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1 Preliminaries

1.1 Recall Some Important Notions and Results from Real Analysis

This section is based on Real Analysis and Applications: Theory in Practice by Davidson and Donsig (a
textbook for AMATH/PMATH 331). The electronic version of the book can be downloaded from the UW
Library.

Definition 1. A sequence of real number {x,} is said to converge to x € R if for every e > 0, there exists

an integer N¢ such that |z, — x| < e for alln > N,.

Note: Conversely, a sequence of real number {z,} is said to not converge to = € R if there exists an € > 0

such that for every N, there exists an n > N such that |z, —z| > ¢.

Definition 2. A sequence of real number {x,} is called a Cauchy sequence if for every e > 0, there exists

an N such that |x, — xp| < e for all nym > N.

Theorem 1 (Bolzano-Weierstrass Theorem). Every bounded sequence of real numbers has a convergent

subsequence.

Theorem 2 (Completeness of R). Let {x,} be a sequence of real number. Then {x,} converges if and

only if {xn} is a Cauchy sequence.

Definition 3. A set S C R is said to be bounded above by b if x < b for all x € S.
A set S C R is said to be bounded below by a if © > a for all x € S.

Theorem 3 (Theorem and Definition). A set S C R which is bounded above has a least upper bound or
supremum, written

M = supz,
zeS

with the properties
1. Ifx €S, thenx < M.
2. If c < M, then there is an x € S such that x > c.

Example 1. Consider a real-valued f : S — R and assume f has a supremum in S, M = sup f(z). By
€S

1
definition of the supremum, there is a sequence {x,} C S such that f(x,) > M — —.
n

Theorem 4 (Theorem and Definition). A set S C R which is bounded below has a greatest lower bound
or infimum, written

m = inf x,
zeS

with the properties

1. Ifx € S, then © > m.



2. If ¢ > m, then there is an x € S such that © < c.

Note: For a set S, max and sup z are not the same. There are sets where the supremum exists but the
z€ €S
maximum does not. For example, S = (0,1).

Definition 4 (Continuous Functions, ¢ — 0 Definition). A function f : R D Q — R is continuous at a

point xg € Q (this automatically means that f(xo) exists) iff for every e > 0 there exists a 6 > 0 such that
|f(zo) — f(x)| < € whenever |xg — x| <, x € Q.

The function f: R D Q — R is said to be continuous on ) iff f is continuous at every point of €.

Definition 5 (Sequential Continuity). A function f : R D Q — R is said to be sequentially continuous at

a point xo € Q iff for every sequence {x,} C 2 converging to xo, the sequence {f(xn)} converges to f(xg).

Proposition 1. A function f: R D Q — R is continuous at a point xo € Q iff it is sequentially continuous

at xg.

Proposition 2. A real-valued function that is continuous on a closed and bounded region Q@ C R is

bounded, and achieves its supremum and infimum in €.

Example 2. Let f : [a,b] — R be a continuous function. Since [a,b] is closed and bounded, f is bounded

and achieves its supremum and infimum in [a,b]. That is there exist x1,x2 € [a,b] such that

f(z1) = max f(z), f(x2) = min f(z).

z€a,b] z€a,b]

Definition 6. Let { f,(z)}>2, be a sequence of real-valued functions on Q C R. We say that { f,} converges
pointwise to a function f:Q — R if

Jim fn(z) = f(x), forallx € Q.
That is, for each x € Q and for every € > 0, there exists N, 4 (depending on e and x) such that
|fn(z) — f(x)| <e whenever n > N,g.
Note:
e Pointwise limit of continuous functions can be discontinuous.
e Limit of integral may not be integral of limit.

e Pointwise limit of discontinuous functions can be continuous.

Definition 7. Let { f,(z)}>2, be a sequence of real-valued functions on Q C R. We say that { f,} converges
uniformly to a function f:Q — R if given € > 0, there exists an integer N (depending on €) so that

|fn(x) — f(2)]| <& forall x € Q and for all n > N..



Note:
e Uniform convergence implies pointwise convergence.
o If {f,} converges pointwise to f, then f is the only potential limit for uniform convergence.

e Let {f, : S — R} be a sequence of continuous functions. If {f,} converges uniformly to a function

f, then f is continuous.
Lemma 1 (Minkowski’s Inequalities). Let p € R and 1 < p < oo.

1. (for finite sum) Let x1,...,%n,Y1,--.,yn € R. Then
n 1/p n 1/p n 1/p
(Zm +yi1p> < <Z|$i|p> + <Z|yz‘|p> :
i=1 i=1 i=1

[e.°]
2. (for infinite sequence) Consider £, = {x = (x1,22,...),z; € R, Y |;|P < oo}. Let x,y € £,. Then
i=1

oo 1/p 0o 1/p 00 1/p
(Z |z; + yi|p> < <Z |$i|p> + (Z |?/i|p> .
=1 i=1 i=1

3. (for integrable functions)

x+yedl, and

1/p 1/p
<

b b 1/p b
( [0+ gl dt) ( [1ror dt) - ( / \g(t)lpdt)

1.2 Recall Some Important Notions and Results from Linear Algebra

In this section, let K=R or K =C.

Definition 1. A vector space X over K is a set X together with an addition, u + v, and a scalar multi-

plication, au, satisfies the following rules for every u,v,w € X and «, 8 € K:
I.u+veX
2. (u+v)+w=u+ (v+w)
S ut+v=v+u
4. There is a vector 0 € X, called the zero vector, such that u+0=0+u=u
5. For every u € X, there exists (—u) € X such that u+ (—u) =0

6. aue X

7. a(Bu) = (af)u



8. (a+ B)u =au+ fu
9. a(u+v) =au+av
10. lu=u
The elements of a vector space X are called vectors.
Example 1. 1. R™ is a vector space over R; C" is a vector space over C
2. X ={all functions f : R — R}
3. by ={{z;} CK| X |wi|P < oo}, where 1 <p < oco.
i
4. loo = {{x;} C K| sup;|zi| < oco,¥n}

Definition 2. Let X be a vector space over K. If S is a subset of X and S is a vector space under the

same operations as X, then S is called a subspace of X.

Lemma 2. (Subspace Test) If S is a nonempty set of X such that u+v € S and au € S for all u,v € S
and ¢ € K under the operation of X, then S is a subspace of X.

Example 2. Using subspace test, we can verify the following sets are vector spaces over R.
1. X = P(z) = {all univariate polynomials}
2. X = P,(x) = {all univariate polynomials of degree at most n}
3. X = Cla,b] = {all continuous functions on |a,b]}
4. X = Ca,b] = {all continuously differentiable functions on [a,b]}
5. X = C®[a,b] = {all infinitely differentiable functions on |a,b]}
6. X = Lyla,b] = {all Lebesgue integrable functions on [a,b]} = {f : [a,b] = R | (})' |f(x)|Pdz < oo}
7. X = Loo[a,b] = {all bounded almost everywhere functions on [a,b]}

Definition 3. Let X be a vector space over K. The vectors {ui,...,ux} C X are called linearly indepen-
dent if the only solution to 0 = aquy + - - - + aguy is the trivial solution ay = ... = ap = 0.

If the mazimal number of linearly independent vectors in X is n < oo, we say X is an n-dimensional
vector space and dim X = n. Any set of n linearly independent vectors in X is called a basis for the vector
space X.

We write dim X = oo if for each n = 1,2,..., there exist n linearly independent vectors in X . In this
case, X is called an infinite dimensional space.

Convention: dim{0} = 0.



Example 3. dimR" =n, dimP,(z)=n+1, dimC|a,b] = cc.

Lemma 3. Let X be an n-dimensional vector space and {u1,...,u,} be a basis for X. Then every vector

u € X can be uniquely expressed as a linear combination of {ui, ..., un}.

Definition 4 (Quotient Space). Let V be a vector space and W be a subspace of V. Consider the relation
~ onV:

Forz,yeV, z~ysx—yeW.
It is easy to verify that relation is an equivalent relation (symmetric, reflexivity, and transitivity). Denote
[zl ={yeV]z~y}

Define the following set
V/W = {[z] | z € V},

with the following operators:

[z] + [y] = [z +y], alz]:=[az],

for any x,y € V,a € K. Those operators are well-defined and V/W is a vector space. Moreover, if
dimV < oo, dimV/W = dimV — dim W.

Example 4. Let V be the set of all real-valued integrable functions on [a,b] and W ={f € V| f = 0a.e.}.
We can verify that W is a subspace of V, hence V/W is also a vector space. Indeed, Li[a,b] = V/W.

Definition 5. A map T : V — W between two vector spaces over K is called a linear operator if it preseves

the operations of addition of vectors and multiplication by scalars, i.e.,
T(au+ pv) = T (u) + T (v).

Denote kerT ={u eV |T(u) =0} Kernel of T, a subspace of V.
ImT ={Tu|ueV} Image (range) of T, a subspace of W.

Theorem 1. Let T : V — W be a linear operator between two vector spaces V and W over K. Then
o T is one-to-one iff ker T = {0}
o T is onto iff InT =W

o [fdimV < oo, then dimker(7)+ dimIm(7) = dimV.

2 Normed Linear Spaces

2.1 Normed Linear Spaces: Definitions and Examples

Definition 1. Let X be a real (or complex) vector space. A real-valued function || - || : X — R is a norm
on X if



1. ||z|| > 0 for allz € X  (positivity)
2. |lz|| =0 if and only if t =0  (strict positivity)
3. |lax|| = |a||z|| for any scalar o and for all z € X  (homogeneity)
4. Nl +yll < ||l + |yl for all x,y € X (triangle inequality)
The pair (X, || - ||) is called a normed linear space.

Example 1. 1. The following functions are norms on R™:

n 1/p
]|, = (Z \xilp> , p>1,
i=1

and

l2lloo = max il

n 1/p

Proof. For ||z, = (Z | ;[P > , with p > 1, the first three requirements can be verified from the
i=1

definition of ||z|[,. The triangle inequality can be verified using the Minkowski’s inequality for finite

sums. O

2. The following functions are norms on X = Cla,b] = {f : [a,b] — R continuous on [a,bl]}:

b 1/p
151 = (/If(t)!pdt) (1<p <o)

and

[ flloo = max | f(t)

a<t<b

Proof. Let f € Cla,b]. Since f is continuous on [a,b], f is integrable on [a,b] and achieves its

maximum and minimum in [a, b]. Therefore, || f||, and || f||~ are well-defined.
b 1/p
For || f|l, = (f [F@O)F dt) with 1 < p < oo,

e Positivity: By the definition of || f||,, we have || f]|, > 0.

e Homogeneity: By the definition of || f||,, we have

b /p b 1/p
Jofl, = ( / \af(t)lpdt) = o] ( / !f(t)lpdt> = 1

e Triangle inequality: Using the Minkowski’s inequality for integrable functions, we have

1

1f +glp < fllp + llgllp, forall f,g e Cla,b].



e Strict positivity: Prove by contradiction. Suppose there exists f € Cla,b] with || f|, = 0 but
f # 0. That is, there exists x¢ € [a, b] such that f(xzo) # 0. Since f is continuous, there exists
a subinterval of width 6, 9 3 I C [a, b] such that U(Qﬂ > |f(z) — f(xo)| for every x € I. Since
|f(x) = fzo)| = | f(xo)| — [f(z)], we have

| f (z0)]
2

| f(20)|
5

> |f(x) = f(zo)| = [f (@o)| — [f(z)], [f(z)] =

for all x € I. So,

b 1/p
0=|fll,= (/If(t)|pdt) > (/|f(t)|pdt) > 51/p|f(2$0)| >0,
a I

a contradiction. Therefore the assumption is wrong. That means if || f||, = 0 for some f €
Cla,b], then f = 0.

For || flleo = max |f(t)|, DIY.
a<t<b
Question: what is the best norm for Cla, b]? O

3. For 1 <p < oo, the vector space

b
Lyla,b] = {f : [a,b] = R measurable s.t. /|f(T)|pdT < oo}/ ~
a

(where f ~ g iff f = g a.e.) is a normed space, with the norm defined as

b 1/p
171 = ( / If(w)lpdx) .

Proof. The positive and homogenous properties are obvious. If f € L,[a,b] and || f||, = 0, then f =0
a.e., which proves the strict positive property. The triangle inequality comes from the Minkowski’s

inequality for integrable functions. O

More examples:

4. For Cl[a,b),
1fll1,00 = gggb{lf(t)hlf/(t)l}
and
112 = (s, 5O+ mas 7))
’ a<t<b a<t<b
are norms.

5. For 1 < p < oo, the vector space £, = {x = {x;},x; € R | Y |x;|P < oo} is a normed space, with the
i

1
norm defined as ||z||, = (Z ’xi’p) ’



6. The vector space bog = {x = {x;},x; € R | sup; |x;| < oo} is a normed space, with the norm defined
as ||z|lec = sup; |zil.
Definition 2. Let (X,| - ||) be a normed linear space. A sequence {x,} C X is said to converge or to be

convergent if there is an x € X such that

nlLHgO |zn — || = 0.

x is called the limit of {x,,} and we write lim z, = .
n—oo

Proposition 3 (Uniqueness of Limits). Let (X,||-||) be a normed linear space. A sequence in X converges

to at most one point in X.

Proof. Consider a sequence {z,} in X. If {z,} diverges, the proof is done. Suppose {z,} converges to

two elements z,y € X. Then

Iz =yl = I(z = 2n) + (20 = W)l <l = znll + l2n =yl =0 asn — oc.
Hence [lz —y|| =0, ie, z =y. O
Proposition 4. Let (X,| - ||) be a normed linear space, {x,} C X, and x,, —» x € X. Then ||x,|| — |z
Proof. Exercise. O
Definition 3. Let (X, || -||) be a normed linear space. A sequence {x,} C X is called a Cauchy sequence

if for every € > 0, there exists an N so that
|zn — x| <&, forall n,m> N..
Proposition 5. Every convergent sequence is a Cauchy sequence.
Proof. Let {z,,} C X be a convergent sequence. For every ¢ > 0, there exists N so that
|lzn — || < %, for all n > N.
Then for n,m > N, we have
[2n = Zm < 20 = 2l + [Jom — 2] <e.

Therefore, {z,,} is a Cauchy sequence. O

Conversely, there exist normed linear spaces such that not every Cauchy sequence converges.

Example 2. Consider the set of all rational numbers Q. The set Q is a normed linear space under the
standard addition u+v, the scalar multiplication a u, and the absolute operator as a norm on Q, |lul| = |u|

(u,v,a € Q). Consider the following sequence that approzvimates /2 = 1.4142135...

14 141
=1 =14=— =141=—,...
x1 ) €2 107 €3 1007

The sequence {x,} converges to /2 and is a Cauchy sequence in Q. However, /2 € Q.



Example 3. Consider the following sequence of (piecewise linear) functions in C|0,2]:

1
0 for 0<z<1l——
n
fulx) =11 for 1<xz<2
1
l+nx—1) for 1——=—<z<1.
n

fa® f)

Claim: The sequence { f,,} is a Cauchy sequence in (C[0,2],|-]1), but {fn} does not converge in (C|0,2], ||-

l1)-

Proof.

e Claim 1: {f,} is a Cauchy sequence w.r.t. || -||;. Indeed, with m > n, we have
2
£ = fll = [ 1fal@) = fn@)lda
0

1 1
= area of the triangle formed by (1 — ,0) ; (1 - =, 0) ;(1,1)
m n
1_ 1
_n m -
=3 < o — 0, asn — oo.

Suppose {f,} converges to some function f € C[0,2] w.r.t. || - ||, i.e., le | fr — fll1 = 0.
n—oo

Claim 2: The function f must be

0 for 0<z<l1

1 for 1<z<2

fz) =

Part 2.1: Prove that f(z) =1 for all 1 < 2 < 2. Suppose f(z) # 1 for all 1 < 2z < 2. Then there

exists 1 € (1,2] such that f(x1) # 1, f(x1) — 1 # 0. Since f — 1 € C[0, 2], similar to the argument

in Example’ part 2 there exists a subinterval I of width § such that z1 3 I C (1,2] such that
[l

1] > for all z € I. Then

2
4= 1l —O/!fnu)— rdx>/u— (e > L@ =1

> 0, a contradiction. That means f(z) = 1 for all

-1
Therefore, 0 = nlgrolo 1 fn = fll1 = 6’f(fU12)|
1l<ax<2.

Part 2.2: Prove that f(z) =0 for all 0 < x < 1. (hint: follow the same argument as in Part 2.1).

10



e Claim 3: The function f is not continuous at x = 1 since lim f(z) = 0 and lim+ = 1. Therefore,
z—1- z—1
f(z) € C0, 2], a contradiction.

In conclusion, { f,} is a Cauchy sequence in (C|0,2], ||-||1), but {f,} does not converge in (C10, 2], || -

11)-
O

2.2 Banach Spaces: Definitions and Examples

Definition 1. A normed linear space (X,d) is called a Banach space if every Cauchy sequence in X
converges (that is, has a limit which is an element of X ).

Banach spaces are also called complete normed spaces.
Most proofs of completeness are based on the completeness of R.
Theorem 1. (R",|| - ||;) is a Banach space for 1 < p < oo.

Proof. Exercise. O

Theorem 2. (C[a,b], | - ||1) is not a Banach space (See Ezample [ Section [2.1])

Theorem 3. (C[a,b], || - [|) is a Banach space.
Note: The compactness of the domain [a, b] is used implicitly to ensure || - ||oc well-defined.
Proof. Let {f,} be a Cauchy sequence in C[a,b] w.r.t. || - ||co. Then for every ¢ > 0, there exists V. such

that for all n,m > N, we have

e > [[fo = fmlloo = max [fn(t) — fin(t)]- (1)

tela,b]
e Step 1: Show that f, converges pointwise to some function f.

