4.10 Sturm-Liouville Problem

Consider the Sturm-Liouville problem:

$$
\left\{\begin{array}{l}
L u+\lambda r u=0 \quad \text { on } \quad[a, b], L u=\left(p u^{\prime}\right)^{\prime}+q u \\
R_{1} u=0, R_{2} u=0, R_{1} u=\alpha_{1} u(a)+\alpha_{2} u^{\prime}(a), R_{2} u=\beta_{1} u(b)+\beta_{2} u^{\prime}(b),
\end{array}\right.
$$

$\left|\alpha_{1}\right|+\left|\alpha_{2}\right|>0 \quad$ and $\quad\left|\beta_{1}\right|+\left|\beta_{2}\right|>0, \quad p, p^{\prime}, q, r \in C[a, b], \quad p(x), r(x)>0 \quad$ on $\quad[a, b]$, $D(L)=\left\{f \in C^{2}[a, b]: R_{1} f=0, R_{2} f=0\right\}, \quad L: D(L) \rightarrow C[a, b]$.

Theorem 4.16: If $\lambda=0$ is not an eigenvalue of L then

$$
L^{-1} v(x)=\int_{a}^{b} g(x, y) v(y) d y \quad \text { where } \quad g \in C\left([a, b]^{2}\right) \quad \text { and } \quad g(y, x)=g(x, y) .
$$

Proof: $L[u]=p u^{\prime \prime}+p^{\prime} u^{\prime}+q u=0$ has nonzero solutions

$$
u_{1}(x), u_{2}(x) \quad \text { on } \quad[a, b] \quad \text { so that } \quad R_{1} u_{1}=0, R_{2} u_{2}=0
$$

Consider the Wronskian $w(x)=\left|\begin{array}{ll}u_{1}(x) & u_{2}(x) \\ u_{1}^{\prime}(x) & u_{2}^{\prime}(x)\end{array}\right|$.

$$
w^{\prime}(x)=-\frac{p^{\prime}(x)}{p(x)} w(x) \Rightarrow \ln \left|\frac{w(x)}{w(a)}\right|=-\ln \left|\frac{p(x)}{p(a)}\right| \Rightarrow w(x) p(x)=w(a) p(a)
$$

$w(a) \neq 0$, since if $w(a)=0$ then $R_{1} u_{2}=0$ and then u_{2} is a nonzero solution to $L u_{2}=$ $0, R_{1} u_{2}=0, R_{2} u_{2}=0$, a contradiction. Thus $w(x) \neq 0 \quad \forall x \in[a, b]$ so that u_{1} and u_{2} are independent solutions. Given $v \in C[a, b]$ we solve $\left\{\begin{array}{l}L[u]=v \\ R_{1} u=R_{2} u=0\end{array}\right.$ by variation of parameters:

$$
\begin{aligned}
u(x)= & c_{1} u_{1}(x)+c_{2} u_{2}(x)+z(x), z(x)=u_{1}(x) v_{1}(x)+u_{2}(x) v_{2}(x) \\
& \left\{\begin{array} { l }
{ u _ { 1 } v _ { 1 } ^ { \prime } + u _ { 2 } v _ { 2 } ^ { \prime } = 0 } \\
{ u _ { 1 } ^ { \prime } v _ { 1 } ^ { \prime } + u _ { 2 } ^ { \prime } v _ { 2 } ^ { \prime } = \frac { v } { p } }
\end{array} \Rightarrow \left\{\begin{array}{l}
v_{1}^{\prime}=-\frac{u_{2} v}{p w}=\frac{-u_{2} v}{p(a) w(a)} \\
v_{2}^{\prime}=\frac{u_{1} v}{p w}=\frac{u_{1} v}{p(a) w(a)}
\end{array}\right.\right.
\end{aligned}
$$

Choose c_{1}, c_{2} to satisfy the BC's:

$$
\begin{aligned}
R_{1} u=0 & \Rightarrow c_{2}=0 \\
R_{2} u=0 & \Rightarrow c_{1}=\int_{a}^{b} \frac{u_{2}(y) v(y) d y}{p(a) w(a)} \\
\Rightarrow u(x) & =u_{1}(x) \int_{a}^{b} \frac{u_{2}(y) v(y)}{p(a) w(a)} d y+\int_{a}^{x} \frac{\left[-u_{1}(x) u_{2}(y)+u_{2}(x) u_{1}(y)\right]}{p(a) w(a)} v(y) d y \\
& =\int_{x}^{b} \frac{u_{1}(x) u_{2}(y)}{p(a) w(a)} v(y) d y+\int_{a}^{x} \frac{u_{2}(x) u_{1}(y)}{p(a) w(a)} v(y) d y \\
& =\int_{a}^{b} g(x, y) v(y) d y, g(x, y)=\frac{1}{p(a) w(a)} \cdot \begin{cases}u_{1}(x) u_{2}(y), & a \leq x \leq y \leq b \\
u_{2}(x) u_{1}(y), & a \leq y \leq x \leq b\end{cases}
\end{aligned}
$$

