AMATH 840: Advanced Numerical Methods for Computational and Data Science

Giang Tran Department of Applied Mathematics, University of Waterloo Winter 2024

Part 1: Sparse Optimization and Compressive Sensing 1.1: Sparse Solutions of Underdetermined Systems

Winter 2024

Solving Underdetermined Linear System $A\mathbf{w} = \mathbf{y}$ Underdetermined system $A\mathbf{w} = \mathbf{y}$: Least Squares Solution

Underdetermined system $A\mathbf{w} = \mathbf{y}$: Sparse Solutions

Introduction to Compressive Sensing

Main Questions

Compressive Sensing Models

Applications, Motivations, and Extensions

Linear Models: y = Aw

• Given $\mathbf{y} \in \mathbb{C}^m$ and a measurement matrix $A \in \mathbb{C}^{m \times N}$,

find
$$\mathbf{w} \in \mathbb{C}^N : A\mathbf{w} = \mathbf{y}$$
.

- The linear system may be inconsistent (no solutions), have one solution, or have infinitely many solutions.
- For the remaining of this section, we only study consistent linear systems.
 - The solution set is of the form

$$\mathbf{w}^{\#} + \mathcal{W},$$

where $A\mathbf{w}^{\#} = \mathbf{y}$ and \mathcal{W} is an $(N - \operatorname{rank}(A))$ dim. subspace of \mathbb{C}^{N} .

• When $m \ge N$ and A is full column rank (i.e., rank(A) = N), then

$$\dim \mathcal{W} = N - \operatorname{rank}(A) = 0 \Rightarrow \mathcal{W} = \{\vec{0}\}.$$

Therefore the consistent linear system has a unique solution.

 For example, the Nyquist-Shannon sampling theorem says that the sampling rate of a continuous-time signal must be twice its highest frequency in order to ensure reconstruction. • If the consistent linear system is underdetermined, i.e., *m* < *N*, then the number of free variables is

$$N - \operatorname{rank}(A) \ge N - \min\{m, N\} = N - m > 0.$$

Therefore, the linear system has infinitely many solutions.

- In practice, we are only interested in finding a specific solution to the system ⇒ Need additional information.
- Example 1: Given A ∈ ℝ^{m×N}, y ∈ ℝ^m and rank(A) = m. Then Ax = y has at least one solution. Moreover, the solution with the smallest Euclidean norm is unique and is given by

$$\mathbf{w}_{ls} = A^T (A A^T)^{-1} \mathbf{y}.$$

Underdetermined system Aw = y: Least Squares Solution

Proof.

- Suppose w_{ls} is a solution of Ax = y and w_{ls} has the smallest Euclidean norm among all solutions of the system Ax = y.
- Then **w**_{ls} is a solution of the following optimization problem:

$$\min_{\mathbf{w}\in\mathbb{R}^N}\frac{1}{2}\|\mathbf{w}\|_2^2 \quad s.t. \quad A\mathbf{w}=\mathbf{y}.$$

• The corresponding Lagrangian is

$$L = \frac{1}{2} \|\mathbf{w}\|_2^2 + \lambda^T (\mathbf{y} - A\mathbf{w}), \text{ where } \lambda \in \mathbb{R}^m.$$

• At the critical point $(\mathbf{w}_{ls}, \lambda_{ls})$, we have:

$$0 = \nabla_{\mathbf{w}_{ls}} L = \mathbf{w}_{ls} - A^T \lambda_{ls} \Rightarrow \mathbf{w}_{ls} = A^T \lambda_{ls}, \ \mathbf{y} = A \mathbf{w}_{ls} = A A^T \lambda_{ls}$$

- Since $rank(AA^T) = rank(A) = m$ and $AA^T \in \mathbb{R}^{m \times m}$, (AA^T) is invertible.
- Therefore

$$\lambda_{ls} = (AA^T)^{-1} \mathbf{y}$$
 and $\mathbf{w}_{ls} = A^T (AA^T)^{-1} \mathbf{y}$.