Fixed = € [a,b]. Then for every n,m > N¢,

’fn(x) - fm(l')| < an - fm”oo < €.

Therefore, { f,,(z)}n>1 is a Cauchy sequence in R. Since R is complete, { f,,(x)}n>1 converges. Denote
f(z) = Jim fn(z). In other words, we have constructed a function f : [a,b] — R such that {f,}

converges pointwise to f.

e Step 2: Prove that {f,} converges uniformly to f, i.e., || fn — flloo — 0.
From the inequality , for every € > 0, there exists N, such that

|fn(t) — fm(t)] <e, forallm,m> N., foralltée€a,b]
Now letting m — oo and keeping everything else fixed, we get
|fn(t) — f(t)] <e, foralln> N, forallte]la,b].

Therefore {f,} converges uniformly to f, f, [RIES f.

11



e Step 3: Prove that f € Cla,?].
Since the uniform convergence of continuous functions is a continuous function, f € Cla,b]. We
actually can prove this claim in a few lines.
Pick ¢ > 0. Since f, LLLN f, there exists N so that |f,(t) — f(t)| < €/3, for all n > N, for all
t € [a,bl.
Since fn is continuous, there exists 6 > 0 such that |fx(z) — fn(y)| < €/3 whenever |z — y| < 4.
Then for every z,y € [a,b] with |z — y| < 4, we have

If(z) = fW)| < |f(x) = fn(@)| + [fn(z) = InW)] + [fn(y) — Fy)] <e,

which means f € Cla, b].

In conclusion, the Cauchy sequence {f,} converges in Cla,b] w.r.t. the infty norm || - ||oo. That

completes the proof.

O
Lecture 04: Riesz-Fischer Theorem
Lemma 4. Let (X, || ||) be a normed linear space and {x,} be a Cauchy sequence in X. Then there exists
a subsequence {xy, }r C {xn} such that
1
| Tnyyy — 2o, || < ok forallk =1,2,...
Proof. Since {z,} is a Cauchy sequence,
1 . 1
o For e = 3’ there exists n; > 0 such that ||z, — x| < 3 for every n,m > n;.
1 . 1
o For e = 5 there exists ng > np such that ||z, — x| < 72 for every m,m > ns.
1 . 1
o For e = 53 there exists ng > ng such that ||z, — x| < 3 for every m,m > ngs.
We have constructed a subsequence {zy, }r with
1
||33nk+1 - :anH < 27’ for every k> 1.
O
Lemma 5. Let (X, | -||) be a normed linear space and {x,} be a Cauchy sequence in X. If there is a

subsequence {xn, }r, C {x,} such that klim T, =x € X, then {z,} also converges to that limit.
—00

12



Proof. Pick € > 0. Since klim Zn, = ¥, there exists Ny such that
— 00

€
|zn, — x| < 5 for all k> Nj.
Since {x,} is a Cauchy sequence, there exists No > N; such that
€
|xn — zm| < 5 for all n,m > Ns.
Note that ny, > No > Nj. For all n > Na, we have
g€ €
ln = 2] < ny, = 2ll + 2y, =2l < 5+ 5 =,
which means lim z, = x.
n—oo
Recall Some Important Results from Measure Theory

Theorem 4 (Lebesgue Monotone Convergence Theorem). Assume Q C R? is measurable. If {f,

s a sequence of nonnegative measurable functions satisfying
0< fi(z) < falx) < ... forae z€Q,

then
LS / )= [ (Jim (o))
Q

Theorem 5 (Lebesgue Dominated Convergence Theorem). Assume Q C RY is measurable. Let

: Q — 0,00}

{fn + Q@ — [—00,0]}n be a sequence of measurable functions that converge pointwise for a.e. x € Q. If

there is a measurable function g such that
|fn(x)| < g(x) for every n and a.e. x € Q,
then
dny [ faGe)de = [ (Jy () d
Q Q
Recall:

Lyla,b] ={f : [a,b] = R measurable s.t. /|f(m)|pdx < oo}/W,

where W = {f : [a,b] > R | f =0 a.e.}. In practice, we consider [f] € Ly[a,b] as a function f : [a,b] — R

with [ |f(z)[Pdz < oo and functions that coincides p-almost everywhere are the same.
a

Theorem 6 (Riesz-Fischer theorem). The set (Lpla,b], | - ||p) with 1 <p < 0o is a Banach space.

13



Proof. Let {f,} be a Cauchy sequence in (Lyla,b], || - ||p)-
1
By Lemma there is a subsequence {fy,, } such that || fp,,, — fa,l < SR for every k =1,2,...
By Lemma [5], to prove { f,} converges, it suffices to show that { f,, } converges in (L,a,b], | -||p). Consider

the following series
fnl Z fnk+1 fnk( ))

and

| (2 |+Z|fnk+1 = fai(@)]-

The corresponding partial sums are

m

S1m(@) = fur (@) + Y (friepa (@) = Fo (2)) = fri (@),

k=1

Som(x) = | fay ()] + Z |fnk+1 — fr(@)].

Since {52, ()} is an increasing sequence, the limit
g(a) i= lim_ Son(e) = [fun ()] + Z Fopas @) = fo @)

always exists, where g(x) could be +o00 at some points.

e Step 1: Prove that g € Ly[a, b].
The triangle inequality in L,[a, b] gives

m m
1
1S2mllp < [ fosllp + D s = Frllp < Wfnsllp + of < faillp +1.
k=1 k=1
Therefore ,
/(Sz,m(x))p dr = [|So,mllh < ([ farllp + 17,
a

and
b

i [ (Son(@))? dw < (s (@)l + 1)

On the other hand, since {(S2,,»(z))"} is a monotone increasing sequence of nonnegative functions,

the Lebesgue monotone convergence theorem implies
b b b

lim [ (Som(x))? dz = / (lim (Spm(@))?) do = / g(x)? da.

m—0o0 m—r0o0
a a a

b
Hence [ g(z)Pdx < oo and g € Lyla,b]. It also implies g(x) is finite a.e. in [a,b]. In other words,
a

S2.m () pointwise converges a.e. in [a, b]. Hence Si ,,(x) pointwise converges a.e. in [a, b] to a finite
value f(x):



e Step 2: Prove that f € Ly[a,b].
Since [S1m(z)| < Som(z) < g(z), we have |f(z)| < g(x). Since g € Lypla,b], we conclude that
f € Lyla,bl.
e Step 3: Prove that n%gnoo | frme — fllp =0.
We have
[ () = f(@)]P < 2max {[f ()], [S1,m-1(2)[})? < (29(2))".
Since (2¢g(x))P is measurable, applying the Lebesgue Dominated Convergence Theorem, we obtain

b

b
Jim [ 1o @) = f@ dz = [ ((Jim_|fu, () = F@)P) do=o0.

a
It means n%gnoo | fr — fllp = 0.

Note: we also can prove f € Ly[a,b] after proving n%gnoo || fan — fllp = 0. For € = 1, there exists N
so that || f,, — fll, <1 for all m > N. Then

1fllp < [l frx = Fllp + [ faxllp <1+ [ fayllp < oo

In conclusion, we have proved that (L,[a,b],]| - ||,) is a Banach space. O

Cla,b]

RN
— Cauchy convergence criterion

1

normed space
(norm ||u]|)

|

linear space
(linear combination au + Bv)

— convergence and boundedness

—»- dimension and convexity

Figure 1: Source: from Zeidler’s book

Recap: So far, we have been studied the completeness of the following normed linear spaces.
L. (R™ | -|lp) (with 1 <p < 00) is a Banach space.
2. (Cla,bl,| - |lso) is @ Banach space. (Proved in class)
3. (Lpla,b], || - |lp) (with 1 < p < 00) is a Banach space. (Proved in class)

More examples of Banach spaces (Exercises):
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4. (L, ] - |lp) (with 1 <p < o00) is a Banach space.
5. (Leola,b], || - ||so) is @ Banach space, where
Loola,b] :={f : [a,b] = R | There exists an M such that |f(x)| < M for almost every x € [a,b] } /W,

W={f:]a,b] >R | f=0 a.e.}

I flloo :=esssup |f(x)| = inf{M | |f(x)| < M for almost every zx € [a,b]}

z€la,b
Some incomplete normed linear spaces:
6. (Cla,b], |- ]]1) is not a Banach space. (Proved in class)

7. (Cla,bl,|| - ||2) is not a Banach space. (Exercise)

Lecture 05: Open and Closed Sets. Convexity. Banach Fixed-Point Theorem

2.3 Open and Closed Sets

Definition 1. Let (X, || -||) be a normed linear space. Given a point xg € X and a real number r > 0,

Define the following sets

B(zo,r) ={z € X | ||z — zo|| < r} (open ball)
B(zo,r) ={z € X |||z — zo| < r} (closed ball)
S(xo,r) = {z € X | |z — woll = 7} (sphere)

In all three cases, xg is called the center, and r the radius.

Definition 2. A subset M of a normed linear space X is said to be open if for every xg € M, there exists
r > 0 such that B(xg,r) C M.

A subset M of a normed linear space X is said to be closed if the situation {x,} C M, z, -z € X
implies x € M.

Proposition 6. Let (X, | - ||) be a normed linear space and M be a subset of X. Then M is open if and
only if M€ := X\M is closed.

Proof. (=) Suppose M is open, we need to show that M€ is closed. Let {z,} C M€ and =, I, 5 e x.

Assume z ¢ M€, then € M. Since M is open, by definition, there exists r > 0 such that B(z,r) C M.
On the other hand, since z,, — x, there exists N, so that ||z, — z|| < r for every n > N,. Choose
no = [Ny + 1]. Then z,, € B(x,r) C M. Therefore, x,, € M N M¢ = (), a contradiction. Hence, the

assumption x € M€ is wrong, which means z € M*.
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(<) Suppose M€ is closed, we need to show that M is open. We will prove by contradiction. Assume
M is not open. Then there exists zg € M so that for every r > 0, B(xq,r) ¢ M, that is B(xg,r) N M # (.
Let z,, € B (mo, %) N M¢€. Since

1
||xn—x0H<ﬁ—>0 as n — 00,

the sequence x,, — xo ( due to Squeeze Limit Theorem). Since M€ is closed and {x,,} C M€, by definition,
xg € M. We have zg € M N M¢ = (), a contradiction. Therefore, the assumption is wrong and M is
open. ]

An interesting example: Consider X = (0,2) C R with subset A = (1,2). X is a metric space (not a
normed linear space). Then A¢ = (0,1]. But (0,1] does not look like a closed set since the sequence

x, = — € A converges to 0 ¢ A°. The interval (0, 1] is neither closed nor open if we consider it as a subset
n

. 1, . .
of R. In the metric space X, the sequence z,, = — is not a convergent sequence since limz,, =0 ¢ X.
n

Proposition 7. Let (X, || -|) be a normed linear space, xo € X, and r € Ry . Then B(xo,7) is open and

B(xg,r) is closed.
Proof. (a). Let x1 € B(xg,r). Then ||z1 — z¢|| < r. Denote r| = r — ||z1 — zo||.
Claim: B(z1,7r1) C B(zo,r). Indeed, for any y € B(z1,71), we have

|y — zoll < lly — z1l| + |21 — wol| <71+ [|21 — 20| = 7,

which implies y € B(xg,r). Hence B(x1,71) C B(xg, 7).

(b). Let {z,} C B(zo,r) and x, — = € X. Then ||z, — zo|| < r. Using Proposition {4, we have

|xn, — ol = ||z — zol||.- By Squeeze Limit Theorem, we have ||z — x|| < r. Therefore € B(z,r). O

Theorem 1. Let (X, | - ||) be a Banach space and W is a subspace of X. Then (W, | -||) is a Banach
space iff W is closed.

Proof. (=) Suppose (W, || - ||) is a Banach space, {z,} € W, and Jim oz, =z € X. Since {z,} is a
convergent sequence in X, {x,} is a Cauchy sequence in X. In addition, since {z,} C W, {z,} is a
Cauchy sequence in W. Because W is a Banach space, there exists y € W so that z,, >y € W C X. By
the uniqueness of the limits, x = y. Therefore W is closed.

(<) Suppose W is closed. Let {z,} C W is a Cauchy sequence. Since X is a Banach space, =, — = € X.
Since W is closed, x € W. Therefore, W is a Banach space. O

2.4 Convexity

Definition 1. The set M in a linear space is called convex iff

u,v €M and 0<a<1l imply au+ (1—a)ve M.
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The function f : M — R s called convez iff M is convexr and
flou+ (1 —a)) <af(u)+ (1 - a)f(v),
for all u,v € M and all o € [0,1].
Example 1. Let X be a normed space, and let ug € X, r > 0 be given Then the closed ball
B={ueX||u—ul<r}
18 convez.
Proof. If u,v € Band 0 < a <1, we have

lou + (1 = a)v —uol| = fla(u = ug) + (1 — @) (v — uo)||
< lla(u = uo) [l + [[(T = @) (v = uo)|

<allu—up|+ (1 —a)||lv—wl| <ar+(1—a)r=r.

O
Example 2. Let (X,| - ||) be a normed space. The function f: X — R, f(u) := ||u|| is continuous and
convex.
Proof. Exercise. O

2.5 The Banach Fixed-Point Theorem and the Iteration Method

Definition 1. Let M and Y be sets. An operator A : M — Y associates to each point u € M a point
v €Y, denoted by v = Au.

Example 1. Let —0o < a < b < oo and let the function
F:la,b) xR—R

be continuous. For each u € Cla,b|, define
Au : [a,b] = R, (Au)(z) := /F(t,u(t))dt for all x € [a,b].

Since u and F are continuous function, G(t) = F(t,u(t)) is also continuous. By the Fundamental Theorem

of Calculus, Au is continuous. In conclusion, we have defined an operator from Cla,b] to itself:

A:Cla,b] — Cla,b], (Au)(x):= /F(t,u(t))dt for all x € [a,b].
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norm

N

— contraction A
(| Aw — A'U?| <kllu—v|],0<k<1) compact operator A

1 !

Banach fixed-point theorem Schauder fixed-point theorem
(Au = u) (Au =u)
Picard-Lindel6f theorem for Peano theorem for
the ordinary differential the ordinary differential
equation u' = F'(x, u) equation u' = F(x, u)
continuous operator convex set

~N

Brower fixed-point theorem in RrY

+ compactness

\/

Schauder fixed-point theorem in Banach spaces

l

the Leray-Schauder principle and a priori estimates

Figure 2: Source: From Zeidler’s book.

Next, we will discuss about the Banach fixed-point theorem. It represents a fundamental convergence

theorem for a wide class of iteration methods such as Newton’s method. It is also used to prove the

existence and uniqueness of solutions to certain ODEs (Picard-Lindel6f Theorem), to integral equations,

and to value iteration, policy iteration, and policy evaluation of reinforcement learning.

Problem statement: Given an operator A : M — M, we want to solve the operator equation

u=Au, wue M, (2)
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by using the iteration method:
ug € M, upy1=Au, n=0,1,..., (3)

Each solution of u = Au is called a fixed point of the operator A.
Theorem 1 (Banach Fixed-Point Theorem). Assume that:

(i) M is a closed, nonempty set in the Banach space X

(ii) The operator A : M — M is k — contractive, i.e.,

|[Au — Av|| < k|lu —v|| for all u,v € M
and fized k € [0,1).

Then the following hold true:

1. Existence and uniqueness. The equation uw = Au, uw € M has exactly one solution u, € M.

2. Convergence of the iteration method. For each given uy € M, the sequence {uy,} constructed by the

iteration method converges to the unique solution u. of Equation .

3. Error estimates. For alln =0,1,..., we have a priori error estimate
kn
lom = el < = JJur = ol
and for allm =1,2,..., we have a posteriori error estimate
k
[un — u| < 1— k,Hun — Un—1]|-

4. Rate of convergence. For alln =0,1,... we have

[uns1 = well < Kljug — .

Proof. 1 & 2. Step 1: Show that {u,} is a Cauchy sequence in X. Then since X is Banach, {u,} to some
usx € X. Since M is closed and {z,} C M, u, € M.
Step 1.1: Evaluate

41 = unl| = | Aun — Aup1| < kllun — wp-1]| < k[lun-1 — wn—2] < -+ < k"||lur — uo.
Step 1.2: Evaluate
[tntm = tnll = [[(Ungm = tnim—1) + -+ (Uny2 = Unt1) + (Uny1 — un)||
< it = Unpmet ]|+ <+ [tnsr = un
< ETT B lug — |

1—-Km
1—k

SRR ek D) — ) = B g — ol

n

k
<
“1-k

|ur — ol
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Since k € [0,1), ™ — 0 as n — oco. Therefore the sequence {u,} is Cauchy. Since X is Banach, {u,} to
some u, € X. Also, because M is closed and {x,} C M, u, € M.

Step 2: Show that u, = Au,.
Observe that

unt1 — Av]| = || Aup — Au| < kl|u, — ue =2 0.

Therefore, Au, = lim up41 = Us.
n—oo

Step 3: Uniqueness of the solution: Show that if u, = Au, and v, = Av, for some v, € M then u, = v,.
We have
[ue — vill = [|Aus — Avi|| < kfluc — i, (k= 1)flus —vi| 20

Since k € [0,1), this implies ||us — vi|| = 0, and hence u, = v,.

n

3. B — <
rom [t — | < T

|lur — upl|, letting m — oo, we get

n

lus — un|| < llur —uo|l, foralln=0,1,...

