3.8 Sobolev Spaces

Definition 1. Let G be a nonempty open set in $\mathbb{R}^{n}, n \geq 1$. Then

1. $C^{k}(G)=\{u: G \rightarrow \mathbb{R} \quad$ s.t. u has continuous partial derivatives of orders $m=0,1, \ldots, k\}$.
2. $C^{\infty}(G)=\{u: G \rightarrow \mathbb{R} \quad$ s.t. u has continuous partial derivatives of orders $m=0,1, \ldots\}$.
3. $C_{0}^{\infty}(G)=\left\{u \in C^{\infty}(G)\right.$ s.t. u vanishes outside a compact subset C of G that depends on u, i.e., $u(x)=0$ for all $x \in G-C\}$.

Proposition 25. Let G be a nonempty open set in $\mathbb{R}^{n}, n \geq 1$. Then $L_{2}(G)=\overline{C^{\infty}(G)}=\overline{C_{0}^{\infty}(G)}$. That is, for every $u \in L_{2}(G)$, there exists $\left\{u_{n}\right\} \subset C_{0}^{\infty}(G)$ such that $u_{n} \rightarrow u$ in $L_{2}(G)$.

Sketch of the proof. Main idea: using mollifier, an important smoothing technique. The details can be found in Zeidler's book, pages 186-189.

- Consider

$$
\Phi(x)= \begin{cases}c e^{\frac{1}{|x|^{2}-1}} & \text { if }|x|<1 \\ 0 & \text { if }|x| \geq 1\end{cases}
$$

The constant c is chosen so that $\int_{\mathbb{R}^{n}} \Phi(x) d x=1$. Verify that $\Phi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$.

- For each $\varepsilon>0$, define

$$
\Phi_{\varepsilon}(x)=\frac{1}{\varepsilon^{n}} \Phi\left(\frac{x}{\varepsilon}\right), \quad G_{\varepsilon}=\{x \in G: \operatorname{dist}(x, \partial G)>\varepsilon\} .
$$

Verify that $\Phi_{\varepsilon} \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ and $\Phi_{\varepsilon}(x)=0$ if $|x| \geq \varepsilon$ for all $\varepsilon>0$.

- For each $u \in L_{2}(G)$, set $u=0$ outside G. Define

$$
u_{\varepsilon}(x):=\int_{\mathbb{R}^{n}} \Phi_{\varepsilon}(x-y) u(y) d y .
$$

Verify that $u_{\varepsilon} \in C^{\infty}\left(G_{\varepsilon}\right), u_{\varepsilon} \in L_{2}\left(\mathbb{R}^{n}\right)$ and $u_{\varepsilon} \rightarrow u$ in $L_{2}(G)$ as $\varepsilon \rightarrow 0$.

Lemma 9 (Variational Lemma). Let G be a nonempty open set in $\mathbb{R}^{n}, n \geq 1$ and $u \in L_{2}(G)$ such that

$$
\int_{G} u v d x=0 \quad \forall v \in C_{0}^{\infty}(G) .
$$

Then $u(x)=0$ for almost all $x \in G$. In addition, if $u \in C(G)$ then $u(x)=0$ for all $x \in G$.

Proof. Since $L_{2}(G)=\overline{C_{0}^{\infty}(G)}$, there exists $\left\{u_{n}\right\} \subset C_{0}^{\infty}(G)$ such that $u_{n} \rightarrow u$. Then

$$
\langle u, u\rangle=\left\langle u, \lim _{n \rightarrow \infty} u_{n}\right\rangle=\lim _{n \rightarrow \infty}\left\langle u, u_{n}\right\rangle=0
$$

So $u(x)=0$ for almost all $x \in G$.

Recall Integration by Parts

1. In $1 \mathrm{D}, u, v \in C^{1}[a, b]$, then $\int_{a}^{b} u^{\prime} v d x=\left.u v\right|_{a} ^{b}-\int_{a}^{b} u v^{\prime} d x$.

In addition, if $v(a)=v(b)=0$, then $\int_{a}^{b} u^{\prime} v d x=-\int_{a}^{b} u v^{\prime} d x$.
2. In \mathbb{R}^{n}, let G be an open set in \mathbb{R}^{n}. Then

$$
\int_{G} u D^{\alpha} \Phi d x=(-1)^{|\alpha|} \int_{G} D^{\alpha} u \Phi d x \quad \text { for } u \in C^{k}(G), \Phi \in C_{0}^{\infty}(G)
$$

where $\quad \alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ and $D^{\alpha} \Phi=\frac{\partial^{\alpha_{1}}}{\partial x_{1}^{\alpha_{1}}} \cdots \frac{\partial^{\alpha_{n}}}{\partial x_{n}^{\alpha_{n}}} \Phi$.
Below is the definition of weak derivatives from Zeidler's book.
Definition 2 (Weak Derivatives). Let G be a nonempty open set in $R^{n}, n \geq 1$. Let $u, w \in L_{2}(G)$ and suppose

$$
\int_{G} u \partial_{j} \Phi d x=-\int_{G} w \Phi d x, \quad \text { for all } \Phi \in C_{0}^{\infty}(G)
$$

Then w is called an $\alpha^{\text {th }}$-weak partial derivative of u, where $\alpha=(0, \ldots, 0,1,0, \ldots, 0)$ and $1^{\prime} s$ is at the $j^{\text {th }}$-position.

