3.8 Sobolev Spaces

Definition 1. Let G be a nonempty open set in \mathbb{R}^n , $n \ge 1$. Then

- 1. $C^k(G) = \{u : G \to \mathbb{R} \ s.t. \ u \text{ has continuous partial derivatives of orders } m = 0, 1, \dots, k\}.$
- 2. $C^{\infty}(G) = \{u: G \to \mathbb{R} \quad s.t. \ u \text{ has continuous partial derivatives of orders } m = 0, 1, \ldots\}.$
- 3. $C_0^{\infty}(G) = \{ u \in C^{\infty}(G) \text{ s.t. } u \text{ vanishes outside a compact subset } C \text{ of } G \text{ that depends on } u, \text{ i.e.,} u(x) = 0 \text{ for all } x \in G C \}.$

Proposition 25. Let G be a nonempty open set in \mathbb{R}^n , $n \ge 1$. Then $L_2(G) = \overline{C^{\infty}(G)} = \overline{C_0^{\infty}(G)}$. That is, for every $u \in L_2(G)$, there exists $\{u_n\} \subset C_0^{\infty}(G)$ such that $u_n \to u$ in $L_2(G)$.

Sketch of the proof. Main idea: using mollifier, an important smoothing technique. The details can be found in Zeidler's book, pages 186-189.

• Consider

$$\Phi(x) = \begin{cases} \frac{1}{|x|^2 - 1} & \text{if } |x| < 1\\ 0 & \text{if } |x| \ge 1. \end{cases}$$

The constant c is chosen so that $\int_{\mathbb{R}^n} \Phi(x) dx = 1$. Verify that $\Phi \in C_0^{\infty}(\mathbb{R}^n)$.

• For each $\varepsilon > 0$, define

$$\Phi_{\varepsilon}(x) = \frac{1}{\varepsilon^n} \Phi\left(\frac{x}{\varepsilon}\right), \quad G_{\varepsilon} = \{x \in G : \operatorname{dist}(x, \partial G) > \varepsilon\}.$$

Verify that $\Phi_{\varepsilon} \in C_0^{\infty}(\mathbb{R}^n)$ and $\Phi_{\varepsilon}(x) = 0$ if $|x| \ge \varepsilon$ for all $\varepsilon > 0$.

• For each $u \in L_2(G)$, set u = 0 outside G. Define

$$u_{\varepsilon}(x) := \int_{\mathbb{R}^n} \Phi_{\varepsilon}(x-y)u(y)dy.$$

Verify that $u_{\varepsilon} \in C^{\infty}(G_{\varepsilon}), u_{\varepsilon} \in L_2(\mathbb{R}^n)$ and $u_{\varepsilon} \to u$ in $L_2(G)$ as $\varepsilon \to 0$.

Lemma 9 (Variational Lemma). Let G be a nonempty open set in \mathbb{R}^n , $n \ge 1$ and $u \in L_2(G)$ such that

$$\int_{G} uv dx = 0 \quad \forall v \in C_0^{\infty}(G).$$

Then u(x) = 0 for almost all $x \in G$. In addition, if $u \in C(G)$ then u(x) = 0 for all $x \in G$.

Proof. Since $L_2(G) = \overline{C_0^{\infty}(G)}$, there exists $\{u_n\} \subset C_0^{\infty}(G)$ such that $u_n \to u$. Then

$$\langle u, u \rangle = \langle u, \lim_{n \to \infty} u_n \rangle = \lim_{n \to \infty} \langle u, u_n \rangle = 0$$

So u(x) = 0 for almost all $x \in G$.

Recall Integration by Parts

1. In 1D,
$$u, v \in C^1[a, b]$$
, then $\int_a^b u'vdx = uv \mid_a^b - \int_a^b uv'dx$.
In addition, if $v(a) = v(b) = 0$, then $\int_a^b u'vdx = -\int_a^b uv'dx$.

2. In \mathbb{R}^n , let G be an open set in \mathbb{R}^n . Then

$$\int_{G} u D^{\alpha} \Phi \, dx = (-1)^{|\alpha|} \int_{G} D^{\alpha} u \Phi \, dx \quad \text{for } u \in C^{k}(G), \ \Phi \in C_{0}^{\infty}(G),$$

where $\alpha = (\alpha_{1}, \dots, \alpha_{n}) \text{ and } D^{\alpha} \Phi = \frac{\partial^{\alpha_{1}}}{\partial x_{1}^{\alpha_{1}}} \cdots \frac{\partial^{\alpha_{n}}}{\partial x_{n}^{\alpha_{n}}} \Phi.$

Below is the definition of weak derivatives from Zeidler's book.