—1-k

Notice that

[tnsm = tn|| < [[tngm — vngm—1 |l + -+ unsr = uall < (K™ + -+ F)[[up — tn—1 || <

=1_% |tn, — wn—1]|

Letting m — oo, we get

k
Un — U] < 1 _kHun — Un—1]-

4. It comes from

ltnsr = wall = 1 Awn — Aual] < Kllug — w.

d

Comments: The priori error estimates can help to determine the maximal number of iterations required
to attain a given precision. The posteriori error estimates base on u, and u,41 to determine the accuracy

of the approximation u,+1. Experience shows that a posteriori estimates are better than a priori estimates.

Lecture 06: Applications of the Banach Fixed Point Theorem to ODEs
and Integral Equations

2.6 Applications to Ordinary Differential Equations

Given (xg,ug) € R?, let F(x,w) be a continuous function on a rectangle

S ={(z,w) €R?: |z — 20| <aand |w—ug| < b},
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and thus bounded on S,
|F(z,w)| <e¢ forall (x,w) € S.

For 0 < h < a, consider the following initial value problem:
o = F(x,u), zo—h<z<zo+h
u(zo) = up.
We are looking for a differentiable function w : [zg — h, xo + h] — R that satisfies Equation and
(z,u(x)) € S forall z € [xg — h,xg+ h].

Questions: When does the IVP have a solution? Is the solution unique? What is the value of h with

respect to a, b, c?

Denote X := C[zg — h,zo + h] and M :={u € X : ||lu — ug||oo < b}.
Consider the following integral equation (Picard integral equation)

x

u(z) = o + / Fly,uly)dy, wo—h<z<z0+h ueM, (5)

o

along with the iteration method

uo(x) = ug,  upy1(x) =uo+ /F(y,un(y))dy, ro—h<z<zo+h, n=0,1,... (6)

Zo

Proposition 8. Suppose F(x,u) is a continuous function on S. A function u € C'[xg — h,xo + h] is a
solution to the IVP on S iff u is a solution to the integral equation .

Proof. (=) Suppose u € C*[zg, 2o + h] is a solution to the IVP. Integrating the ODE w.r.t 2 shows that
the function u is also the solution of ().

(<) Suppose u is a solution to the integral equation (5). Then u(xy) = up. Also, by the Fundamental
theorem of calculus, u € C'[zg — h, 2o + h] and v’ = F(z,u(z)). So u is a solution to the IVP (4. O

Theorem 1 (The Picard-Lindel6f Theorem). Assume the following:
1. The function F : S — R is continuous.
2. F(x,u) satisfies a Lipschitz condition with respect to w on S, that is, there exists L > 0 such that
|F(x,u1) — F(z,u2)| < Llug — usl,
for all (z,u1), (z,u2) € S.
3. We choose the real number h in such a way that

0<h<a, hc<b, hL<]1.
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Then the following hold true:
(i) The sequence {u,} constructed by (6)) converges to some u, € X.
(ii) The IVP has a unique solution, which is u. in part (i) .
(i1) Forn =0,1,..., we have the following error estimates
e — willoo < K™ (1 — k)™M lur — wolloo,

ltns1 — talloo < k(1 — k)_1‘|un+1 — Up||oo,

where k := hL.

Proof. We know from previous lectures that (X, || - ||«) is a Banach space and the closed ball M = {u €
X i ||lu— up|loo < b} is closed and nonempty.

For each u € M, consider the following operator A
Au(x) == ug + /F(y,u(y))dy, for x € [zg — h, o + h].
o

Since F' and w are continuous functions, by the Fundamental Theorem of Calculus, Au : [z, x0 + h] = R
is also continuous. Therefore, we get the operator

A: M — X.
We will prove that

1. A: M — M.

2. The operator A is k-contractive, where k = hL.

Proof of (1): A: M — M. Indeed, let u € M. Then for every x € [xg — h,xo + h], we have

V F(y,u(y))dy

[Av = wuolloo = _ max VF(y,U(y))dy
0

z€[zo—h,z0+h

< |z — xo| max |F(y,u)| < he <b.
(y,u)es

Therefore

<b,

ie., Aue M.

Proof of (2): The operator A is k-contractive, where k = hL. Indeed, for u,v € M and for any
x € [zo,x0 + h], we have

T zo+h
< [ 1P uw) - F.o@)ldy < [ 1Fu) - Fly.ow)] dy

zo

V(F(y,u(y)) — F(y,v(y))) dy

0

zo+h zo+h
<L [ juw) - o)ldy < Lju=vlow [ dy=hLlu— o).
y) xo
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The same argument holds for = € [xg — h, z¢]. Therefore,

x€|zo—h,z0+h]
0

X
JAu— Avjloo = max U<F<y,u<y>> — Fly, v(y))) dy| < hL]u - v]o.
Since 0 < hL < 1, by the Banach fixed-point theorem, the integral equation u = Au has a unique solution
uy € M and the iterative method constructs a sequence u, — u.. By Proposition |§|7 uy is the unique

solution to the IVP. O

OF
Proposition 9. If — is continuous on S then F' satisfies a Lipschitz condition with respect to u on S.

ou
Proof. Let uj,uz € R such that |u — ug| < r. By the Mean Value Theorem,

oF

F(z,uy) — F(z,ug) = %(aﬁ,c)(ul — ug),

. oF . .
for some ¢ between u; and uo. Since B0 is continuous on S and S is compact, we have

u
L = max a—F < 00,
(z,w)eS | Ou
and
oOF
|F(x,u1) — F(z,u2)| = %(x,c) lur — ug| < Llug — ugl,

for all (z,u1), (x,uz) € S. O

Example 1. Consider the initial value problem
' =14+4%  u(0)=0.
What is the mazximum of h that the P-L theory works?

Proof. Consider S = {(z,w) € R? : |z| < a,|w| < b}. The function F(z,u) = 1 + u? is continuous
on S with ¢ = max |F(z,u)| = 1 + b%, and F satisfies a Lipschitz condition w.r.t w on S with L =

(zu)eS
OF
max |—|=2 max |u| =2b. The P-L theorem requires
(zu)eS ou (zu)eS
b 1
h < h<—5—, h<—
O<h=a hspy My

b 1 1
We have max min{ ,} = — when b = 1. Therefore the P-L theorem gives a solution on [—h, h]
b b2+172b 2

1
forany0<h<§.

On the other hand, we can find the closed form of the IVP: u = tanx on a larger interval (—;T, 72r>

There is a room to improve the P-L theorem! (see Remarks 1.1. below). O

Remark 1. ( From “Supplementary Remarks to IVP” by E. Vrscay — attached here in the next 4 pages).
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. The restriction on h can often be softened so that the existence of a unique solution to the IVP can

be established over a larger interval.

. However, h might not be arbitrarily large. There are IVPs that their solutions blow up at finite time.

1
For example v’ = u?, u(0) = ug > 0. The solution of this IVP is u(z) = 1 1o for0<z < —,
— upx Uuo

which blows up at x = —.
uQ

. The iterative method in the P-L Theorem provide estimates u, to the solution u, of the IVP.

. Consider u' = u'/3, u(0) =up =0, x €[0,T]. Then
W_d:c, /om_/ody’ u(z) — U —gx-
9 3/2 2 3/2

So u(x) = ug/?’ + 3% =|(zz is a solution. There is another solution u(x) = 0. The reason

why we can not apply the Picard-Lindeldf theorem is because the function F is not Lipschitz.
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AMATH 731: Applied Functional Analysis Fall 2017

Supplementary remarks to Section 2.7, “Initial Value Problem”

Recall that the solution to the initial value problem

yl = f(t>y)7 tO §t§a7
y(to) = o, (1)
also satisfies the integral equation
¢
y(t) :yo+/ f(s,y(s)) ds,  to<t<a, (2)
to

which is obtained by simple integration of the DE. We see that the solution y(t) to the IVP in (1) is the fixed
point of the integral operator T, defined as follows: h = Tg, where

t
h(t) = (Tg)(t) = vo +/ f(s,9(s)) ds. (3)
to
The integral operator T is often called the Picard integral operator.

We saw that under certain conditions on f, the operator T is contractive on a complete metric space
(Sa,dx) of functions supported on [tg,a]. You will also recall that some work had to be done to obtain an
estimate of a, based on the properties of f:

b
1. First, a < tg + i where b can be prescribed and M = maxg | f(¢,y)|.

1
2. Then a < tg + T where L is the Lipschitz constant for the second argument of f.

In what follows, we show that these restrictions can often be “softened” so that the existence of a unique
solution to Eq. (1) can be established over a larger interval. This is done by showing that the operator T is
“eventually contractive”.

Now return to the following fundamental set of identities involving the Picard integral operator:

(To)(t) — (Th)(t) = / (5, 9(s)) — (s, h(s))] ds

1/ (s,9(5)) = f(s,h(s))] ds

<
to
t
<L / l9(s) — h(s)| ds
to
f
<

Lde(g, h) / ds

Jito

= Ldso(g,h)(t —to) (4)

Note that we have not integrated out to the value a, but rather are keeping the right-hand side as a function of
t. This will be useful below.

We replace g and h in the above relations with T'g and T'h, respectively:

[(T29)(t) — (T*h)(1))] /t [£(s, Tg(s)) — f (s, Th(s))] ds

IN

[f(s,Tg(s)) = f(s,Th(s))| ds

t

L /t ITg(s) — Th(s)| ds. (5)

IN



Now insert the final result from (4):

(T%g)(t) — (T*h)(2))]

IN

L2d..(g, h)/ (s — to) ds

to

= %L2doo(g, h)(t — to)? (6)

We can repeat this procedure for T72g and T?h, etc., to arrive at the following result, which can be proved by
induction:

1
(T"g)(t) = (T"h)(O)] < —L"(t —t0)"do(g,h), ¢ € [to, . (7)
Taking the supremum over ¢ € [to, a] on both sides, we obtain the important result,
1
doe(T"9, T"h) < = L"(0 — t0)"doc (9, ). 0
For sufficiently large n, say n = p,
1
HLp(a —to)P <1, 9)

which implies that the operator U = TP for some p > 1 is a contraction. We say that T is “eventually
contractive.” From Banach’s Contraction Mapping Theorem, it follows that U has a unique fixed point u(t) € S,.
We now state the following result, which will be left as an exercise:

The fixed point @ of 77 is also a unique fixed point of 7.

This implies that @ is the unique solution to the IVP in Eq. (1).

Note that the above analysis can also be extended over to the “other side” of ty, i.e., an interval [c, o],
provided that suitable conditions on f be met.

A final comment: From Eq. (9), one might be tempted to conclude that the outer endpoint a of the interval
[to, a], over which the unique solution exists, can be made as large as possible: Given any a > 0, we can find a
p > 0 which guarantees that the inequality in Eq. (9) is true. This could pose a problem, since we know that
some solutions “blow up” in finite time. Consider the following IVP, which is solved in the Addendum to Page
15, posted on the Course webpage.

dy
—=y", y0)=y >0, (10)
dt
The function f(¢,y) = y? is Lipschitz in the variable y, so a unique solution exists. It is given by
Yo 1
y(t) = , 0<t < —. 11
O =T " (11)

1
Nevertheless, the solution y(t) “blows up” at t = —.

If we return to the proof of the existence—unique(r)less to initial value problems using the Contraction Mapping
Theorem, we see that, in fact, no such problem exists. The proof rests on the assumption that the solution
is an element of a closed ball of continuous functions — the space S, on Page 15 of the Course Notes. These
functions are necessarily bounded. As such, the endpoint a may not be arbitrarily large — it depends on the
function f(t,y) on the RHS of the IVP. It, i.e, a, probably won’t have to be as small as the value determined
in the proof given in the Course Notes. But finding larger values could be a tricky procedure, involving some
kind of “juggling”, along with the knowledge that the Picard operator T is eventually contractive.

Picard method of successive approximation

Finally, the contractivity of the T' (or T?) operator is the basis for the Picard method of successive substitu-
tion/approzimation or, simply, “Picard’s method’, that provides estimates to the solution of the IVP in Eq. (1).
Often, these estimates are in the form of power series about the point ¢, (which is often zero). Picard’s method
is often discussed in undergraduate courses in ODEs. As such, it is treated in many texts devoted to ODEs and



will not be discussed in great detail here. A excellent discussion of both theoretical and practical aspects of
this method is to be found in the book, Differential Equations with Applications and Historical Notes, by G.F.
Simmons (McGraw-Hill).

Briefly, we start with a function ug(¢) that will be the “seed” of the iteration procedure. It is often most
convenient to start with the constant function ug(t) = yo. We then construct the iteration sequence

Upt1 = Tuy, (12)

which becomes .
i) =0+ [ fs,un(s)) ds, n=0,100-. (13)
to

From the contractivity (or eventual contractivity) of the Picard integral operator T' (over an appropriate inter-
val), it follows that the sequence of functions {u,} will converge uniformly to the solution y(t) to the IVP in
Eq. (1) (over an appropriate interval).

Let us now illustrate with a simple example. Consider the following IVP,
dy
dt

where a and yo are arbitrary, nonzero real numbers. For convenience we have set tg = 0. Of course, we know
that the solution to this IVP is

ay,  y(0) = yo, (14)

y(t) = yoe™ , (15)

but we’ll pretend, for the moment, that we don’ know it.

The solution of this IVP must satisfy the equivalent integral equation,

y(t) = yo + / ay(s) ds, (16)

which is the fixed point equation y = Ty, where T denotes the Picard integral operator associated with the IVP
in Eq. (14). Just as a check, we differentiate both sides with respect to ¢:

v = & [ atsras)
= ay(t). (17)

Furthermore, if we set t =ty = 0 in Eq. (14), we obtain

0
y(0) = wo+ / ay(s) ds
= Y. (18)

Thus, the IVP in (14) is satisfied.

Let us now perform the Picard method of successive substitution associated with this IVP. As mentioned
above, it is convenient to start with the constant function,

uo(t) = Yo, (19)

as the “seed” for the iteration procedure. Then
t
ui(t) = yo —i—/ auo(s) ds (20)
0

t

= Yo +/ ayo ds
0

= Yo+ ayot

= yo[l + at].



Now repeat this procedure:

us(t) Yo +/0 auy(s) ds (21)

t
y0+/ ayo(1l + as) ds
0

1
Yo + ayot + yoi(at)2

1
yo[l + at + 5(&1‘2)2}

One can conjecture, and in fact prove by induction, that
1
Unp (1) :y0[1+at+'-~+ﬁ(at)"], n >0, (22)

which is the nth degree Taylor polynomial P, (t) to the solution y(t) = yoe®. As you will recall from MATH
128, for each t € R, these Taylor polynomials are partial sums of the infinite Taylor series expansion of the
function y(t). As such, we see that the sequence of functions {u,} converges to the solution. A little more work
will show that the convergence is uniform over closed subintervals that include the point ty = 0.

Earlier, we commented that it was convenient to start the Picard method with the constant function
ug(t) = yo. But we don’t have to. We can, in fact, start with any function that satisfies the initial condition
u0(0)yo. For example, let us consider

uo(t) = yo cost. (23)
Then
t
ui(t) = yo+ / aug(s) ds (24)
0
t
= % +/ ayo cos s ds
0
= Yo+ ayosins]g
= o[l + asint].
Once again:
t
uz(t) = wyo+ / auy () ds (25)
0

t
= y0+/ ayo[l + asins| ds
0

= yo + ayot — a’yp cos s]h

= yo[l 4+ at — a*cost + a?].
It is perhaps not obvious that these functions are “getting closer” to the solution y(t) = yoe®. But it is not too

hard to show (Exercise) that the Taylor series expansions of uj(t) and us(t) agree, respectively, to the first two
and three terms of the Taylor series expansion of y(t).



Lecture 07: Continuity. Compactness. Equivalent Norms.

2.7 Continuity

Definition 1. Let X and Y be normed linear spaces over K (K=R or K=C)and f: M C X =Y.

o f is continuous at xo € M if for all € > 0, there exists § > 0 such that || f(z) — f(z0)| < € for all x
so that ||z — x| < 6.

e f is continuous on M if f is continuous at all xg € M.

o f is uniformly continuous if for all € > 0, there exists § > 0 such that | f(z) — f(y)|| < € for all
x,y € M so that ||x — y|| < . (Note 6 does not depend either on x ory).

Proposition 10. Let X andY be normed linear spaces over K and f : M C X — Y. Then f is continuous
at x € M if and only if for every sequence {x,} in M,

nh_)ngo Tp = implies nh_)ngo f(zyn) = f(x).

Proof. Exercise. O

Proposition 11. Let f: X = Y,g:Y — Z, where X, Y, Z are normed linear spaces. If f is continuous

at a € X and g is continuous at f(a) then go f is continuous at a.

Proof. Exercise. O

2.8 Compactness

Definition 1. Let S be a set in a normed linear space X .

o S is called relatively compact iff each sequence {u,} in S has a convergent subsequence u,, — u € X

as k — oo.
e S is called compact iff each sequence {u,} in S has a convergent subsequence u,, — u € S ask — oo.
o S is called bounded iff there is a number r > 0 such that |u|| < r for allu € S.
Proposition 12. Let S be a set in a normed linear space X. Then
1. The set S is compact iff it is relatively compact and closed.
2. If S is relatively compact, then S is bounded.

3. If § is compact, then S is closed and bounded. The reverse might not be true.
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Proof. 1. Exercise.
2. Suppose S is relatively compact but S is not bounded. Then, there exists a sequence {u,} C S such
that [Ju,|| > n for all n. Since S is relatively compact, there exists a convergent subsequence {uy, }.

Therefore, {uy,, }1 is bounded. On the other hand, |u,,| > n; > k, a contradiction.