Here is the general definition of weak derivatives.
Definition 3. Let G be a nonempty open set in $\mathbb{R}^{n}, n \geq 1$. Let $u, w \in L_{\text {loc }}^{1}(G)$ where

$$
L_{l o c}^{1}(G)=\left\{v: G \rightarrow \mathbb{R} \quad \text { s.t. } \quad v \in L_{1}(V) \text { for each } V \subset \bar{V}_{\text {compact }} \subset U\right\} .
$$

Suppose

$$
\int_{G} u D^{\alpha} \Phi d x=(-1)^{|\alpha|} \int_{G} w \Phi d x \quad \text { for all } \Phi \in C_{0}^{\infty}(G)
$$

Then w is called an $\alpha^{\text {th }}$-weak partial derivative of u.
Lemma 10. A weak $\alpha^{\text {th }}$-partial derivative of u if exists, is uniquely defined up to a set of measure zero.
Proof. Assume $w, \widetilde{w} \in L_{l o c}^{1}(G)$ satisfying the formula. Then

$$
\int_{G}(w-\widetilde{w}) \Phi d x=0
$$

By the variational lemma, $w-\widetilde{w}=0$ a.e.

Example 1. Consider $u:(-1,1) \rightarrow \mathbb{R}, u(x):=|x|$ for all $x \in(-1,1)$. Then the following function is the weak derivative of u in the weak sense.

$$
w(x)= \begin{cases}-1 & \text { if }-1<x<0 \\ c & \text { if } x=0 \\ 1 & \text { if } 0<x<1\end{cases}
$$

where c is fixed, but otherwise arbitrary real number.
Proof. Let $\Phi \in C_{0}^{\infty}(-1,1)$. Then

$$
\int_{-1}^{1} u \Phi^{\prime} d x=\int_{-1}^{0} u \Phi^{\prime} d x+\int_{0}^{1} u \Phi^{\prime} d x=-\int_{-1}^{0} x \Phi^{\prime} d x+\int_{0}^{1} x \Phi^{\prime} d x .
$$

Using integration by parts, we have

$$
-\int_{-1}^{0} x \Phi^{\prime} d x+\int_{0}^{1} x \Phi^{\prime} d x=\int_{-1}^{0} \Phi d x-\int_{0}^{1} \Phi d x=-\int_{-1}^{1} w \Phi d x
$$

which implies w is the derivative of u in the weak sense.
Example 2. Consider

$$
u(x)= \begin{cases}x & \text { if } \quad 0<x \leq 1 \\ 2 & \text { if } 1<x<2\end{cases}
$$

The function u does not have a weak derivative.
Proof. Let $\Phi \in C_{0}^{\infty}(0,2)$. Suppose there exists $w \in L_{2}(0,2)$ such that

$$
\begin{aligned}
-\int_{0}^{2} w \Phi d x & =\int_{0}^{2} u \Phi^{\prime} d x \\
& =\int_{0}^{1} u \Phi^{\prime} d x+\int_{1}^{2} u \Phi^{\prime} d x \\
& =-\int_{0}^{1} \Phi d x-\Phi(1)
\end{aligned}
$$

where the third line is obtained by integration by parts on the right hand side. Therefore,

$$
\Phi(1)=\int_{0}^{2} w \Phi d x-\int_{0}^{1} \Phi d x \quad \forall \Phi \in C_{0}^{\infty}(0,2) .
$$

Consider $\left\{\Phi_{n}\right\} \subset C_{0}^{\infty}(0,2)$ such that $\Phi_{n}(1)=1,0 \leq \Phi_{n}(x) \leq 1$ for all $x \in(0,2)$ and $\Phi_{n}(x) \rightarrow 0$ as $n \rightarrow \infty$ for all $x \in(0,2) \backslash\{1\}$. Then

$$
\lim _{n \rightarrow \infty}\left(\int_{0}^{2} w \Phi_{n} d x-\int_{0}^{1} \Phi_{n} d x\right)=0
$$

but

$$
\lim _{n \rightarrow \infty} \Phi_{n}(1)=1,
$$

a contradiction. This completes the proof.
Definition 4 (Sobolev space $W_{p}^{k}(G)$). Let G be a nonempty open set in $\mathbb{R}^{n}, n \geq 1$. Denote

$$
W_{2}^{1}(G)=\left\{u \in L_{2}(G) \quad \text { s.t. } \quad \partial_{j} u \text { exists in the weak sense and } \partial_{j} u \in L_{2}(G) \quad \forall j=1, \ldots, n\right\} .
$$

