and only if $\langle T x, T y\rangle=\langle x, y\rangle$ for all $x, y \in H$.

Proof. In class.