3. Combining (1) and (2), we have the conclusion that if S is compact, then S is closed and bounded.

Below is a counter example, where the reverse might not be true.

Example 1. In ({s,] - ||2), consider

B1(0) :={x = (x1,x2,...) : ||z]2 < 1}.

The closed ball B1(0) is closed and bounded, but Bi(0) is not compact. Indeed, consider the following

sequence in B1(0):
er =(0,...,0,1,0,...), where the kth position of ey, is 1 and other positions are 0’s, k=1,2,...

Since |lex — ejll2 = V2 for every k # j, the sequence {ex}r C B1(0) has no convergent subsequences since

no subsequence can be a Cauchy sequence. Therefore, B1(0) is not compact.

O]

Theorem 1. Let X and Y be normed linear spaces and T : X — 'Y be a continuous mapping. Then the

image of a compact subset S of X under T is compact.

Proof. Let {y,} be a sequence in T'(S). Then y,, = T(z,) for some x,, € S. Since S is compact, there is a

subsequence {z,, }; of {x,} such that klim T, = s € S. Since T is continuous, y,, = T(xy,,) = T'(z«) €
—00

T(S) as k — oco. Therefore T'(S) is compact. O

An important consequence is the following theorem, which is a generalization of the Extreme Value

Theorem for continuous functions over bounded and closed intervals on R.

Theorem 2 (The Weeirstrass Theorem). Let T' : S — R be a continuous function on the compact,

nonempty subset S of a normed linear space. Then T has a minimum and maximum on S.

Proof. By Theorem (1}, T'(S) is compact in R. Therefore, T'(S) is closed and bounded. Therefore,

a = inkf9 T(x) is finite. By the definition of the infimum, there exists a sequence {z,} in S such
xre

that lim_ T(x,) = . Since T'(S) is closed, Jim T(xy) € T(S), i.e., « € T(S). Thus T has a minimum on

S. The same argument can be used to show T has a maximum on S. 0
Note:

e Image of a closed set under a continuous mapping might not be closed. For example, consider
f:R =R, f(r) = exp® and S = (—00,0] C R. The function f is continuous on R, S is a closed
subset in R but f(S) = (0, 1] is not a closed subset of R.
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e Image of a bounded set under a continuous mapping might not be bounded. For example, f : (0,1) —
1
R, f(z) = — and S = (0,1) is a bounded set but f(S) = (0, 00) is not bounded.
T

Now, we will present some compactness critera for a set in a normed linear space.

2.8.1 Compactness in Finite-Dimensional Normed Linear Spaces

Next, we recall a theorem in real analysis.

Theorem 3 (Bolzano-Weierstrass Theorem). Every bounded sequence of real numbers has a convergent

subsequence.
Using Bolzano-Weierstrass Theorem, we have the following result.

Theorem 4. In (K", |- |loc) where K=R or K = C, a subset S C K" is compact if and only if S is closed

and bounded.

Proof. Case K = R. It is sufficient to prove that if S is bounded in R", then S is relatively compact.
Consider a sequence in S:

{um = (um,lp s )um,n)}m cS.

Since S is bounded, there is a constant M > 0 such that

M > ||umlloo > |tmp|, forall k=1,2,...,n, and m=12,....

The real sequence {1}, is bounded, so by the Bolzano-Weierstrass theorem, there is a subsequence
{u,%)} of {un,} such that {ug)l} converges.

By the Bolzano-Weierstrass theorem, there is a subsequence {ug)} of {u%)} such that {uﬁé} converges.
Thus {ug)l} and {US)Q} converge.

Repeating this process n times, we have constructed a subsequence {u% )}m of {tm }m such that {ugs)k}m
converges for all Kk =1,2,...,n. Using the e — N definition of convergent sequences, we can easily verify

that {u%Z )}n converges in R™. Therefore, S is relatively compact.

Case K = C. (Sketch of the proof): Any u € C" can be written as u = v + {w, where v,w € R". Use
[ullos = [[v]loo and [Julloc = [wl|eo-

O

Definition 2. Two norms || - ||1 and || - ||2 on a linear space X are called equivalent iff there are positive
numbers a, f > 0 such that
allzlli < x|z < Bllzl|1, for all z € X.
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Lecture 08: Compact Sets. Compact Operators.

Theorem 5. Two norms on a finite-dimensional linear space X over K (K =R or K = C) are always

equivalent.

Sketch of the proof. If dim X = 0, any norm on X is the zero function. Therefore, all norms on X are
equivalent.

Let 0 <mn =dim X and ||| is a norm on X. Suppose {e1,...,e,} is a basis for X. For each = € X, there
is a unique tuple a € K" such that

r=aaier + -+ ape,.

Define [[]loc := [lalloc = max |aj|.
e Step 1: Prove that || - ||c : X = R, || > «jej|| := max |a;|is a norm on X. (Exercise).
1<j<n o 1SIST

Set S ={a € K": ||allco = 1}. Then S is closed and bounded in K" (Exercise).

Therefore, .S is compact. Consider a function

f:SCcK"=R, fla) =

n
Z gl
k=1

e Step 2: Prove that f is a continuous function. (Exercise). Hint: Show that

n

[f(@) = F(B)] < lla—Blloc D llexll, for all o, § € K™

k=1

e Step 3: Prove || - || is equivalent to ||+ ||oo-
Applying the Weeirstrass theorem for continuous functions on the compact nonempty subset of S,

we conclude that f : S — R has a maximum and minimum on S. Let

a€esS acR™

n
A = mi = mi 1. | =1
min f(«) = min {‘ kz_:lakek s.t 1213'82(71 |l }

and

B = =
ey ) m{

s.t. max |oj| = 1}
1<j<n

n
E:cmek
k=1 -

Note that A and B are constants that depend on the norm || - || of X. Also, since 0 € S, so f(a) >0
foralla e S. So0< A< B and

< B, forall ges.

> Brew

k=1

AL f(B) =

The above inequalities can be rewritten as

A<|y| < B forall ye X with [yl =1.
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x

[E4 1R

For any z € X — {0}, let z = € X. Then ||z|lcc =1, so

A<|z[[<B, A<

< B, Azl < [lz] < Bl]loo-
That inequality also holds for x = 0. So we have

Allz]loo < |lz|| < Bllz|los for all z € X

e Step 4: Prove that any two norms on X are equivalent. Let || - [|2) be another norm on X. Then

there exist positive constants Ay, By so that
Az ||z]|co < H.T}H(Q) < By||z||ee for all z € X

So for every z € X, we have

Corollary 1. All norms on R™ are equivalent.

Theorem 6. In a finite dimensional normed linear space, any subset M is compact iff M is closed and
bounded.

Proof. Assignment 2. O

Note: In Assignment 2, we also prove a useful result: All finite dimensional normed spaces are Banach

spaces.

2.8.2 Compactness in Infinite-Dimensional Normed Linear Spaces

Now we present without proof compactness criteria for some infinite dimensional normed spaces: (C|a, b], ||-
lloo) and (Lila,bl,| - |l1) (see Zeidler’s book page 35; See Oden and Demkowicz’s book page 339-341).

Theorem 7 (The Arzela-Ascoli Theorem). Consider the normed linear space (Cla,bl, || ||oo) where —oo <

a <b<oo. Suppose we are given a set S in Cla,b] such that
1. S is bounded.

2. S is equicontinuous, i.e., for each € > 0, there is a § > 0 such that

lt—y|<d and weS imply |u(zx)—u(y) <e.

Then S is a relatively compact subset of Cla,b].
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So, for (Cla,b], || - ||s), we have:

compact sets = closed + bounded + equicontinuous sets.

Theorem 8 (Frechét - Kolmogorov Theorem). A subset F C (Lp(R),| - |lp), 1 < p < oo, is relatively
compact in Ly(R) iff the following conditions hold:

1. F is bounded, i.e., there exists an M > 0 such that ||f|, < M for every f € F.

2. For each € > 0, there is a § > 0 such that

[t|] <d and feF imply /R]f(t—l—s)—f(s)\pdsga

3. lim [

nosoo J1s|>n

|f(s)|P ds =0 for every f € F.

Below is another useful compactness criteria (see Zeidler’s book pages 38-39 for the proof).

Theorem 9 (Finite e-net). Let S be a nonempty set in the Banach space X. Then the following two

statements are equivalent:
(i) S is relatively compact.

(i1) S has a finite e-net ; that is, for each € > 0, there exists a finite number of points vy,...,ony € S
such that

i — g < 1 S.
1£IIICISHNHU vl| < e forall uwe

N
In other words, S C |J B(uvg,e) C X.
k=1

Note: The smallest integer N such that S can be covered by N — balls is called the covering number
N(S, ]| - |],&). For example, when S is a subset of the unit ball in (R™, || - ||),

NS e < (1+2)

See, for example, “A Mathematical Introduction to Compressive Sensing” by Foucart and Rauhut, page
577.

Next, we will study a useful operator, called compact operator, to generalize classical results for
operator equations in finite-dimensional normed spaces to infinite-dimensional normed spaces.

2.8.3 Compact Operators

Definition 3. Let X and Y be normed space over K (K =R or K = C). The operator A : X —'Y s

called a compact operator iff
1. A is continuous, and

2. A transforms bounded sets into relatively compact sets.
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Example 2.

Let X =Y = C[0,1] endowed with the || - ||oc norm, consider the integral operator A : C[0,1] — C[0, 1],
where for every u € C[0,1], define

1
Au(x) := /K(a},y)u(y) dy for all x €[0,1],
0

where K (z,y) is continuous on the square [0,1]2. We shall show that A is compact.

Since K (x,y) is continuous on [0, 1], there exists a constant M such that
[K(z,)l <M forall (z,y)€[0,1]

e Step 1: It is clear that A is well-defined (i.e., Au € C[0,1] for all u € C[0,1]) since both K(x,y)

and u(y) are continuous functions.

e Step 2: Show that A is continuous. For any u,v € X, we have

1

[ Au—Av]o = max | [ K(o,y)(u(y) — v(y) dy

xz€[0,1]
0

1
< max [ | (2) (u(y) ~ v(w)] dy < M=),
0

€
Therefore, for every e > 0, pick 0 = i then whenever u,v € X with ||lu — v|le < 0, we have
|Au — Av||so < €. Therefore, A is continuous.

Suppose S is a bounded set of functions of C[0,1]. Then there is v > 0 such that ||u|lcc < 7 for all
u € S. We will show that A(S) C C0,1] is relatively compact.

e Step 3: Show that A(S) is bounded. For any u € S, we have

1

[ K@ty dy

0

|Au)|cc = max < Mr,

z€[0,1]

therefore, A(S) is bounded.

e Step 4: Show that A(S) is equicontinuous.
Since [0, 1])? is compact and K is continuous on [0,1]?, K(x,y) is uniformly continuous. (Prove this!)

Therefore, for every e > 0, there exists d > 0 such that
€
|K(x1,y) — K(z2,y)| < . whenever |xy — xa] < 4.

Then for any x1,x2 € [0,1] with |x1 — x2| < 0 and for any u € S, we have
1

[ ) = Kl put)| < Sr =
0

|Au(ar) — Au(an)| =

Hence A(S) is equicontinuous. So by the Arzela-Ascoli Theorem, A(S) is a relatively compact set in
1o, 1].

In conclusion, A is a compact operator.
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Example 3. Let X be an infinite dimensional Banach space, such as (C[0,1], ] - |loo) or (L1[0,1],] - |]1)-
Consider the identity operator A : X — X, A(x) = x. A is continuous, B(0, 1) is bounded but A(B(0,1)) =
B(0,1) is not a relatively compact set in X ( Assignment 2). Therefore, the identity is not a compact

operator in this case.

Lecture 09: Schauder Fixed-Point Theorem and Applications to ODEs

Theorem 10 (Approximation Theorem for Compact Operators). Let A : S C X — Y be a compact

operator, where X and Y are Banach spaces over K and S is a bounded nonempty subset of X. Then for

everyn = 1,2,..., there exist a finite dimensional subspace Y, of Y and a continuous operator A, : S — Y,
such that )

sup ||Au — Apul|| < — and A, (S) C co(A(S5)).

u€eS n

Recall: For a set B in a linear space X, co(B) is the convex hull of B, span B is the spanning set of B.

The idea of the proof is to use the finite e-net for the set A(S) in the Banach space Y and use those
centers to define the operator A, as a linear combination of those Auy. The coefficients are chosen carefully

1
to achieve the approximation of —.
n

Sketch of the Proof. e Since A is compact, and S is bounded, A(S) is relatively compact. Using the
1

finite e-net theorem, for every n = 1,2, ..., there exists a finite 2——net for A(S). That is, there are
n

elements Auy, ..., Auy € A(S) (i.e., uy,...,uy € S) such that

1
i - < = :
 Din | Au — Aug|| < 5 for all u € S (7)

e Define the Schauder operator 4,,: S = Y,

N
> ag(u) Aug
Au =% forallues, (8)

where

1
ag: S = R, ag(u) = max{n — HAu—AukH,O}, k=1,...,N.

Claim 1: A, : S — Y is well-defined and continuous. First, a; are nonnegative functions and
because of Equation (7)), for every u € S, there is k € [1, N] such that ag(u) > 0. Therefore, A, is
well-defined. For each k, the function aj is continuous because ay is the composition of continuous

functions:

ag : u— (Au — Aug) — ||Au — Aug|| — 1 |Au — Aug|| — max{l — || Au — Auk\,O}.
n n
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Therefore, A, is a continuous function on S. From Equation , we also have
An(S) C co(Auy, ..., Auy) C Y, = Span(Auy,...,Auy), dimY, < oo

An(S) C co(Auq, ..., Auyn) C co(A(S5)).

1
Claim 2: Show that [|[Au — Apul| < - for any u € S. Indeed, we have

N N
k; ar(u) (Au — Aug) > ak(u)||Au — Aug|
A — Ayl = =1 <=
> ag(u) > ag(u)
k=1 k=1
Due to the construction of ag, for any k = 1,2, ..., we have
1
ax(w)l|Au — Augl| < —ag(u).
1

Hence || Au — Aju| < —.
n

2.9 The Brower and Schauder Fixed-Point Theorems

Rephrased from Zeidlers’book: The Brower Fixed-Point Theorem is one of the most important existence
principles in mathematics. It has interesting applications to game theory, mathematical economics, and
numerical mathematics. Further important existence principles in mathematics are the Hahn-Banach
theorem, the Weierstrass existence theorem for minima, and the Baire category theorem. The Schauder
Fixed Point Theorem is an extension of the Brower Fixed Point Theorem. We state (without proof) the

Brower Fixed-Point Theorem.

Theorem 1 (Brower Fixed Point Theorem - Version 1). Any continuous map of a closed ball in R™ into

itself must have a fized point.
Example 1. A continuous function f : [a,b] — [a,b] has a fized point x € [a,b].
Below is another variant of the Brower Fixed-Point Theorem (in Zeidler’s book).

Theorem 2 (Brower Fixed Point Theorem - Version 2). Let (X, || - ||) be a finite-dimensional normed
space and S C X is compact, convex, and nonempty. Any continuous operator A : S — S has at least one

fized point.

Example 2 (Counter Examples). The following counter examples show the essentials of each assumption

in the Brower Fized-Point Theorem (version 2).

e S =10,1] compact, convex and nonempty, but A : S — S not continuous and the graph y = A(x)

does not cross the diagonal y = x. No fixed point.
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e S=Rand A:S — S,A(x) =z + 1. A is continuous, S is convex, nonempty, but not compact. No

fixed point.

o Let S be a closed annulus and A : S — S is a rotation of the annulus around the center. A proper

rotation is fixed-point free. In this case, S is compact, nonempty but not convex.

Theorem 3 (Schauder Fixed Point Theorem - Version 1). Let (X, ||-||) be a Banach space over K (K = R
or K=C) and S C X is closed, bounded, convex, and nonempty. Any compact operator A: S — S has at

least one fized point.

The idea here is to find a fixed point for each approximation operator. Then using the compactness of

the operator A to show that the limit of the convergent subsequence is the fixed point of A.
Proof. From the approximation theorem for compact operators, for every n = 1,2, ..., there exists a finite
dimensional subspace X, of X and a continuous operator A, : S — X,, such that A, (S) C co(A(S)) and

1
|Au — Apul| < — forall uweS.
n

Let S, = X, NS.
e Step 1: Show that A,|s, : S, — S, and S, is a compact and convex set of X. Therefore,
we can apply the Brower fixed point theorem.

Step 1.1: Show that A,|s, : S, — Sn
Indeed,
Ap(S) C co(A(S)) C co(S) C S,

where the first inclusion comes from the construction of A,, the second one is because A : S — S,
and the third one is derived from the convexity of S.
Therefore, A,l|s, : Sp — Sh.

Step 1.2: Show that S, is a compact and convex set of X.

e S is bounded, so S, is bounded.

e Since X, is a finite dimensional subspace of X, X, is a closed subset of X. Since the intersection

of two closed subsets of X is a closed subset of X, .S, is closed.

e Since X, is a finite dimensional space and S,, C X, is closed and bounded, S, must be a

compact set.

e Since S and X, are convex, 5, is convex.

By the Brower fixed-point theorem, the operator A, : S;, — S, has a fixed point u,, i.e.,

Aptiy = Uy, up €Sy, forall n=1,2,...
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e Step 2: Show that {u,} and {Au,} have convergent subsequences and the limit is the
fixed-point of A.

Since u, € S, C S and S is bounded, the sequence {u,} is bounded. Since A is compact, { Auy, },, is
relatively compact in X. Therefore, there is a subsequence {Auw,, }1 of {Auy} such that

lim Au,, =veX.
k—o00

Since Auy, € S and S is closed, v € S. Moreover,
0 =ty | < 0= At | + [[ At =t | = [0 = Att | + [[ Aty = Ayt || = 0 25 k = .
Hence u,, — v as k — oo. Since A is continuous, Au,, — Av. Therefore, Av = v.