On $W_{2}^{1}(G)$, define

$$
\begin{gathered}
\langle u, v\rangle_{1,2}:=\int_{G}\left(u v+\sum_{j=1}^{n} \partial_{j} u \partial_{j} v\right) d x \\
\|u\|_{1,2}:=\left(\int_{G} u^{2} d x+\sum_{j=1}^{n} \int_{G}\left(\partial_{j} u\right)^{2} d x\right)^{1 / 2} .
\end{gathered}
$$

In general, fix $1 \leq p \leq \infty$ and let k be a nonnegative integer. Define
$W_{p}^{k}(G)=\left\{u \in L_{l o c}^{1}(G)\right.$ s.t. $D^{\alpha} u$ exists in the weak sense for all $|\alpha| \leq k$ and $\left.D^{\alpha} u \in L_{p}(G) \quad \forall j=1, \ldots, n\right\}$. On $W_{p}^{k}(G)$, define

$$
\|u\|_{k, p}:=\left(\sum_{|\alpha| \leq k} \int_{G}\left|D^{\alpha} u\right|^{p} d x\right)^{1 / p}
$$

Denote $H^{k}(G)=W_{2}^{k}(G)$.
Theorem 1. For each $k=1,2 \ldots$ and $1 \leq p<\infty$, the Sobolev space $W_{p}^{k}(G)$ is a Banach space and $W_{2}^{k}(G)$ is a Hilbert space, provided we identify two functions whose values differ only on a set of measure zero.

Sketch of the proof. We will sketch the proof for $W_{2}^{1}(G)$.

- Verify that $W_{2}^{1}(G)$ is an inner product space.
- Verify that $W_{2}^{1}(G)$ is a Banach space.
- Let $\left\{u_{n}\right\} \subset W_{2}^{1}(G)$ be a Cauchy sequence. For every $\varepsilon>0$, there exists $N_{\varepsilon}>0$ such that

$$
\left\|u_{n}-u_{m}\right\|_{1,2} \leq \varepsilon \quad \forall n, m \geq N_{\varepsilon} .
$$

Since $\|v\|_{1,2} \geq\|v\|_{2}$ and $\|v\|_{1,2} \geq\left\|\partial_{j} v\right\|_{2}$ for all $v \in W_{2}^{1}(G)$, the sequences $\left\{\partial_{j} u\right\}_{n}$ for every $j=1, \ldots, n$, and $\left\{u_{n}\right\}_{n}$ are Cauchy sequences in $L_{2}(G)$. Since $L_{2}(G)$ is a Banach space, there exists $w_{j}, u \in L_{2}(G)$ such that

$$
\lim _{n \rightarrow \infty}\left\|\partial_{j} u_{n}-w_{j}\right\|_{2}=0, \quad \forall j=1, \ldots, n \quad \text { and } \quad \lim _{n \rightarrow \infty}\left\|u_{n}-u\right\|_{2}=0
$$

- Show that $w_{j}=\partial_{j} u$ in the weak sense. Indeed, from

$$
\int_{G} u_{n} \partial_{j} \Phi d x=-\int_{G} \partial_{j} u_{n} \Phi d x
$$

letting $n \rightarrow \infty$, we have

$$
\int_{G} u \partial_{j} \Phi d x=-\int_{G} w_{j} \Phi d x,
$$

which implies $w_{j}=\partial_{j} u$ in the weak sense.

- Finally, show that $\left\|u_{n}-u\right\|_{1,2} \rightarrow 0$ as $n \rightarrow \infty$.

Definition 5. Let G be a nonempty open subset in $\mathbb{R}^{n}, n \geq 1$. Let $W_{2}^{0,1}(G)$ be the closure of $C_{0}^{\infty}(G)$ in the Hilbert space $W_{2}^{1}(G)$. That is, $u \in W_{2}^{0,1}(G)$ if and only if there exists $\left\{u_{m}\right\} \subset C_{0}^{\infty}(G)$ such that $\left\|u_{m}-u\right\|_{1,2} \rightarrow 0$ as $m \rightarrow \infty$.

Proposition 26. The space $W_{2}^{o, 1}(G)$ is a real Hilbert space.
Proof. Hint: $C_{0}^{\infty}(G)$ is a linear subspace of the Hilbert space $W_{2}^{1}(G)$ and the closure of a linear subspace of a Hilbert space is also a Hilbert space.

Proposition 27. Let $G=(a, b) \subset \mathbb{R}$, where $-\infty<a<b<\infty$. If $u \in W_{2}^{\mathrm{o}, 1}(G)$, there exists a unique continuous function $v:[a, b] \rightarrow \mathbb{R}$ such that $u(x)=v(x)$ for almost all $x \in(a, b)$ and $v(a)=v(b)=0$. In addition

$$
\|v\|_{\infty} \leq(b-a)^{1 / 2}\left(\int_{a}^{b}\left(u^{\prime}\right)^{2} d x\right)^{1 / 2} \leq(b-a)^{1 / 2}\|u\|_{1,2}
$$