Example 4.11: $L u=u^{\prime \prime}, u(0)=u(1)=0 \Rightarrow p=1$

$$
\begin{gathered}
u_{1}(x)=x, u_{2}(x)=x-1 \Rightarrow w=\left|\begin{array}{ll}
u_{1} & u_{2} \\
u_{1}^{\prime} & u_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
x & x-1 \\
1 & 1
\end{array}\right|=1 \\
\Rightarrow g(x, y)= \begin{cases}x(y-1), & 0 \leq x \leq y \leq 1 \\
(x-1) y, & 0 \leq y \leq x \leq 1\end{cases}
\end{gathered}
$$

We now return to the general Sturm-Liouville problem. Suppose that $\lambda=0$ is not an eigenvalue of $L . L u+\lambda r u=0 \Rightarrow u=-\lambda L^{-1}(r u)$.
Let $T u(x)=-L^{-1}(r u)=-\int_{a}^{b} g(x, y) r(y) u(y) d y . \Rightarrow u=\lambda T(u)$.
Let $\mu=\frac{1}{\lambda}($ for $\lambda \neq 0) \rightarrow T(u)=\mu u$.
Let $\langle u, v\rangle_{r}=\int_{a}^{b} u(x) v(x) r(x) d x,\|u\|_{r}=\sqrt{\int_{a}^{b} u^{2}(x) r(x) d x}$ since $0<r_{0} \leq r(x) \leq r_{1}$, on $[a, b], r_{0}, r_{1}$ constants,
$\|u\|_{r}$ is equivalent to $\|u\|=\sqrt{\int_{a}^{b} u^{2}(x) d x}$.

$$
\begin{aligned}
&\langle T v, w\rangle_{r}=-\int_{a}^{b} r(x) w(x) \int_{a}^{b} g(x, y) r(y) v(y) d y d x \\
&=-\int_{a}^{b} r(y) v(y) \int_{a}^{b} g(y, x) r(x) w(x) d x d y=\langle v, T w\rangle_{r}
\end{aligned}
$$

Thus T is self-adjoint and compact on $\left(L_{2}[a, b],\langle,\rangle_{r}\right)$. By the Spectral Theorem T has eigenfunctions ϕ_{i} with eigenvalues $\mu_{i}, \mu_{i} \neq 0: T \phi_{i}=\mu_{i} \phi_{i}$ or $-L^{-1}\left(r \phi_{i}\right)=\mu_{i} \phi_{i}$

$$
\begin{aligned}
\phi_{i} \in L_{2}[a, b] \Rightarrow \phi_{i} \in C[a, b] \Rightarrow \phi_{i} \in D(L) & =\left\{f \in C^{2}[a, b]: R_{1} f=R_{2} f=0\right\} \\
& =T(C[a, b])
\end{aligned}
$$

Claim: $\left\{\phi_{i}\right\}$ is an orthonormal basis for $L_{2}[a, b]$ (equivalently $\mu=0$ is not an eigenvalue for T).

$$
T f=\sum_{i=1}^{\infty}\left\langle T f, \phi_{i}\right\rangle \phi_{i}
$$

Let $S=D(L) . S$ is dense in $L_{2}[a, b]$ (with respect to the L_{2} norm). Given $h \in L_{2}[a, b]$ there exists $\left\{h_{n}\right\} \subset S$ so that $h_{n} \xrightarrow{L_{z}} h$.

$$
\begin{aligned}
h_{n} & =\sum_{i=1}^{\infty}\left\langle h_{n}, \phi_{i}\right\rangle \phi_{i} \text { and } \sum_{i=1}^{\infty}\left\langle h, \phi_{i}\right\rangle \phi_{i} \text { converges to } \bar{h} \\
\left\|h_{n}-\bar{h}\right\| & =\left\|\sum_{i=1}^{\infty}\left\langle h_{n}-h, \phi_{i}\right\rangle \phi_{i}\right\| \leq\left\|h_{n}-h\right\|
\end{aligned}
$$

Thus $h_{n} \rightarrow \bar{h}$ so $\bar{h}=h \Rightarrow h=\sum_{i=1}^{\infty}\left\langle h, \phi_{i}\right\rangle \phi_{i}$.
Therefore $\left\{\phi_{i}\right\}$ is an orthonormal basis for $L_{2}[a, b]$.
If $\lambda=0$ is an eigenvalue for L with regard to $R_{1} u=R_{2} u=0$ take λ^{*} not an eigenvalue. Replace $q(x)$ by $\hat{q}(x)=q(x)+\lambda^{*} r(x), \hat{L} u=\left(p u^{\prime}\right)^{\prime}+\hat{q} u$. \hat{L} has eigenvalues $\hat{\lambda}_{n}=\lambda_{n}-\lambda^{*}$ which are never zero.

Theorem 4.17: The Sturm-Liouville problem has a set of eigenfunctions $\left\{\phi_{n}\right\}$ which form an orthonormal basis for $L_{2}[a, b]$.

More is known: $\lambda_{1}<\lambda_{2}<\cdots, \lim _{n \rightarrow \infty} \lambda_{n}=\infty$, each eigenvalue has multiplicity one.