O]

Since a continuous operator on a compact set is always a compact operator, the Schauder fixed point

theorem - version 1 yields the Schauder fixed point theorem - version 2.

Theorem 4 (Schauder Fixed Point Theorem - Version 2). Let (X, || -||) be a Banach space and S C X s

compact, convez, and nonempty. Any continuous operator A : S — S has at least one fized point.

2.10 Applications to Ordinary Differential Equations

Theorem 1 (The Peano Theorem). Given (zg,uo) € R?, let F(x,w) be a real-valued continuous function
on a rectangle
S ={(z,w) €R?: |z — 0| < a and |w — up| < b},

Denote ¢ = (ma)uxs |F'(z,w)|. Then for 0 < h < a and hc <b, the following initial value problem
T,w)e

u’ =F(z,u), mo—h<z<xzo+h
u(xo) = up.
has at least one solution.
Proof. Denote X := Clxg — h,zo+ h] and M :={u € X : ||[u — uplloc < b}.
For each u € M, consider the following operator A

Au(x) == ug + /F(y,u(y))dy, for x € [xo — h,x0 + h].
@

Similar to the part of the Picard-Lindel6f theorem, we have A : M — M. Next, we will prove that A is
continuous and A(M) is bounded and equicontinuous. Since A(M) C M, the set A(M) is bounded. The

continuous of A and the equicontinuous of A(M) come from the following inequality:

|Au() — Au(z)] =

/ wF(w(y))dy] <clz—al.
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By the Arzela Ascoli Theorem, the set A(M) is relatively compact in X. Since M is bounded, this implies
A: M — M is a compact operator. Moreover, the closed ball M is closed, bounded, convex, and nonempty.

By the Schauder fixed point theorem, the equation
Au=u,u e M

has a solution u, € M. Differentiating the integral equation with respect to z, we see that u, is also a
solution of the IVP @ O

Lecture 10: Bounded Linear Operators

2.11 Bounded Linear Operator

Recall: Let X and Y be linear spaces over K (where K = R or K = C). The operator L : X — Y is called

linear if for every u,v € X and a, 8 € K, we have
L(au + pv) = aLu + SLv.

Definition 1. Let X and Y be normed linear spaces. A linear operator L : X — Y 1is called a bounded

linear operator if there exists a positive constant ¢ > 0 such that
|Lz|y < c|lz||x, forallze X.

Note: We often write ||z|| and ||Lz|| instead of ||z||x and || Lz|y.

Proposition 13. Let L : X — Y be a linear operator where X and Y are normed spaces over K (K =R

or K= C). Then the following statements are equivalent:
1. L is continuous at 0.
2. L is continuous on X.
3. There is a number ¢ > 0 such that ||Lz|| < ¢ for all x € X with ||z| < 1.
4. There is a number ¢ > 0 such that || Lz|| < c||z|| for all z € X.

Proof. (1 = 2) Let x € X and suppose {z,} C X such that Jim z, = z. Then lim (x, —x) = 0. Since

n—oo
L is continuous at 0, we have

lim L(x, —x) = L(0).

n—00

Since L is linear, L(0) = 0 and L(z,, — z) = L(zy,) — L(z), for all n € N. Therefore,

0=L(0) = lim L(z, — )= lim (L(z,) — L(z)) = lim L(z,)— L(z).

n—oo n—o0 n—oo

Hence lim_ (xn) = L(x), which means L is continuous at z € X, for any x € X. That completes the

proof.
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(2 = 3) Suppose (3) is not true. Then there exists a sequence {x,} C X such that

|lzn|| <1 and ||L(z,)|| >n, foraln=1,2,....

Let w, = n"'z,, then

1
|lwe|l < = and ||Lw,| = HL (nilxn)H =n Y L(z,)|| >1 foralln=1,2,...
n
So lim |lw,| = 0 and lim w, = 0. Since L is continuous at 0, we have lim L(w,) = L(0) = 0, a
n— o0 n—oo n— o0
contradiction with ||Lwy,| > 1.
(3 —=4) If z =0, then ||L(0)]] = 0 < ¢||0]|.
L
If x #0,let z = ﬁ Then ||z|]| =1, so ¢ > || Lz|| = H xH Therefore, c||z| > ||Lx|.
x

]

In both cases, we have ||Lz| < ¢||z||, for all z € X.

(4 — 1) Given € > 0. Choose 6 = ¢/c. Then when z € X with ||z| < J, we have

|Lz| < cllz|| < cd <e.

So for linear operators between normed linear spaces, boundedness is equivalent to continuity.

Definition 2. For a bounded linear operator L : X — 'Y where X and Y are normed linear spaces, define

the operator norm

L]l == sup [Lv] < oo
veX,||v||<1

Proposition 14. Let L : X — Y be a bounded linear operator where X and Y are normed linear spaces.
Then

1. ||Lu|| < ||L|| |lul|, for allu € X.

2. If there is a constant C > 0 such that ||Lu|| < C||u|| for alluw € X, then ||L|| < C.

3. If X # {0}, then

Lv
|L||= sup ||Lv||= sup [ Lv]|= sup | ”
veX, vl <1 veX,|v]|=1 vexw0 V]|

Proposition 15 (Bounded Linear Operators Between Finite Dimensional Normed Spaces). Let X and Y

be finite-dimensional normed spaces over K (R or C) with dim X = N and dimY = M where N, M > 1.
Then any linear operator L : X —'Y s bounded.

Sketch of the Proof. Let {e1,...,ex} and {f1,..., far} be a basis in X and Y, respectively. Suppose

M
L(e,) = Z Amnfm, m=1,...,N.
m=1
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Any z € X can be written as x = Y cpen, for some c¢q,...,cny € K. Then
n=1

N N N M M
L (Z Cnen> = Z CnL(en) = Z Cn Z amnf Z (Z CLmncn) m
n=1 n=1 n=1 m=1 m=1

Recall that we have proved in previous lectures that

N
Z Cntn
n=1

- 1I<][18L<XN|C"|

h h N§ .
[ ] W ' <

e Using the property that any two norms on a finite dimensional normed linear spaces are equivalent,
show that there is a constant C' > 0 such that | Lz|| < C||z| for all z € X.

d

Example 1. Consider a linear operator L : RN — RM  L(x) := Az (matriz multiplication), where A is

a matriz of real entries of size M x N.

1. If we use the || - ||oo morm for both RN and RM, then ||L|| =  fnax E |@mn]-
2. If we use the || - ||1 norm for both RN and RM | then ||L| = ma<XN Z |G-
3. If we use the || - ||2 norm for both RN and RM | then ||L|| = \/p(AT A), where p(B) is the mazimum

of the magnitude of the eigenvalues of the square matriz B.

Proof. (1). For any = € RY, then for any 1 < m < M, we have

N N
|(Lz)m| = Zamnfvn < Z lamn||[Tn] < {200 Z |amn| < H55||ool<ma<XMZ |G-
= n=1 n=1 =1

Therefore,

- < Z .
| L)l = 1ma<XM\(L13)! HxlloolglagM |@mn]

Therefore, ||L]| <  max Z |Gmn -

Next, we will prove that there exists # € R with ||2|| = 1 such that ||L2|/oo > ma<XM Z |@mn|.- Then

Il = sup [[Lzfloc = [[ L]0 = max Z |G|

|z[|=1
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N
Therefore, ||L|| = fnax 21 |G-
n—

N N
It remains to construct such Z. Suppose nax 3 |amn| = |@mon| for some 1 < mg < M. Let
SmM>M p=1 1

n=

A 1 i Qg > 0
Tp = .
-1 it amen <0
Then ||Z]|cc = 1 and
N N N
Lall = max [(L&)nl = (L) = 3 o = 3 lamon| = a3 faoul,
n=1 n=1 n=1
which completes the proof.
(2) & (3). Assignment 3 O

Lecture 11: Bounded Linear Operator (cont’d). B(X,Y). Dual Spaces.
Example 2. Let X = Cla,b] with ||| o, where —oo < a < b < 0o and K : [a,b] X [a,b] — R be continuous.

For each uw € X, define the integral operator

b
Tu(x) := /K(m,y)u(y) dy for all x € [a,b].

From previous lectures, T : Cla,b] — Cla,b] is a continuous and a compact operator.

Moreover, T is linear (prove this!) and

b
T\ = K dy.
|7 = max. [ IK(o.y)ldy
a

Sketch of the proof. We will compute the operator norm of T'.

e Step 1: Show that

b
7| < K dy.
|7 < max, [ 15 (z,y)ldy
a

Let u € Cla,b] and z € [a,b]. Then

b

| Kyuty) dy

a

b b b
Tu(a)| = < [ 1K@l dy < Julle [ 1K)y < lulloo mas [ 15 p)ldy.

So
b

= < .
ITullow = max, [Tu(@)| < lullos max. [ |K(zy)ldy
a
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Therefore

T| < K .
|70 < max. [ IK(w.y)ldy

Suppose nax, f |K(x,y)|dy = f|K x0,Yy)|dy for some xg € [a,b]. Since K(xo,y) is continuous on

a compact set [a b], K(xo,y) is unlformly continuous on [a,b]. Therefore, given € > 0, there exists

6 > 0 such that

| K (z0,y2) — K(x0,y1] <e forall |y1 —y2| <9, wy1,y2 € [a,b].

Step 2: Now we will construct an u. € Cla, b] with ||uc|loc < 1 such that

Tuc(zp) > max /|K(x,y)|dy —4e.

a<x<b

Let Ac = {y € [a,b] : |K(z0,y)| < e}. Then A is a closed and bounded subset in R (prove this).
Therefore, there exists y1,...,yn € A such that

A. cU — 0, y; +6].

N
Let V., = (U [yi — 0, i + (5]) N [a,b] and U = [a,b] — V. Define a function on U,
i=1

K(x0,y)
| K (20,y)|

The function is well-defined and continuous since |K(xg,y)| > € for all y € U, and K(zg,y) is

ue 1 Uz = R, ue(y) =

continuous on [a, b]. Moreover, |u:(y)| =1 for all y € U.. Extend wu, linearly, u. : [a,b] — R so that
lue(y)] < 1 for all y € [a, b].

Next, we will evaluate [y, K(zo,y)u:(y)dy. For each y € V., we have |y — y;| < § for some y; € A,
i€ {l,...,N}. Therefore,

‘K(moay” < |K(:L‘Uayl)‘ + |K($0ay) - |K(l’0,y1)|’ < 25’ for all Yy e ‘/an

and
[ 1o n)ldy < [ 20y < 200 o).
Ve Ve

Also, since |u:(y)| < 1 for all y € V., we have

Ko, y)ue(y) = =K (0, y)| lue(y)| = =K (0, y)ue(y)| = —|K (0, y)], forall y e Ve.
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Therefore,
Tus(ao) = [ Ko.pyus)dy + | K(ao.)ue(u)dy

—/ | K (x0,y |dy+/ (@0, y)us(y)dy
> [ K @oy)ldy— [ 1K (so.y)ldy
Ue Ve
b
> [C 1w y)ldy =2 [ 1K (@o.)ldy

> [ 1Ko, pldy — 400~ a)e

> max /|K z,y)|dy —4(b — a)e.

a<m<b

Then

T[] = sup [Tulloo > [[Tuelloo = max [Tu(z)| > Tus(zo) > max /IK(w,y)ldyfél(bfa)a
u€C b, ||ufloo <1 €la,b] aszsh

b
Let € — 0, we have ||T'|| > [ |K(x,y)|dy, which completes the proof.
a
O

Example 3. Here we will show an example of a discontinuous linear operator (hence the operator is not
bounded,).

d
Consider the differentiation operator D = pri X =CY0,1) - Y = C[0,1], where || - || are used for

both spacels. The operator D is not continulous at 0. Here is a counter example. Consider a sequence

{fn(t) = =sinnnt}, C X. Then ||fnllcc = —. So lim | fulloc = 0. Therefore lim f, = 0. On the other
n n n—00 n—00

hand, Df, = f], = wcosnnt. So |Df,||=m foralln=1,2,..., which means Df, + 0.

Note: The differentiation operator is continuous (prove this) when'Y is equipped with the || - ||cc norm and

X is equipped with the following norm
£ = max{|[ flloo, Iflloc}-

2.12 B(X,Y) and Dual Spaces

Definition 1. Let X and Y be normed linear spaces. Define the following set
B(X,Y):={L: X =Y bounded linear operator}.

Denote X* = B(X,R) (the dual space of X ) and B(X) = B(X, X).

Theorem 1. The set B(X,Y) is a normed linear space with the operator norm.

Proof. Exercise. O
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Proposition 16. Let X,Y and Z be normed linear spaces. If T € B(X,Y) and S € B(Y,Z) then
ST € B(X,Z) and ||ST| < ||S|IIIT]-

Proof. For each x € X, we have
IST ()| < [[SHIT ()] < ISIHT]=]-
Therefore, ST is bounded and

IST|| = sup [[ST(x)|| < sup [[S[ITI[ll] = [ISIT]

[lz]|=1 llz[l=1

O]

Corollary 2. Let X be a normed linear space. If T € B(X), then T" € B(X) and || T™| < ||T||" for all
n=12,....

Definition 2 (Convergence in Operator Norm). Let X and Y be normed linear spaces. A sequence
{T,,} € B(X,Y) is said to converge in operator norm to T € B(X,Y) if | T, — T|| = 0 as n — 0.

Proposition 17. Let X, Y and Z be normed linear spaces. If T,,,T € B(X,Y) and S,,S € B(Y, Z) with
T, — T and S, — S as n — oo, then S,T,, = ST € B(X, Z).

Proof. We have
150 Tn = ST < |50 T = SuT|| + [[SnT = ST < [|Sull|1 T — T + 150 = SIIT-

Since lim S, = S and the norm is a continuous function, lim ||S,|| = ||S|. We also have lim ||S,,—S]| =0
n— 00 n— o0 n—00
and lim ||7,, — T'|| = 0. Therefore,
n—oo

0 < lim |[S,T, — ST < [[S]|0 + 0||T|| = 0,
n—oo
So lim ||S,T,, — ST|| =0 and lim S, T, = ST. O

Theorem 2. Let X be a normed linear space and'Y be a Banach space. Then B(X,Y') is a Banach space.

In particular, X* is a Banach space.

Proof. Let {T,,} C B(X,Y) be a Cauchy sequence in B(X,Y’). Given € > 0, there exists N. > 0 such that
T, — Tl < € for all n,m > N..

e Step 1: Construct the limit pointwise. Indeed, for each z € X and n,m > N, we have
[Tn(x) = Ton (@) || < T — Tl ]| < el|]]- (10)

Therefore, for each € X, the sequence {T),(z)}, is a Cauchy sequence in Y. Since Y is Banach, the
sequence {T),(z)}, converges. Denote T(z) := Jim T,(z). We have defined a function T': X — Y
such that for each x € X, T'(z) := li_)m T (x).

n—oo
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e Step 2: Show that T is linear. Indeed, let ¢1,co € K and x1,29 € X. For each n = 1,2,..., T, is
linear, so

Tn(c1z1 + cawe) = e1Tp (1) + 2T (22).

Letting n — oo, we have
T(clxl + 02$2) = ClT($1) + CQT(ZL‘Q),

because of the construction of T'.

o Step 3: We will show that T,,—T € B(X,Y) for all n sufficiently large, " € B(X,Y), and || 1,,—T|| —
0 as n — oo. From , letting m — oo and keeping everything else, we get

T (x) — T(x)|| <ellz||, forall z€ X and foralln> N,.
Therefore for every n > N, T, — T € B(X,Y) and ||T,, — T'|| < €. Therefore,
T=Ty.—(In. —T) € B(X,Y),

and T,, — T as n — oo.

Lecture 12: Infinite Series. Operator Functions. Neumann Series.

m
Definition 3. Let X be a normed space over K and let u; € X for all j. If n}gnoo > uj exists, denote
§=0

o m

X 3 w; = lim ;
Z J m_mZ“J’
j=0 Jj=0

o
and the infinite series ) uj;is called convergent. This infinite series is called absolutely convergent iff
j=0

o0
> Nl < o
j=0

Proposition 18. A normed linear space X is a Banach space if and only if every absolutely convergent

infinite series with terms in X is convergent.

o

Proof. (=) Suppose X is a Banach space. Let ) u; be an absolutely convergent infinite series in X.
j=0

Then for every € > 0, there exists N. > 0 such that for every n > N, k > 0, we have

n+k

> il <e.

Jj=n+1

m
Denote s, = > u; € X, then for every n > N,, k > 0, we have

7=0
n+k n+k
Isn+x —sall =11 D° wll < D0 Jusll <e.
j=n+1 j=n+1
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Hence the sequence {s,} is a Cauchy sequence in X. Since X is a Banach space, the limit ILm Sp, exists.
n—oo

o0
Therefore, the infinite series '20 uj converges.
J:
(<) Suppose every absolutely convergent infinite series with terms in X is convergent. We need to

prove that X is a Banach space. Here is the sketch of the proof. Let {z,} C X be a Cauchy sequence.

1
e Construct a subsequence {x,, } so that ||z,, —xpn, || < o for all £ > 1.

