
3.8 Sobolev Spaces

Definition 1. Let G be a nonempty open set in Rn, n Ø 1. Then

1. Ck(G) = {u : G æ R s.t. u has continuous partial derivatives of orders m = 0, 1, . . . , k}.

2. CŒ(G) = {u : G æ R s.t. u has continuous partial derivatives of orders m = 0, 1, . . .}.

3. CŒ
0 (G) = {u œ CŒ(G) s.t. u vanishes outside a compact subset C of G that depends on u, i.e.,

u(x) = 0 for all x œ G ≠ C}.

Proposition 25. Let G be a nonempty open set in Rn, n Ø 1. Then L2(G) = CŒ(G) = CŒ
0 (G). That is,

for every u œ L2(G), there exists {u
n

} µ CŒ
0 (G) such that u

n

æ u in L2(G).

Sketch of the proof. Main idea: using mollifier, an important smoothing technique. The details can be
found in Zeidler’s book, pages 186-189.

• Consider

�(x) =

Y
__]

__[
c e

1
|x|2 ≠ 1 if |x| < 1

0 if |x| Ø 1.

The constant c is chosen so that
s

Rn
�(x)dx = 1. Verify that � œ CŒ

0 (Rn).

• For each Á > 0, define

�
Á

(x) = 1
Án

�
3

x

Á

4
, G

Á

= {x œ G : dist(x, ˆG) > Á}.

Verify that �
Á

œ CŒ
0 (Rn) and �

Á

(x) = 0 if |x| Ø Á for all Á > 0.

• For each u œ L2(G), set u = 0 outside G. Define

u
Á

(x) :=
⁄

Rn

�
Á

(x ≠ y)u(y)dy.

Verify that u
Á

œ CŒ(G
Á

), u
Á

œ L2(Rn) and u
Á

æ u in L2(G) as Á æ 0.

Lemma 9 (Variational Lemma). Let G be a nonempty open set in Rn, n Ø 1 and u œ L2(G) such that
⁄

G

uvdx = 0 ’v œ CŒ
0 (G).

Then u(x) = 0 for almost all x œ G. In addition, if u œ C(G) then u(x) = 0 for all x œ G.
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Proof. Since L2(G) = CŒ
0 (G), there exists {u

n

} µ CŒ
0 (G) such that u

n

æ u. Then

Èu, uÍ = Èu, lim
næŒ

u
n

Í = lim
næŒ

Èu, u
n

Í = 0.

So u(x) = 0 for almost all x œ G.

Recall Integration by Parts

1. In 1D, u, v œ C1[a, b], then
s

b

a

uÕvdx = uv |b
a

≠
s

b

a

uvÕdx.
In addition, if v(a) = v(b) = 0, then

s
b

a

uÕvdx = ≠
s

b

a

uvÕdx.

2. In Rn, let G be an open set in Rn. Then
⁄

G

uD–� dx = (≠1)|–|
⁄

G

D–u� dx for u œ Ck(G), � œ CŒ
0 (G),

where – = (–1, . . . , –
n

) and D–� = ˆ–1

ˆx–1
1

· · · ˆ–n

ˆx–n
n

�.

Below is the definition of weak derivatives from Zeidler’s book.

Definition 2 (Weak Derivatives). Let G be a nonempty open set in Rn, n Ø 1. Let u, w œ L2(G) and
suppose ⁄

G

uˆ
j

� dx = ≠
⁄

G

w� dx, for all � œ CŒ
0 (G).

Then w is called an –th≠weak partial derivative of u, where – = (0, . . . , 0, 1, 0, . . . , 0) and 1Õs is at the
jth-position.

Here is the general definition of weak derivatives.

Definition 3. Let G be a nonempty open set in Rn, n Ø 1. Let u, w œ L1
loc

(G) where

L1
loc

(G) = {v : G æ R s.t. v œ L1(V ) for each V µ V
compact

µ U}.

Suppose ⁄

G

u D–� dx = (≠1)|–|
⁄

G

w � dx for all � œ CŒ
0 (G).

Then w is called an –th-weak partial derivative of u.

Lemma 10. A weak –th-partial derivative of u if exists, is uniquely defined up to a set of measure zero.

Proof. Assume w, Âw œ L1
loc

(G) satisfying the formula. Then
⁄

G

(w ≠ Âw) � dx = 0.

By the variational lemma, w ≠ Âw = 0 a.e.
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Example 1. Consider u : (≠1, 1) æ R, u(x) := |x| for all x œ (≠1, 1). Then the following function is the
weak derivative of u in the weak sense.

w(x) =

Y
____]

____[

≠1 if ≠ 1 < x < 0

c if x = 0

1 if 0 < x < 1

where c is fixed, but otherwise arbitrary real number.

Proof. Let � œ CŒ
0 (≠1, 1). Then

1⁄

≠1

u�Õ dx =
0⁄

≠1

u�Õ dx +
1⁄

0

u�Õ dx = ≠
0⁄

≠1

x�Õ dx +
1⁄

0

x�Õ dx.

Using integration by parts, we have

≠
0⁄

≠1

x�Õ dx +
1⁄

0

x�Õ dx =
0⁄

≠1

� dx ≠
1⁄

0

� dx = ≠
1⁄

≠1

w� dx,

which implies w is the derivative of u in the weak sense.