Definition 2 (Weak Derivatives). Let G be a nonempty open set in \mathbb{R}^n , $n \ge 1$. Let $u, w \in L_2(G)$ and suppose

$$\int_{G} u \partial_{j} \Phi \, dx = - \int_{G} w \Phi \, dx, \quad \text{for all } \Phi \in C_{0}^{\infty}(G).$$

Then w is called an α^{th} -weak partial derivative of u, where $\alpha = (0, \ldots, 0, 1, 0, \ldots, 0)$ and 1's is at the j^{th} -position.

Here is the general definition of weak derivatives.

Definition 3. Let G be a nonempty open set in \mathbb{R}^n , $n \ge 1$. Let $u, w \in L^1_{loc}(G)$ where

$$L^{1}_{loc}(G) = \{ v : G \to \mathbb{R} \quad s.t. \quad v \in L_{1}(V) \text{ for each } V \subset \overline{V}_{compact} \subset U \}.$$

Suppose

$$\int_{G} u D^{\alpha} \Phi \, dx = (-1)^{|\alpha|} \int_{G} w \Phi \, dx \quad for \ all \ \Phi \in C_0^{\infty}(G).$$

Then w is called an α^{th} -weak partial derivative of u.

Lemma 10. A weak α^{th} -partial derivative of u if exists, is uniquely defined up to a set of measure zero. *Proof.* Assume $w, \tilde{w} \in L^1_{loc}(G)$ satisfying the formula. Then

$$\int_G (w - \widetilde{w}) \, \Phi \, dx = 0$$

By the variational lemma, $w - \tilde{w} = 0$ a.e.

 _

Example 1. Consider $u: (-1,1) \to \mathbb{R}$, u(x) := |x| for all $x \in (-1,1)$. Then the following function is the weak derivative of u in the weak sense.

$$w(x) = \begin{cases} -1 & \text{if } -1 < x < 0\\ c & \text{if } x = 0\\ 1 & \text{if } 0 < x < 1 \end{cases}$$

where c is fixed, but otherwise arbitrary real number.

Proof. Let $\Phi \in C_0^{\infty}(-1, 1)$. Then

$$\int_{-1}^{1} u\Phi' \, dx = \int_{-1}^{0} u\Phi' \, dx + \int_{0}^{1} u\Phi' \, dx = -\int_{-1}^{0} x\Phi' \, dx + \int_{0}^{1} x\Phi' \, dx.$$

Using integration by parts, we have

$$-\int_{-1}^{0} x\Phi' \, dx + \int_{0}^{1} x\Phi' \, dx = \int_{-1}^{0} \Phi \, dx - \int_{0}^{1} \Phi \, dx = -\int_{-1}^{1} w\Phi \, dx,$$

which implies w is the derivative of u in the weak sense.

Example 2. Consider

$$u(x) = \begin{cases} x & if \quad 0 < x \le 1\\ 2 & if \quad 1 < x < 2 \end{cases}$$

The function u does not have a weak derivative.

Proof. Let $\Phi \in C_0^{\infty}(0,2)$. Suppose there exists $w \in L_2(0,2)$ such that

$$-\int_{0}^{2} w\Phi \, dx = \int_{0}^{2} u\Phi' dx$$
$$= \int_{0}^{1} u\Phi' dx + \int_{1}^{2} u\Phi' dx$$
$$= -\int_{0}^{1} \Phi dx - \Phi(1),$$

where the third line is obtained by integration by parts on the right hand side. Therefore,

$$\Phi(1) = \int_{0}^{2} w \Phi \, dx - \int_{0}^{1} \Phi \, dx \quad \forall \Phi \in C_{0}^{\infty}(0, 2).$$

Consider $\{\Phi_n\} \subset C_0^{\infty}(0,2)$ such that $\Phi_n(1) = 1, 0 \leq \Phi_n(x) \leq 1$ for all $x \in (0,2)$ and $\Phi_n(x) \to 0$ as $n \to \infty$ for all $x \in (0,2) \setminus \{1\}$. Then

$$\lim_{n \to \infty} \left(\int_{0}^{2} w \Phi_n \, dx - \int_{0}^{1} \Phi_n \, dx \right) = 0,$$

but

$$\lim_{n \to \infty} \Phi_n(1) = 1,$$

a contradiction. This completes the proof.