[e.e]
e Prove that the series (a:no + 2 (wpy ., — ank)) is absolutely convergent, hence it is convergent.
k=

m
e Therefore lim x = lim [z, + x —x exists. Denote £ = lim =z, .
m—oo  m+l m—o00 1 kZ::O( k1 nk) m—oo " m

e Combining with the assumption that the sequence {z,} C X is a Cauchy sequence, prove that

lim z; = x.
j—00

d

Theorem 3 (Theorem and Definition). Let X be a Banach space over K (where K=R or K=C) and a
series
> .
F(z):= Zajz], z€K, a; €K forallj
=0
such that
0 .
Z laj| |z)! < oo forall ze€ C with |z| <r and some fized r > 0.
j=0

o8} .
Then for each A € B(X) with ||A|| <r, the series Y a;A’ is also an element in B(X).
=0

Proof. Let A € B(X) with ||A]| < r. From the assumption on the series, we have gé |la;| | Al < oo. For
every j > 1, we have =0
la; A7} < fag ||| Al
Therefore, by the comparison test, the series §0 ajAj is absolutely convergent. Since B(X) is a Banach
j=

[e'e) . 0 .
space, the series ) a;A’ is a convergent series. That is > a;A’ € B(X). O
j=0 §=0

Definition 4. Let A: X — Y and B : Y — X be linear operators, where X and Y are linear vector
spaces over K. If AB = Iy and BA = Ix, A is said to be bijective and denote A~! = B.

Example 1. Let X # {0} be a Banach space over K.

1. Ezponential Function. For each A € B(X), the infinite series 3 — A7 is also an element in B(X).
j=07J"
Denote
=1
et =3 ~A e B(X)
=07’



Moreover, for all t,s € K, we have
oA gSA _ (t+s)A

2. Neumann Series. Let A € B(X) with ||A|| < 1. Then the following statements hold.

(a) The infinite series - A7 is also an element in B(X). The series Y. A7 is called the Neumann

=0 =0
series.
(b) The operator (I — A) € B(X) is bijective and (I — A)~! = § A
=0
1
c I—A)7Y< .
(0) I =47 < T

(d) Given g € X, the equation (I — A)u = g with the unknown uw € X has a unique solution
0 .
u=(I—-A)"1g= ZAJg.
j=0
Moreover, u can be approrimated by

Up =g+ Ag+ A%g+ ...+ A" Iy

with the error

= unll < L2 jgl foratt n=1,2,...
1— |l A]
© 1 . )
Proof. Hint: Using Theorem [3|for F'(z) = > ,—'zﬂ =e*and F(z)= > 2/ = , respectively.

j=0J" j=0 -

o

For Example 2, let’s verify > A/ = (I — A)~'and ||(I — A)7}| < T JA] Obviously,
j=0 -

(I—A) (iAj) =1 and (im) (I—A)=1.
j=0

J=0

o
Hence Y. A7 = (I — A)~!. From the inequality
3=0

>
§=0

m . e . 1
<AV < AN = T
j=0 j=0

letting m — oo, we have

I =47 = <

1
1Al

> 4
=0

(d). Suppose u is a solution for (I — A)u = g. Then

IT-A)lg=T-A)T-Au=Tu=u.

Finally, since
U—up=A"g+ A" g4 = AT+ A+ )g=A"I—-A) g,
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we have

A" g1
T[]

Note: wu,, is the iteration generated from the Banach fixed point theorem for v = Tu with Tu = Au+ g

lu = unll < AT = A)~ gl <

and the Lipschitz constant is ||A||:

[Tw = To|| = [[Au — Av|| = [|A(u = v)[| < [[A][[u = v].

2.13 Fréchet Derivative

Definition 1 (Definition and Theorem). Let X and Y be normed linear spaces over K (where K =R or
K =C). An operator F : X — Y is Fréchet differentiable (F-differentiable) at a € X if and only if there
exists a bounded linear operator DF (a) : X —'Y such that

1o IP(a+ k) = F(a) = DF(@)(h)|
h—0 Al

~0. (11)

An operator DF(a) (if exists, i.e., DF(a) € B(X,Y) and DF(a) satisfies Equation ) is unique and s
called the Fréchet-derivative of F' at a.

Proof. Suppose F': X — Y is Fréchet differentiable at a € X and there are two bounded linear operators
Li,Ls : X — Y such that
|[F(a+h) — F(a) — Li(h)] _|[F(a+h) — F(a) — Ly(h)]

e Tl =0 and - jim, ] =0

Combining with

[L1(h) = La(R)[| _ [[F(a+h) = F(a) = Lo(R)|| + || = (Fa +h) = F(a) — L1 (h)) |

0< < ;
Al Al
we have I
i () = La(W)I| _
h—0 12l
I L(R)|]

Let L=L;— Ly € B(X,Y), then %ir% Al = 0. We will show that L(z) = 0 for all x € X. Since L is
H
linear, L(0) = 0. Fix z € X,z # 0. For t € K, if ¢ — 0 then tx € X and tx — 0. Therefore,

L)l _ . JHIL@)] (L@

0= — —
=0 tzl| =0 [¢]]|a] [zl

The second equality holds because L is linear. Therefore, ||L(x)|| = O||z|| = 0, so L(z) = 0 for all
x € X \ {0}. Hence L(z) = x for all x € X. In other words, an operator DF'(a) (if exists) is unique. [

Example 1. 1. If F € B(X,Y) then F is F-differentiable everywhere and DF(a) = F for alla € X.
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2. Let F : R" — R and suppose ' € CY(R") (i.e., 0;f ewists and is continuous on R, 1 < i < n).
Then DF(a) € B(R™,R) is defined by

DF(a)(h) :=V f(a)-h. (dot product)

of;

J
Ty

3. Let F : R" — R™ and suppose F € C*(R",R™) (i.e., exists and is continuous, 1 < i < n,

1<j<m). Then F is F-differentiable and

of1 o
87501(@) T Txn(a)
DF(a)(h) := : : : h.  (matriz multiplication)
0 fm O fm
87301(@) T oz, (a)

The matrix itself is the usual Jacobian matrix.

Lecture 13: Fréchet Derivative. Hahn-Banach Theorems and Applications.

Recall: An operator F' : X — Y (between normed linear spaces X and Y') is Fréchet differentiable at
a € X if and only if there exists a bounded linear operator DF(a) : X — Y such that

1o IF(@+1h) = F(a) - DF(@h]l _
h—0 Al

If F' is Fréchet differentiable, we can write

[1R(a, b

F(a+h) = F(a) + DF(a)h + R(a,h), where lim =0,
h—0  [h|

or
F(a+ h) = F(a) + DF(a)h + ||h||r(h), where }llin%r(h) =0,
%
or
F(a+h)=F(a)+ DF(a)h+ o(||h]]).
Remark 2. 1. The Fréchet derivative is a generalization of derivative in R. That is, if ' : R — R s

Fréchet differentiable at a € R, then F' is differentiable at a and
DF(a)(z) = F'(a)z, Vz€eR.

Proof. Since F' is Fréchet differentiable at a € R, there exists DF(a) € B(R,R) such that

o o [Fla+h) = F(a) = DF(a)(h)
h—0 Id

Since
B(R,R) ={L:R — R s.t. L(x) = cx, Yz € R, for some c € R},
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there exists some constant ¢ € R such that

DF(a)(z) = cx,Yz € R.

So
0= lim |F(a+ h)— F(a) — DF(a)(h)| — lim |F(a+ h) — F(a) — ch| ~ lim F(a+h) — F(a) d
h—0 |h h—0 |h h—0

50 F h) —F

c= lim (a+h) - (a),

h—0 h
which implies F' is differentiable at a and ¢ = F'(a). Therefore,
DF(a):R— R, DF(a)(z)=F'(a)z, Vz€R.
U

. To compute the Fréchet-derivative of an operator F': X =Y ata € X, where X and Y are normed
linear spaces, we write F'(a+h)—F(a) as a summation of a linear operator (w.r.t. h) and a remainder
(which is nonlinear in h)

F(a+ h) — F(a) = Lh+ R(a,h),
and prove that L is bounded and

1o IR G, )]
h—0  ||A]]

The linear operator L € B(X,Y) is the DF(a) in the definition.

= 0.

. If F: X =Y is Fréchet-derivative at a € X, where X and Y are normed linear spaces, then for any

x € X, we have

DF(a)(z) = lim F(a+tx) — F(a)

, teR. (Prove this)
t—0 t

Note: This formula is used to compute the Fréchet-derivative of an operator F. After this, we need
to check that DF(a) is a bounded linear operator and R(a,h) = F(a+ h) — F(a) — DF(a)h satisfies
. [[R(a, h)|

lim

0 || =0

F tr) — F
Here is an example of an operator F' : X — Y, where lim (a + tz) ()

t— t
a € X but F is not Fréchet differentiable at a. Consider F : R?> — R given by

, t € R exists for an

0 Zf 332:0,
F(x1,29) =X} .3

T w0

Z2
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The operator F is not continuous at (0,0), for example, F(t,t3) — 1 ast — 0, but F(0,0) =0. On
the other hand,

F(tz) — F(0,0) |V if x2=0,

= 3
¢ 2L if w2 #0.

So lim =0 for any (z1,72) € R%

t—0

F(tz) — F(0,0)
t

Example 2. 1. Let X = C}[0, 1] be the space of all C* functions on [0, 1] which vanish at the endpoints

with norm
1 1/2
|| = [/ [u2 + (u')ﬂ d:p] .
0
Consider an operator K : X — R defined by

1
K(u) = / [u3 + (u')ﬂ dz.
0

Compute the Fréchet derivative of K.

2. Let X = Cla,b] with || - ||cc norm. Let T : X — X be the nonlinear integral operator defined by

b
(Tu)(z) = u(m)/ K(z,s)u(s)ds,
a
where K (x,s) is continuous on [a,b] X [a,b]. Compute the Fréchet derivative of K.
Proof. Exercise and See Dr. Vrscay’s notes (attached in the next pages). O

Proposition 19. Let X and Y be normed linear spaces over K (where K=R or K= C). If F is Fréchet

differentiable at a € X then F is continuous at a.

Proof. Since F' is Fréchet differentiable at a € X, there exists § > 0 such that when ||| < J, we have
[F(a +h) = F(a) = DF(a)(h)[| <[]
So for all h € X with ||h|| < 6, we have
[F(ath)=F(a)| < [|[F(at+h)=F(a)=DF(a)(h)[|+[DF(a)(h)]| < [[RII+[DE(@)[[[[2] = A+ [DE ()[R
As h =0, (1 + |[DF(a)|)||h|| = 0. Therefore,
lim [|F'(a + h) — F(a)|| = 0,
h—0
which means }lLiI% F(a+ h) = F(a). Therefore F' is continuous at a. O
—

Proposition 20. Let X,Y and Z be normed linear spaces over K.
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1. Let f,g: X =Y be Fréchet derivative at a € X. Then for any o, 8 € K, we have
D(af +Bg)(a) = aDf(a) + fDg(a).

2. (Chain Rule) Suppose F : X — Y is Fréchet differentiable at a € X, G :' Y — Z is Fréchet
differentiable at F(a). Then Go F : X — Z is Fréchet differentiable at a and

D(G o F)(a) = DG(F(a)) DF(a).

Proof. Set b= F(a). By the assumptions,

F(a+h) — F(a)
G+ k) — G(b)

DF(a)h+ [|h]ri(h)
DG (b)k + [|kl[r2(F),

where ||ri(h)|| = 0 as h — 0 and ||r2(k)|| - 0as k — 0, for h € X,k €Y.
For h € X, denote k = DF(a)h + ||h|/r1(h). Now we compute

G(F(a+h) = G(F(a)) = G(b+ DF(a)h+ hllri(h)) - G(b)
= DGH)(DF(@)h + [[hlri(h)) + [k]ra(k)
= DG(b)DF(a)h + [ DG () (r1 () + k|ra(k)

The operator DG(F(a))DF(a) : X — Z is a bounded linear operator since it is the composition of two
bounded linear operators DF'(a) and DG(F(a)). Observe that

IE] < (IDF @)+ r (W) [IR], VR € X, (12)
and
Il < IDG@IIn M+ i) < IDGOIn®] -+ (IPF@] + In®I) Il (13)

Now letting h — 0. Since ||ri(h)|| — 0 as b — 0, from (12)), we have k& — 0 and hence ro(k) — 0.
Therefore, from , we have
(Rl

—0 as h—0.
Al

O
2.14 Hahn-Banach Theorems. Generalized Mean Value Theorem. Separation Theo-
rems.
Definition 1. Let X be a vector space over K. We say that p: X — [0,00) is sublinear if it satisfies

p(Az) = Ap(z)  (positive homogeneous),
p(x +vy) <p(x)+ply) (triangle inequality),
for any x,y € X and real A > 0.
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Lemma 6 (Zorn’s Lemma). Suppose S is a nonempty, partially ordered set (reflexivity, antisymmetry,
and transitivity). If every totally ordered subset C' (that is, every two elements in C are comparable) of S

has an upper bound; that is, there is some u € S such that
x<u forall xeC.
Then S has at least one mazimal element; that is there is some m € S such that for any x € S,
if m<zxz then m=ux.

Theorem 1 (The Hahn-Banach Theorem for linear spaces). Let X be a subspace of a real vector space

X and p be a sublinear on X. If fo : Xo = R is a linear functional such that
fo(z) <p(z), Ve Xo,
then there is a linear functional f : X — R such that

flxo = fo, (i-e., [ is a linear extension of fo)

and
f(x) <p(z), VxelX.

Sketch of the proof. Step 1: We first prove the statement in the special case when X = Xy + span(v)
with a fixed v & Xg. Set

fwv+x0) = folzo) + Ae, Vg € Xo, VA ER,
where ¢ € R is a fixed number satisfying

sup (fo(u) —plu—v)) <c< mf (p(w+v) = fo(w)).
u€Xo weXo

We first show that such ¢ exists. Indeed, for all u,w € Xy, we have
fo(u) + fo(w) = folu+w) < plu+w) < p(u —v) + p(w + v).

Therefore,
Jo(u) = p(u—v) < p(w+v) = folw), Yu,we Xo,

which means such c exists. Next, we will verify that the defined f is a linear functional on X | f|x, = fo
(leave it as an exercise).
Finally, we will prove that f(Av + x¢) < p(Av + x¢) for all 9 € Xy and for all A\ € R. The statement is

true for A = 0. For A > 0, from the requirement on c,

c<plw+v)— fo(w), Ywe Xy
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we have
¢ <p(A "t + ) — fo(A o) = A7 (P(ﬂfo + Av) — fo(xo))7

f(zo 4+ M) = Ae+ fo(zo) < p(xo + Mv).

Similarly, for A < 0, from the requirement on c,
¢ = fo(u) —p(u—v), Vue Xo,
we have
c> fo(=A"1ag) — p(=A"1ag —v) = =X (folzo) — plzo + M),

flxo+ Av) = e+ fo(zo) < p(xo + Av).

Step 2: Let S be the set of all linear extensions g of fo defined on a vector space X, C X and satisfying

the property g(z) < p(z) for all € X,. Since fyp € S, S is not empty. Define a partial ordering on S by
g < h means that h is a linear extension of g. For any totally ordered subset C C S, let

Y = U Xy, ge(x) =g(x) for any g € C such that x € X,.
gec
Since C is totally ordered, gc is well-defined. Moreover g¢ € S and is an upper bound for C. Applying
the Zorn’s lemma, S has at least one maximal element f. By definition, f is a linear extension of fy and
f(z) < p(x) for all x € X¢. It remains to show that Xy = X. If not, there exists v € X \ Xy. Applying
results from Step 1, we can construct a linear extension of f to f on Xy + Rv. This contradicts the

maximality of f. Therefore, X; = X, which completes the proof. O

Theorem 2 (The Hahn-Banach Theorem for normed spaces). Let Xo be a subspace of a normed space X
over K, where K=R or K= C. Let fo: Xg = R be a linear functional such that

|fo(x)] < allz|]| Y€ Xy and fized o > 0.
Then there is a linear functional f : X — R such that

flx, = fo, (i.e., f is a linear extension of fo)

and
|f(z)] < allz|| VzelX.

Sketch of the proof. We prove the case K = R. Define
p(x) :=a|z| Vxe X.

We can verify that p(x) is sublinear (Prove this). Since fo(z) < |fo(x)| < p(z), by the Hahn-Banach
theorem for linear spaces, there is a linear functional f : X — R such that f|x, = fo and f(z) < «f|z]|.

Since
—f(2) = f(—2) < af —z| = oz,

we also have f(z) > —a||z| for all z € X. Therefore, |f(x)| < a/z| for all x € X. O
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Lecture 14: Applications of Hahn-Banach Theorems. Hilbert Spaces.

Below is another version of the Hahn-Banach theorem for normed spaces.

Theorem 3 (The Hahn-Banach Theorem for normed spaces). Let Xg be a subspace of a normed space X
over K, where K=R or K= C. Let fo € X;. Then there is a linear functional f : X — R such that

flxo = fo and ||f]| = foll-

Proof. In class (use previous theorem with |fo(zo)| < ||folll|zo] for all zg € Xy. Prove that the linear

functional extension also preserves the norm, that is, || f|| = || foll- O

Proposition 21 (Supporting Functional). Let X be a normed space. For every a € X, a # 0, there exists
f € X* such that

£ =1, f(a) = [la]-

The function f is called the supporting functional of a.