Example 2. Consider

u(x) =

Y
_]

_[

x if 0 < x Æ 1

2 if 1 < x < 2

The function u does not have a weak derivative.

Proof. Let � œ CŒ
0 (0, 2). Suppose there exists w œ L2(0, 2) such that

≠
2⁄

0

w� dx =
2⁄

0

u�Õdx

=
1⁄

0

u�Õdx +
2⁄

1

u�Õdx

= ≠
1⁄

0

�dx ≠ �(1),

where the third line is obtained by integration by parts on the right hand side. Therefore,

�(1) =
2⁄

0

w� dx ≠
1⁄

0

�dx ’� œ CŒ
0 (0, 2).

Consider {�
n

} µ CŒ
0 (0, 2) such that �

n

(1) = 1, 0 Æ �
n

(x) Æ 1 for all x œ (0, 2) and �
n

(x) æ 0 as n æ Œ
for all x œ (0, 2) \ {1}. Then

lim
næŒ

Q

a
2⁄

0

w�
n

dx ≠
1⁄

0

�
n

dx

R

b = 0,
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but
lim

næŒ
�

n

(1) = 1,

a contradiction. This completes the proof.

Definition 4 (Sobolev space W k

p

(G)). Let G be a nonempty open set in Rn, n Ø 1. Denote

W 1
2 (G) = {u œ L2(G) s.t. ˆ

j

u exists in the weak sense and ˆ
j

u œ L2(G) ’j = 1, . . . , n}.

On W 1
2 (G), define

Èu, vÍ1,2 :=
⁄

G

Q

auv +
nÿ

j=1
ˆ

j

u ˆ
j

v

R

b dx,

ÎuÎ1,2 :=

Q

a
⁄

G

u2 dx +
nÿ

j=1

⁄

G

(ˆ
j

u)2 dx

R

b
1/2

.

In general, fix 1 Æ p Æ Œ and let k be a nonnegative integer. Define

W k

p

(G) = {u œ L1
loc

(G) s.t. D–u exists in the weak sense for all |–| Æ k and D–u œ L
p

(G) ’j = 1, . . . , n}.

On W k

p

(G), define

ÎuÎ
k,p

:=

Q

a
ÿ

|–|Æk

⁄

G

|D–u|p dx

R

b
1/p

.

Denote Hk(G) = W k

2 (G).

Theorem 1. For each k = 1, 2 . . . and 1 Æ p < Œ, the Sobolev space W k

p

(G) is a Banach space and
W k

2 (G) is a Hilbert space, provided we identify two functions whose values di�er only on a set of measure
zero.

Sketch of the proof. We will sketch the proof for W 1
2 (G).

• Verify that W 1
2 (G) is an inner product space.

• Verify that W 1
2 (G) is a Banach space.

• Let {u
n

} µ W 1
2 (G) be a Cauchy sequence. For every Á > 0, there exists N

Á

> 0 such that

Îu
n

≠ u
m

Î1,2 Æ Á ’n, m Ø N
Á

.

Since ÎvÎ1,2 Ø ÎvÎ2 and ÎvÎ1,2 Ø Îˆ
j

vÎ2 for all v œ W 1
2 (G), the sequences {ˆ

j

u}
n

for every
j = 1, . . . , n, and {u

n

}
n

are Cauchy sequences in L2(G). Since L2(G) is a Banach space, there
exists w

j

, u œ L2(G) such that

lim
næŒ

Îˆ
j

u
n

≠ w
j

Î2 = 0, ’j = 1, . . . , n and lim
næŒ

Îu
n

≠ uÎ2 = 0.
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• Show that w
j

= ˆ
j

u in the weak sense. Indeed, from
⁄

G

u
n

ˆ
j

�dx = ≠
⁄

G

ˆ
j

u
n

�dx,

letting n æ Œ, we have ⁄

G

uˆ
j

�dx = ≠
⁄

G

w
j

� dx,

which implies w
j

= ˆ
j

u in the weak sense.

• Finally, show that Îu
n

≠ uÎ1,2 æ 0 as n æ Œ.

Definition 5. Let G be a nonempty open subset in Rn, n Ø 1. Let W ¶,1
2 (G) be the closure of CŒ

0 (G)
in the Hilbert space W 1

2 (G). That is, u œ W ¶,1
2 (G) if and only if there exists {u

m

} µ CŒ
0 (G) such that

Îu
m

≠ uÎ1,2 æ 0 as m æ Œ.

Proposition 26. The space W ¶,1
2 (G) is a real Hilbert space.

Proof. Hint: CŒ
0 (G) is a linear subspace of the Hilbert space W 1

2 (G) and the closure of a linear subspace
of a Hilbert space is also a Hilbert space.

Proposition 27. Let G = (a, b) µ R, where ≠Œ < a < b < Œ. If u œ W ¶,1
2 (G), there exists a unique

continuous function v : [a, b] æ R such that u(x) = v(x) for almost all x œ (a, b) and v(a) = v(b) = 0. In
addition

ÎvÎŒ Æ (b ≠ a)1/2

Q

a
b⁄

a

(uÕ)2 dx

R

b
1/2

Æ (b ≠ a)1/2ÎuÎ1,2.
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