Definition 4 (Sobolev space $W_p^k(G)$). Let G be a nonempty open set in $\mathbb{R}^n, n \geq 1$. Denote

 $W_2^1(G) = \{ u \in L_2(G) \quad s.t. \quad \partial_j u \text{ exists in the weak sense and } \partial_j u \in L_2(G) \quad \forall j = 1, \dots, n \}.$

On $W_2^1(G)$, define

$$\langle u, v \rangle_{1,2} := \int_G \left(uv + \sum_{j=1}^n \partial_j u \, \partial_j v \right) \, dx,$$
$$\|u\|_{1,2} := \left(\int_G u^2 \, dx + \sum_{j=1}^n \int_G (\partial_j u)^2 \, dx \right)^{1/2}.$$

In general, fix $1 \le p \le \infty$ and let k be a nonnegative integer. Define

 $W_p^k(G) = \{ u \in L_{loc}^1(G) \text{ s.t. } D^{\alpha}u \text{ exists in the weak sense for all } |\alpha| \leq k \text{ and } D^{\alpha}u \in L_p(G) \quad \forall j = 1, \dots, n \}.$ On $W_p^k(G)$, define

$$||u||_{k,p} := \left(\sum_{|\alpha| \le k} \int_G |D^{\alpha}u|^p \, dx\right)^{1/p}$$

Denote $H^k(G) = W_2^k(G)$.

Theorem 1. For each k = 1, 2... and $1 \le p < \infty$, the Sobolev space $W_p^k(G)$ is a Banach space and $W_2^k(G)$ is a Hilbert space, provided we identify two functions whose values differ only on a set of measure zero.

Sketch of the proof. We will sketch the proof for $W_2^1(G)$.

- Verify that $W_2^1(G)$ is an inner product space.
- Verify that $W_2^1(G)$ is a Banach space.
 - Let $\{u_n\} \subset W_2^1(G)$ be a Cauchy sequence. For every $\varepsilon > 0$, there exists $N_{\varepsilon} > 0$ such that

$$\|u_n - u_m\|_{1,2} \le \varepsilon \quad \forall n, m \ge N_{\varepsilon}.$$

Since $||v||_{1,2} \ge ||v||_2$ and $||v||_{1,2} \ge ||\partial_j v||_2$ for all $v \in W_2^1(G)$, the sequences $\{\partial_j u\}_n$ for every $j = 1, \ldots, n$, and $\{u_n\}_n$ are Cauchy sequences in $L_2(G)$. Since $L_2(G)$ is a Banach space, there exists $w_j, u \in L_2(G)$ such that

$$\lim_{n \to \infty} \|\partial_j u_n - w_j\|_2 = 0, \quad \forall j = 1, \dots, n \text{ and } \lim_{n \to \infty} \|u_n - u\|_2 = 0.$$

• Show that $w_j = \partial_j u$ in the weak sense. Indeed, from

$$\int_{G} u_n \partial_j \Phi dx = -\int_{G} \partial_j u_n \, \Phi dx,$$

letting $n \to \infty$, we have

$$\int_{G} u \partial_j \Phi dx = -\int_{G} w_j \Phi \, dx,$$

which implies $w_j = \partial_j u$ in the weak sense.

• Finally, show that $||u_n - u||_{1,2} \to 0$ as $n \to \infty$.

Definition 5. Let G be a nonempty open subset in \mathbb{R}^n , $n \ge 1$. Let $W_2^{\circ,1}(G)$ be the closure of $C_0^{\infty}(G)$ in the Hilbert space $W_2^1(G)$. That is, $u \in W_2^{\circ,1}(G)$ if and only if there exists $\{u_m\} \subset C_0^{\infty}(G)$ such that $||u_m - u||_{1,2} \to 0$ as $m \to \infty$.

Proposition 26. The space $W_2^{\circ,1}(G)$ is a real Hilbert space.

Proof. Hint: $C_0^{\infty}(G)$ is a linear subspace of the Hilbert space $W_2^1(G)$ and the closure of a linear subspace of a Hilbert space is also a Hilbert space.

Proposition 27. Let $G = (a, b) \subset \mathbb{R}$, where $-\infty < a < b < \infty$. If $u \in W_2^{\circ,1}(G)$, there exists a unique continuous function $v : [a, b] \to \mathbb{R}$ such that u(x) = v(x) for almost all $x \in (a, b)$ and v(a) = v(b) = 0. In addition

$$\|v\|_{\infty} \le (b-a)^{1/2} \left(\int_{a}^{b} (u')^2 \, dx\right)^{1/2} \le (b-a)^{1/2} \|u\|_{1,2}$$