Proof. Define fo : Xo = span(a) — R, fo(ta) = t||lal|. Obviously, fo is a linear functional on X, and

|fo(uw)] = ||u]| for all w € Xy. Applying the Hahn-Banach theorem, there exists f € X* such that
fla) = fo(a) = [la]| and |f(u)] < [lu]| for all w € X. So || f|| < 1.
On the other hand, since |f(a)| = ||a||, || f|| = sup “‘C'(‘”H)' > |J|c|(“|)| — 1. Therefore, ||f| = 1. O
x#0 [T a
Example 1. For (R", || -||2),a € R",a # 0, a supporting functional is f(x) = ﬁ.
a
Proof. Exercise: Verify that f € (R™)*, || f|| =1 and f(a) = ||a]|. O

Recall: For a linear functional f € X* where X is a normed linear space, the operator norm of f is

11 = sup X — g 1521

20 1zl <1

In general, we may not be able to replace the supremum above by the maximal. That is, there exist a
normed linear space Xand a linear functional f € X* such that |f(z)| < ||f||||z| for all z € X, x # 0. Find
an example. Note that the normed linear space in this example should be infinite dimensional. (Explain!)

However, every vector z € X does attain its norm on some functional f € X*.

Corollary 3. Let X be a normed linear space over K. Then for all a € X, we have

aj| = max a)|.
Jall = _maxx _ lo(a)

Proof. If a =0, g(a) =0 for all g € X*. The statement holds.
If a # 0, from Proposition 21, there exists f € X* such that ||f|| =1 and f(a) = ||a||. So

sup |g(a)| = f(a) = |a].-
geX llgll<1
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On the other hand, we have

sup |g(a)l < sup lgllllall < o]

geX™ llgll<1 geX* llgll<1
Therefore,
fla) =llall=" sup [g(a)l.
geX ™ [lgll<1

Note that f € X* and ||f|| = 1. That means

aj| = max a)l.
= _max _ lo(a)

The following theorem is useful to prove certain operator is a contraction mapping.

Theorem 4 (Generalized Mean Value Theorem). Let F : X — Y be an operator between normed linear
spaces X andY anda,b € X, a #b. Suppose F is continuous on the closed segment {a+t(b—a),0 <t < 1}
and Fréchet differentiable on the open segment {a +t(b—a),0 <t < 1}. Then

1F(®) = Fla)ll < sup [DF(a+t(b—a))[lb—all

Sketch of the proof. Let g € Y* such that g(F(b) — F(a)) = ||F(b) — F(a)|| and |/g|| = 1. Consider
®:[0,1] - R
O(t) = g(Fla+tb—a)), t €]0,1].

Since g € Y*, Dg(y) = g for all y € Y. By the chain rule, the Fréchet derivative of ® at ¢t € (0,1) is
DO(t): [0,1] - X 25 v P4 R
DA(t) = Dg(F(a+t(b—a))) [DF(a+t(b - a))(b—a)| = g[DF(a+t(b—a)) (b—a)|.
By the mean value theorem,
O(1) — ®(0) = Dd(ty) for some to € (0,1).
g(F(b) —g(F(a) =g [DF(a +to(b—a)) (b—a)
g(F(b) — F(a)) < |lgll|| DF(a +to(b — ) [0~ al
|E(b) = F(a)|| < Sup |[DF(a+t(b—a))l[b—all.
O

Theorem 5 (Separating a point from a convex set). Let K be an open convez subset of a normed space

X and consider a point xo & K. Then there exists a linear functional f € X*, f # 0 such that

f(x) < f(zo) VxeK.
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Proof. Assignment 3. O

Theorem 6 (Separating Hyperplane Theorem). Let A and B be disjoint, nonempty, convex subsets of a

normed linear space X .

1. If A is open, then there exists a functional f € X* and ¢ € R such that f(a) < ¢ < f(b) for all
a€ A, beB.

2. If both A and B are open, then there exists a functional f € X* and ¢ € R such that f(a) < ¢ < f(b)
forallae A, be B.

3. If A is compact and B is closed, then there is f € X* and ¢ € R such that f(a) < ¢ < f(b) for all
ac€ A, beB.

Proof. Assignment 3. O

3 Inner Product Spaces

Hilbert spaces are an important and simplest class of Banach spaces, where the concept of orthogonality
is defined. With a view to applications, the most important Hilbert spaces are the real and complex
Lebesgue spaces Lo(G) and the related Sobolev spaces Wi (@) and Wi (@), where G ¢ KV and K = R or
K=C.

3.1 Inner Product Spaces

In this chapter, the scalar field K is R or C.

Definition 1 (Inner Product). Let X be a vector space over K. An inner product on X is a function
()X x X = K that satisfies

i <x+y72>:<x7z>+<y?z>? vw?y?’zeX

o (ax,y) =alx,y), Vz,yeX, ackK

o (x,2) >0, (xr,z)=0 iff =0

Then (X, (,)) is an inner product space.

Note: If (X, (,)) is an inner product space, then
(x,ay) =alx,y), Ve,ye X, ackK
(ax + Py, z) = oz, z) + By, z), Vaz,y,z€ X,Va,5 € K.
(v,ay + Bz) = alxz,y) + Blz,2), Vx,y,2z€ X,Va, B € K.
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Definition 2 (Orthogonality). Let (X, (,)) be an inner product space and x,y € X. Then x is called
orthogonal to y if (x,y) = 0.

Theorem 1 (Cauchy-Schwarz Inequality). Let X be an inner product space. Then every two vectors

x,y € X satisfy
(@, y)| < (. 2)! 2y, y) /2.

Sketch of the proof. The inequality is true if z = 0 or y = 0. For fixed x # 0 and y # 0, we have
(x —ay,x—ay) >0 Vaeck

(z,2) —a(z,y) —a((y,z) —a(y,y)) >0
(y, )
(y, )

Corollary 4. Let X be an inner product space. Then X is a normed space with the norm defined as

Choose @ = . Then simplifying the left hand side, we get the result. O

]| == (2, z)"/>.
Proof. Exercise. O

Definition 3. Let (X, (,)) be an inner product space. X is called a Hilbert space if X is a Banach space

with the normed induced by the inner product.

Theorem 2. Let (X, || -||) be a normed space. The norm || - || is generated by an inner product if and only

if the parallelogram equality holds:
o +yl2 + e —yl2 =2 (Jal + Jy)?), Vauye X
Sketch of the proof. (=) Suppose ||z|| = \/{x,z) for some inner product (,) on X. Then verify that
lz+yl? + llz = yl* = 2 (ll21* + ly]®) ,  Vay e X
(<) Suppose the norm || - || satisfies the parallelogram equality. For x,y € X, define
(w.9) = 5 (Je +yl” — o — o).
We will verify that (,) is an inner product on X (prove this). O

Remark 3. Not all normed spaces are inner product spaces. For example, the space £P with p # 2 and
the space (Cla,bl, | - |loo)-
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Lecture 15 & 16 : Examples of Hilbert Spaces. Projection Theorem. Riesz Represen-
tation Theorem. Adjoint Operators.

Example 1. 1. The space R™ is a Hilbert space over R with the standard inner product defined by
n
(x,y) = Z Ty for x,y € R™.
k=1

2. The space C" is a Hilbert space over C with inner product defined by

n
(x,y) := Zxk@ for x,y € C".
k=1

b
3. The space Lala,b] = {f a,b) = K st []f(1)|*dt < oo} is a Hilbert space over K with inner

a

product defined by (f,g) = fbf(t)@dt.

o0
4. The space by = {x = (z1,22,...) st Y |33j|2 < oo} is a Hilbert space with inner product defined
i=1

by

(z,y) == Zl‘k% for x = (x1) € la,y = (yx) € Lo
k=1

5. The space (P, || - ||p) with p # 2 is not an inner product space.

Proof. We will show that the norm does not satisfy the parallelogram equality.
Take z = (1,1,0,0,---) € {, and y = (1,—1,0,0,---) € ¢,. Then

lzll = llyll = 2"7, |z + yll = l|lz —y]| = 2

So the parallelogram equality is not satisfied. O
6. The space (Cla,b], | - |loo) is not an inner product space, hence not a Hilbert space.

t —
Proof. Take f(t) = 1 and g(t) = ﬁ We have | f|| = [lg]l =1 and [[f + gl = 2,[[f — gl = 1. So
the parallelogram equality is not satisfied. O

Proposition 22. If in an inner product space, T, — x and y, — y then (x,,yn) — (x,y).
Proof. We have
[(Zns yn) = (@9 = Kzn, yn) = (@n, ) + (@0, y) — (2, 9)] = (@0, Y0 — ) + (20 —2,9)| <
< [nyn — )| + Ko — 2, 9) < llzall lyn — yll + [lon — 2| [yl

Let n — oo, we get
0= Jim [(en,un) — (2, )] < ll}0 +0]ly] = 0.

Hence, nh—%o (zn, yn) — (z,y)| =0, nli_)rglo@:n, Yn) = (z,y), which completes the proof. O
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3.2 Orthogonal Projection

Definition 1. Let A be a subset of an inner product space X. The orthogonal complement of A is defined
as
At ={zeX:(z,a) =0 forall ac A}.

Proposition 23. Let A be a subset of an inner product space X. Then AL is a closed linear subspace of
X and An At c {0}.

Proof. Exercise. O

Theorem 1. Let Y be a closed linear subspace of the real or complex Hilbert space X and x € X be given.
Then the following holds

(i) There exists a unique y € Y such that

lz = yll = min f|lz — |

(i) The point y in part (i) is the unique vector in'Y such that x —y € Y*+.
The point y is called the orthogonal projection of x onto the subspace Y .

Proof. (i) Ewistence. Denote d = inlf/ ||z — z||. By the definition of the infimum, there exists a sequence
zE

{yn} C Y such that ||z — y,| — d as n — co. We will prove that {y,} is a Cauchy sequence.

Using parallelogram law, we have

2

1Yn — ym||* + 4 =2(|lz — yn|* + |z — ym|?) for n,m > 1.

1
T — i(yn +ym)

1
T — 7(yn +ym)H >

1
Since Y is a linear subspace of X and ¥, ¥ € Y, we have §(yn+ym) € Y. Therefore, 5

d. Hence

1 2
2= (o +ym)|| <201z = yal® + |z = ymll*) — 4>

1y = ymll* = 2(llz = yall* + |z = yml?) — 4 5

Let n,m — oo, we have ||z — y,|| — d, |7 — ym|| — d and
0< lim |y — yml|® < 4d*> — 4d* = 0.

n,M—00

Therefore, lim |yn, — ym|| = 0 and {y,} is a Cauchy sequence. Since X is a Hilbert space, there exists
n,m—00

y € X such that nh_)rr;o Yn = y. Since y, € Y and Y is closed, y € Y. In conclusion, we have
lz = yll = min f|lz — z].
Uniqueness. Suppose there is also § € Y such that

lz = gll = min f|lz — z].
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1
Applying the parallelogram law and using > d (since i(y +9) €Y), we have

1 .
x—i(y—i-y)

N 1 Nk .
Iw—m9+4x—§@+y)==%M—yW+Hm—M5=4f7
2 2 1 2
0<|ly—g|*=4d" -4 $—§(y+@7) <0

Solly—gl*=0,y=4.
(ii). Orthogonality. Clearly, (x —y,0) = 0. Take z € Y,z # 0. We will prove that (z — y,z) = 0. By the

construction of y in part (i), we have
lz = ylI* < llz = (y + AP = llz = ylI* + APll2]* = Mz 2 = y) = X —y, 2),
0 < [APf2]1* = Mz —y,2) = Mz — ., 2).
<.73‘ - Y Z>

Plugging A\ = W into the above inequality, we conclude
z

. 2
o-p 2P
]

which only happens when (x — y, z) = 0.

Uniqueness. Assume there is also y* € Y such that  —y* € Y. Theny —y* = (z —y*) — (x —y) € Y-
On the other hand, y — y* € Y since y,y* € Y. Soy —y* € YNY+ C {0}. Therefore, y —y* = 0 and
y=y" O

Note in part (i), we only need the condition that if y,,y, € Y then its average is also in Y. Therefore,

we have a more general result for part (i).

Theorem 2 (Hilbert’s Projection Theorem). Given a closed convex set'Y in a Hilbert space X and x € X.

There exists a unique y € Y such that
I~ yll = minlz — .

Corollary 5 (Orthogonal Decomposition). Let Y be a closed linear subspace of the real or complex Hilbert

space X. Then every vector x € X can be uniquely represented as

r=y+w, yevy, weY?t
The orthogonal decomposition is usually written as X =Y @Y+,
Note: We can prove that X/Y = Y+ (linear isomorphism).

Definition 2 (Orthogonal Projection). Let Y be a closed linear subspace of the real or complex Hilbert
space X. The map Py : X — X, Py(z) =y, where v = y+w and (y,w) € Y X Y, is called the orthogonal

projection in X onto Y.
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3.3 Riesz Representation Theorem
Lemma 7. Let (X, {,)) be an inner product space. Then
1. (z,0) =(0,z) =0, VrelX
2. If there are y1,y2 € X such that (z,y1) = (x,y2) for all x € X, then y; = ys.
Proof. Exercise. O
Theorem 1 (Riesz Representation Theorem). Let X be a Hilbert space over K, where K =R or K= C.
1. For every y € X, the functional f: X = K, f(z) = (z,y) is an element in X* and || f] = ||y||-

2. Conversely, for every f € X*, there exists a unique y € X such that f(x) = (z,y) for every x € X.
Moreover, || f| = [lyl-

Proof. (1). If y = 0, then the function f(z) = (x,0) = 0, for every z € X, is an element in X* and
1 =0=1llyl.
If y # 0, we first verify that f(z) = (x,y) is linear. (prove this).

Using Cauchy-Schwarz inequality, we have

[f (@) = [{z, y) < llz[l[[y]l-

So f is bounded and ||f|| < ||yl

On the other hand, || f|| = sup @)l > @)l
w0 ||zl [yl
(2). Existence. Consider f € X*. If f =0, we can take y = 0 and f(x) = (z,0) for every z € X.

Consider f € X*, f # 0.

= [lyll. Therefore, | £ = [lyl

e Step 1: Prove that dim(X/ker f) = 1.
Since f # 0, Imf # {0}. Moreover, since Imf is a subspace of K and dimg K = 1, we have dim Im f <
1. So dimImf = 1. From the linear isomorphism X/ker f = Im f, we have dim(X/ker f) = 1.

e Step 2: Verify ker f is a closed subspace of X. Indeed, we know that ker f is a linear subspace of X.
Also, since f is continuous and {0} C K is a closed set of K, ker f = f~1{0} is a closed set of X.

e Step 3: By the orthogonal decomposition theorem, we have X = ker f @ (ker f)* and dim(ker f)* =
dim(X/ker f) = 1. Without loss of generality (by scaling), we can assume that (ker f)=Span(yp) for
some yp € X and f(yo) =1 (note that yo & ker f so f(yo) # 0, therefore we do the scaling).

e Step 4: Find y.
Take x € X. Then

[z = f(@)yo) = fz) — f(@)f(yo) = f(x) — f(z) = 0.
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Therefore, w = x — f(z)yo € ker f. So (w,yp) = 0. Now compute

(z,y0) = (w+ f(x)yo,y0) = (w,y0) + f(x){v0,%0) = f(x){¥o,%0),

Yo
fe) = o o

Yo

1yoll*
Uniqueness If there is alo § such that f(x) = (x, ) for all x € X, then

Set y =

(x,y) = (x,9) forevery z€ X.

By above lemma, y = §.

3.4 Hilbert Adjoint Operator

Definition 1. Let T : H — H be a bounded linear operator, where H is a Hilbert space. Then the Hilbert
adjoint operator T of T is an operator T* : H — H such that

(Tz,y) = (x, T*y) forallx,y € H.

Theorem 1. Let T : H — H be a bounded linear operator, where H is a Hilbert space. Then the Hilbert

adjoint operator T* of T exists and moreover, T* is also a bounded linear operator and | T*|| = ||T||.

Proof. e Step 1: Construct 7*. Let y € H. Define | : H — K, l(x) := (T'z,y). We can verify that
| € H* (check this). Moreover, using Cauchy-Schwarz inequality and the boundedness of T, we have

()| < ([T |llyll < 1Tyl = [Tyl
Therefore [ is bounded. By the Riesz representation theorem, there exists a unique y* € H such that
l(z) = (x,y*) forevery z € X.
and ||I]] = ||y*||. We define T* : H — H,T*(y) = y*. Then clearly,
(T, y) = l(x) = (z,y") = (2, T"y).
e Step 2: Verify T™ is linear. Indeed, let o, 8 € K and y, 2z € H. We have

(e, T* (o + B2)) = (T, ay + B2) = (T, ay) + (T, f) = &(Tz,y) + B{Tz, 2)
=a(z, T*y) + Bz, T*2) = (x,aT*y + BT*2).

Since this equality holds for every x € H, from Lemma 7, we have

T (ay + Bz) =aT*y+ Tz forally,z € H o, € K.
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e Verify T™ is bounded. Indeed, we have
1Tyl = (T*y. T*y) = (TT*y,y) < [TT*yllllyl < ITIIT*yllyll-
So || T*y|| < ||IT|||ly|| for every y € Y. Therefore T* is bounded and ||T*|| < ||T||.

e Show that ||T*| = ||T.
Since T* € B(H), we can apply steps 1,2,3 and have T** € B(H) and ||[T™*| < ||T|.
On the other hand, for every x,y € H, we get

(Tx,y) = (x, T"y) = (T*y,x) = (y, T**z) = (I x,y),

where the first and the third equalities come from the definition of 7 and T™*. Since (T'x,y) =
(T**z,y) for all y € H, we have Tx = T**z for all € H. Therefore, T'= T**. In conclusion, we

have
IT| = ([T = (|7 = [|T']l,

which implies ||T'|| = |7

Lemma 8. Let X and Y be inner product spaces and T € B(X,Y). Then

1. T=0 if and only if (Txz,y) =0 forallz € X,y €Y.

2. If T: X — X and X is a complex inner product space and (T'x,x) =0 for all x € X, then T = 0.
Proof. Exercise. O
Definition 2. A bounded linear operator T : H — H on a Hilbert space H is said to be

o self-adjoint (Hermitian) if T* =T, i.e., (Tx,y) = (x,Ty) for every x,y € H.

o unitary if T is bijective and T* = T~".

e normal if TT* =T*T.

Clearly, if T is self-adjoint or unitary, T is normal.

Proposition 24. Let T : H — H be a bounded linear operator on a Hilbert space H and T be onto. Then
T is unitary if and only if (Tx,Ty) = (x,y) for all xz,y € H.

Proof. In class. O

3.5 Lecture 18: Generalized Fourier Series
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3.7 Sturm-Liouville Problem

The next three pages are taken from Dr. Siegel’s notes for AMATH 731.
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4.10 Sturm-Liouville Problem

Consider the Sturm-Liouville problem:
Lu+Xru=0 on [a,b], Lu= (pu') + qu
Riu =0, Rou =0, Ryu = aju(a) + asu’(a), Reu = Bru(b) + P’ (b)
lat| + o] > 0 and |81 + |B2] > 0, p,p,q,r € Cla,b], p(zx),r(z) >0 on la,b],

D(L)={f € C?a,b]: Rif =0, Rof =0}, L:D(L) — C[a,b].

Theorem 4.16: If A =0 is not an eigenvalue of L then

b

L‘lv(af):/g(x,y)v(y)dy where g € O([a,b]*) and  g(y,z) = g(z,y) .

a

Proof: L[u] = pu” + p'v’ + qu = 0 has nonzero solutions

uy(z), ug(z) on [a,b] sothat Ryu; =0, Roug =0

Consider the Wronskian w(zx) =

w(z)

w(a)

=—1In ‘p(_x

p(a)
w(a) # 0, since if w(a) = 0 then Rjus = 0 and then uy is a nonzero solution to Luy =
0, Riug = 0, Rous = 0, a contradiction. Thus w(z) # 0 Vx € [a,b] so that u; and uy
Liu| =wv

are independent solutions. Given v € C|a,b] we solve by variation of
Rlu = RQU =0

w'(z) = — )w(x) = In

= w(z)p(r) = wla)p(a)

parameters:

u(x) = crui(x) + cous(z) + 2(x), 2(z) = uy(x)vy(x) + ug(z)ve(2)

RPN SV
101 T Uty N pw  pla)w(a)
' uiv uiv

!, !
ulvl _|_ UQUQ - UQ - -

pw pla)w(a)
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Choose c1, ¢y to satisfy the BC’s:

Ru=0=c¢=0

=

~—

g —
&

g S
[\ —
G
< <
— [\
E &
Q Q
IN A
< S
IN A
8 «
IN A
S S

Example 4.11: Lu=u" u(0) =u(l)=0=p=1

w(r) =z, u(z)=2r—-1=>w=

Uy U2|

! !
Uy Uy

z(y—1), 0<zx<y<l1
= g(z,y) =
(z—1)y, 0<y<z<l1

We now return to the general Sturm-Liouville problem. Suppose that A = 0 is not an

eigenvalue of L. Lu+ Mru= 0= u= —AL"'(ru).
b

Let Tu(x) = —L7(ru) = —/g(x,y)r(y)u(y)dy. = u = AT'(u).

a

Letuzi(for/\%O)—)T(u):,uu.

b b
Let (u,v), = /u(x)v(as)r(a:)da |, = /uz(x)r(x)d:x since 0 < ro < r(x) < 7, on

a

la, b], o, constants,
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g(y, x)r(x)w(zr)dedy = (v, Tw),

Thus T is self-adjoint and compact on (Lg[a,b],(,),). By the Spectral Theorem T has
eigenfunctions ¢; with eigenvalues i, p; # 0 : Ty = pip; or —L7H(re;) = pich;

Qbi - Lg[d, b] = gbz - C’[a,b] = qbz - D(L) = {f - 02[6L,b] : le = Rgf = O}
= T(Cla, b])

Claim:  {¢;} is an orthonormal basis for Ls[a,b] (equivalently p = 0 is not an eigenvalue
for T').
Tf=> AT, ¢:)o;.

i=1
Let S = D(L). S is dense in Ls|a, b] (with respect to the Ly norm). Given h € Ls[a, b] there
exists {h,} C S so that h, 2 .

hn =Y (hn,6i)¢i and > (h,¢:)¢; converges to
i=1 i=1
Vo =Bl = 11> — by i)l < |lhn — |
=1

Thus h, > hsoh=h=h=> (h,¢:)¢;.

i=1
Therefore {¢;} is an orthonormal basis for Ls[a, b].
If A = 0 is an eigenvalue for L with regard to Riu = Rou = 0 take A\* not an eigenvalue.
Replace q(z) by §(z) = q(x) + Nr(x), Lu = (pu') + Gu. L has eigenvalues A, = A, — \*

which are never zero.

Theorem 4.17: The Sturm-Liouville problem has a set of eigenfunctions {¢,} which form
an orthonormal basis for Lola,b].
More is known: A\; < Ay < ---, lim A\, = 00, each eigenvalue has multiplicity one.

n—oo
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3.8 Sobolev Spaces

Definition 1. Let G be a nonempty open set in R, n > 1. Then
1. CHG)={u:G =R s.t. u has continuous partial derivatives of orders m =0,1,... k}.
2. C°(G)={u:G—R st u has continuous partial derivatives of orders m =0,1,...}.

3. C°(G) = {u € C*°(G) s.t. u vanishes outside a compact subset C' of G that depends on u, i.e.,
u(z) =0 for allz € G — C}.

Proposition 25. Let G be a nonempty open set in R™,n > 1. Then Ly(G) = C®(G) = C§°(G). That is,
for every u € Lo(G), there exists {u,} C C5°(G) such that u, — w in La(G).

Sketch of the proof. Main idea: using mollifier, an important smoothing technique. The details can be
found in Zeidler’s book, pages 186-189.
e Consider .
d(z) = cel#l? =1 if |z] <1
0 if |z| > 1.

The constant ¢ is chosen so that [ ®(z)dz = 1. Verify that ® € C§°(R"™).
R
e For each ¢ > 0, define
1 x .
O (x)=—27 (> , G.={zreG: dist(z,0G) > ¢}.

en €

Verify that &, € C§°(R") and ®.(z) =0 if |x| > ¢ for all € > 0.
e For each u € Ly(G), set u = 0 outside G. Define
urla) == [ @l — puly)dy.
R"
Verify that u. € C*(G.), u. € L2(R™) and u. — u in L2(G) as € — 0.

d

Lemma 9 (Variational Lemma). Let G be a nonempty open set in R",n > 1 and u € La(G) such that
/ woder =0 Yv € Ci°(Q).
G

Then u(z) = 0 for almost all x € G. In addition, if u € C(G) then uw(z) =0 for all x € G.
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Proof. Since Lo(G) = C§°(G), there exists {u,} C C5°(G) such that w,, — u. Then
(u,u) = (u,nli_{rgo Up) = nh_)r]g()(u, Up) = 0.
So u(z) = 0 for almost all z € G. O

Recall Integration by Parts

1. In 1D, u,v € C'[a, b], then ffu’vd:v =wv |° —ffuv’d:v.
In addition, if v(a) = v(b) = 0, then f; wvdr = — f; wv'dx.

2. In R™, let G be an open set in R™. Then
/ uD*® dx = (—1)'0"/ Deuddx  for u € C*(Q), ® € CF(Q),
G G

oo 9o

where o = (a1,...,a,) and DO“<I>::5;?7]5---5;%7

Below is the definition of weak derivatives from Zeidler’s book.

Definition 2 (Weak Derivatives). Let G be a nonempty open set in R™ n > 1. Let u,w € Lo(G) and
suppose

/u(‘?j@dw:—/ w®dz, forall ® € C°(G).
G G

th

Then w is called an o*—weak partial derivative of u, where o = (0,...,0,1,0,...,0) and 1's is at the

Gt -position.
Here is the general definition of weak derivatives.

Definition 3. Let G be a nonempty open set in R",n > 1. Let u,w € Llloc(G) where
Li(G)={v:G =R st. veLi(V) for each V C V compact C G}

Suppose
/uD%dm:(—l)‘al/ wdde for all @ € C(G).
G G

Then w is called an o™

-weak partial derivative of u.
Lemma 10. A weak o'"-partial derivative of u if exists, is uniquely defined up to a set of measure zero.

Proof. Assume w,w € L}, (G) satisfying the formula. Then

/G(w—zﬂ)@d:czo.

By the variational lemma, w — w = 0 a.e. O
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Example 1. Consider v : (—1,1) = R, u(z) := |z| for all x € (—1,1). Then the following function is the
weak derivative of u in the weak sense.
-1 if —1<x<0
w(z) =4c if =0
1 if 0<z<l1

where c is fixed, but otherwise arbitrary real number.

Proof. Let ® € C5°(—1,1). Then

1 0 1 0 1
/uq)'dx:/uq)’dx—i— u@'d:ﬁz—/m@'dﬂ:+/x®'d$.
-1 ~1 -1

Using integration by parts, we have

0

1 0 1 1
—/m@'dw—l—/xfbldm:/@dm—/fbdm:—/w@dm,
0 1 0 -1

-1
which implies w is the derivative of u in the weak sense. O
Example 2. Consider

x if 0<z<l1

u(z) =
2 if l<z<?2

The function u does not have a weak derivative.

Proof. Let ® € C§°(0,2). Suppose there exists w € Ly(0,2) such that

2 2
—/wq)dx:/uq)’da:
0 0

u@daz—f—/u@d:p

/<I>d:r—

where the third line is obtained by integration by parts on the right hand side. Therefore,

o—_ _

:/wq)da:—/q)dx Vo e C5°(0,2).

Consider {®,,} C C§°(0,2) such that ®,(1) =1,0 < &, (x) <1 for all z € (0,2) and ®,,(x) - 0asn — o

for all z € (0,2) \ {1}. Then
hm (/wq) da:—/fb dx) =0,
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but
lim &,(1) =1,

n—oo

a contradiction. This completes the proof. O

Definition 4 (Sobolev space W}?(G)) Let G be a nonempty open set in R™,n > 1. Denote
Wo(G) = {u € Ly(G) s.t. Oju ewists in the weak sense and dju € La(G) Vj=1,...,n}.
On WHG), define

(u,v)12 ::/ (uv—l—zajuajv) dx,
G

Jj=1

. 1/2
= % dx + /8‘ 2d .
Juls (/Gu v 3 [ (o ds

In general, fir 1 < p < oo and let k be a nonnegative integer. Define

Wif(G) ={u€ L, .(G) st D% exists in the weak sense and D*u € Ly(G) for all |a| < k}.

On Wlﬁc(G), define

1/p
lallip = (Z / |D“u|pdaz) .
o<k’ ¢

Denote H*(G) = W§(G).

Theorem 1. For each k = 1,2... and 1 < p < oo, the Sobolev space ij(G) is a Banach space and
WQI“(G) is a Hilbert space, provided we identify two functions whose values differ only on a set of measure

zero.
Sketch of the proof. We will sketch the proof for Wi (G).
e Verify that W3 (G) is an inner product space.
e Verify that W3 (G) is a Banach space.
o Let {u,} C W3(G) be a Cauchy sequence. For every £ > 0, there exists N. > 0 such that
lun, —umlli2 <e Vn,m > Ne.

Since |lvll1.2 > ||v|2 and |[v]12 > [|0;v]|2 for all v € W(G), the sequences {d;u}, for every
j=1,...,n,and {u,}, are Cauchy sequences in Ls(G). Since Ly(G) is a Banach space, there
exists wj,u € Ly(G) such that

Jim |0jun —wjlla =0, Vj=1,...,n and nh_{gloHun—qu = 0.
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e Show that w; = 0ju in the weak sense. Indeed, from

/unﬁjq)da:: —/ Oju, ®dz,
G G

letting n — 0o, we have
/ u0;®dr = —/ w;® dx,
G G
which implies w; = 0ju in the weak sense.

e Finally, show that ||u, —ul12 — 0 as n — oc.

d

Definition 5. Let G be a nonempty open subset in R",n > 1. Let Wy (G) be the closure of C3°(G)
in the Hilbert space W (G). That is, u € Wy (G) if and only if there exists {un} C C3°(G) such that

|tm —ull12 = 0 as m — oo.
Proposition 26. The space WQO’l(G) is a real Hilbert space.

Proof. Hint: C§°(G) is a linear subspace of the Hilbert space W4 (G) and the closure of a linear subspace
of a Hilbert space is also a Hilbert space. O

Proposition 27. Let G = (a,b) C R, where —oco < a < b < oo. Ifu € WQO’I(G), there exists a unique
continuous function v : [a,b] — R such that u(z) = v(zx) for almost all x € (a,b) and v(a) = v(b) =0. In

addition
1/2

b
ol < (6= )2 ( / <u/>2dx) < (b= )" 2julsz

a
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5.6. SOBOLEV INEQUALITIES 277

DEFINITION. If1 < p < n, the Sobolev conjugate of p is

* np
8 = ——
0 P
Note that
1 1
9) pri p*>0p

The foregoing scaling analysis shows that the estimate (5) can only pos-
sibly be true for ¢ = p*. Next we prove this inequality is in fact valid.

THEOREM 1 (Gagliardo—Nirenberg-Sobolev inequality). Assume 1 <p
< n. There exists a constant C, depending only on p and n, such that

(10) | [l @y < C|| Dul| o>
for all u € CL(R™).

Now we really do need u to have compact support for (10) to hold, as the
example v = 1 shows. But remarkably the constant here does not depend
at all upon the size of the support of u.

Proof. 1. First assume p = 1.

Since u has compact support, for each i =1,...,n and z € R™ we have

ZTi
u(m)z/ umi(azl,...,mi_l,yi,aziﬂ,...,mn)dyi;

—c0
and so

o0

u(@)| g/ Du(@s, gy za)| e (i =1,...,m).

—0Q

Consequently
n A [P =
(11) lu(z)|»-T < H (/ |Du(z1, .- -5 Yis - - n)| dyi>
i=1 N TP

Integrate this inequality with respect to z1:

1

/:;IulﬁT dai < /:1:11 (/_ilDuldy,-)m da1
" - (/:‘D“‘ dw)n_h / 0;12 ( / O:o 1Dyl dyi>"_£_l dy

1

< </_: |Du|dy1>—n_}1 (ﬁ/o:o /_o:o | Dul dxldyz)m ,

=2




278 5. SOBOLEV SPACES

the last inequality resulting from the general Holder inequality (§B.2).
Now integrate (12) with respect to za:

o0 x> n
/ / |u|»=T dx1dzo
—00 J =00

< (/ / [Du[ dxldg;2> / Hfin_l dxg,
—00 J—o0 —00 ;1

12 ~

for

o0 o0 oo
L ;:/ |Duldy1, I ::/ / |Du|dz1dy; (1=3,...,n).
—co0 J —o0

-0

Applying once more the extended Holder inequality, we find

o I} n
/ / lu|»=T dz1dzs
—0 J—o0
1 1
0 0 o o0 oo n—1
S </ / ID’U,I dxldy2> (/ / ]Dul dyldxz)
—o0 J—0 —o0 J —o0
L oo oo oo ﬁ
i=3 —00 J —o0 J —0o0

We continue by integrating with respect to zs, .. ., Z,, eventually to find

n n oo o} 'ni—l
/ M:ﬁdmﬁH(/ / |Du|dm1...dyi...d:cn>
R i=1 WX e

ki3

»:(/n]Duldz>m.

This is estimate (10) for p = 1.

(13)

2. Consider now the case that 1 < p < n. We apply estimate (13) to
v := |ul?, where v > 1 is to be selected. Then

n—1

(/ ]ul;ziln—l dm) " < / |D|ul7| dz =fy/ Iul’)’—llDulda?
. p=1 1
<75 (/ [u]('y_l)zo'i-ZT d:v) ’ </ | DulP dm) .

We choose «y so that ;7% = (y — 1);2; . That is, we set

(14)

= p_____(n—l) >1
n—p

k)
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in which case % = (v — 1);2 = 7% = p*. Thus, in view of (5), estimate

(14) becomes
L 1
</ |ulP" dx) T <c (/ | Dulf? d:z:> . O
n Rn .

THEOREM 2 (Estimates for W1P,1 < p < n). Let U be a bounded, open
subset of R, and suppose OU is C*. Assume 1 <p <n, andu € whe(U).
Then uw € LP"(U), with the estimate

(15) lull Lo @y < Cllullwrew)
the constant C depending only on p,n, and U.

Proof. Since U is C!, there exists according to Theorem 1 in §5.4 an
extension Eu = 4 € WLP(R™), such that

(16)

{ % = w in U, @ has compact support, and
lallwrrmey < Cllullwe@)-

Because % has compact support, we know from Theorem 1 in §5.3 that there
exist functions u,, € CP(R™) (m = 1,2,...) such that

(17) Um — @ in WHP(R™).

Now according to Theorem 1, ||t — uil zo* (gny < C||Dum — Duy|| o (mny for
all ,m > 1. Thus

(18) Um — @ in LP (R™)

as well. Since Theorem 1 also implies [[um|| o+ gny < Cl|[Dtm|| L2 (wn), asser-
tions (17) and (18) yield the bound

|/l Lo+ ny < ClI D Lo (rr)-
This inequality and (16) complete the proof. a
THEOREM 3 (Estimates for WO1 P 1<p<mn). Assume U is a bounded,

open subset of R™. Suppose u € Wol’p(U) for some 1 < p < n. Then we
have the estimate ’ '

lull ey < CllDull o)
for each q € [1,p*], the constant C depending only on p,q,n and U.
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