- Matlab code: $w = A \setminus y$.
- Python code:

import numpy as np
Load A and y
w_ls = np.linalg.lstsq(A, y, rcond=None)[0]

Underdetermined system Aw = y: Least Squares Solution

Recall: Given $A \in \mathbb{R}^{m \times N}$, $\mathbf{y} \in \mathbb{R}^m$ and rank(A) = m. Consider

$$\min_{\mathbf{v}\in\mathbb{R}^N}\frac{1}{2}\|\mathbf{w}\|_2^2 \quad s.t. \quad A\mathbf{w}=\mathbf{y}.$$

- Pros: A closed-form solution, $\mathbf{w}_{ls} = A^T (AA^T)^{-1} \mathbf{y}$.
- Cons:
 - 1. Least squares solutions likely overfit the data (See the codes).
 - 2. Least squares solutions are not robust to noisy measurements.
 - In many applications, the solution with smallest Euclidean norm is not the expected solution. For example, reconstruct a one-dimensional discrete signal f : {1,..., N} → C from a partial collection of its Fourier coefficients {f(ξ₁),..., f(ξ_m)}. Note that m < N.

Underdetermined system Aw = y: Sparse Solution

Another assumption: w is a sparse vector, i.e., most components of w are
 0. Note that we don't know the locations of the nonzero entries. The problem can be recast as

 $\min \|\mathbf{w}\|_0 \quad s.t. \quad A\mathbf{w} = \mathbf{y}.$

- Does the sparsity assumption valid?
 - Related to simplicity, bet-on-sparsity principle, sparsity-of-effects principle, Pareto principle.
 - A system is usually dominated by main effects and low-order interactions.
 - Pareto principle: 80/20 rule or the law of the vital few.
 - Many real-world signals and images are compressible, i.e., well-approximated by sparse signals after an appropriate change of basis: MP3 signals, JPEG images,...

• In many applications, measurements are expensive or time consuming. ¹ ¹See Section 1.2, "A Mathematical Introduction to Compressive Sensing", by Foucart and Rauhut.

Example: Sampling Theory

Original Gray Image and Compressed Image (by keeping around 10% highest absolute values of the Fourier coefficients)

Solving Underdetermined Linear System $A\mathbf{w} = \mathbf{y}$

Underdetermined system $A\mathbf{w} = \mathbf{y}$: Least Squares Solution

Underdetermined system Aw = y: Sparse Solutions

Introduction to Compressive Sensing

Main Questions

Compressive Sensing Models

Applications, Motivations, and Extensions

Compressive Sensing Problems

- Goal: Compress and Sense (acquire) data at the same time.
 - Acquire the compressed version of a signal directly via much fewer measured data than the signal length.
 - Reconstruct an s-sparse vector w ∈ C^N from an underdetermined system y = Aw ∈ C^m, where m ≪ N.
- Terminologies: Compressive sensing, compressed sensing, compressive sampling, sparse recovery.
- Definition: A vector w ∈ C^N is called s-sparse if at most s of its entries are nonzero.
- Challenges: The locations of the non-zero entries of w is unknown
 Introduce the nonlinearity.

Compressive Sensing Problems

- Main questions:
 - 1. What matrices A are suitable?
 - Compressed sensing is not suitable for arbitrary matrices A.
 - Need to design a suitable linear measurement process.
 - What is the minimal number of measurements? ← Should depends on the compressed size, not on its uncompressed size!
 - 3. What are efficient (fast, stable, robust) reconstruction algorithms? Some popular ones are:
 - *l*₀-algorithms: Orthogonal Matching Pursuit (OMP), Iterative Hard Thresholding (IHT), Hard Thresholding Pursuit (HTP)
 - *l*₁-Optimization algorithms: FISTA, spgl1, Split Bregman/ADMM, SpaRSA, first-order primal-dual algorithm with linesearch.

Explain why compressed sensing is not suitable for arbitrary matrices A.

Compressive Sensing Problem: Models

 $\bullet~\ell_0\mbox{-minimization:}$ NP-hard in general.

$$\min \|\mathbf{w}\|_0 \quad s.t. \quad A\mathbf{w} = \mathbf{y}.$$

• ℓ_1 -minimization (convex relaxation of the ℓ_0 -minimization):

min
$$\|\mathbf{w}\|_1$$
 s.t. $A\mathbf{w} = \mathbf{y}$ (Basis Pursuit).

Other models:

- min $\|\mathbf{w}\|_1$ s.t. $\|A\mathbf{w} \mathbf{y}\|_2 \le \eta$,
- $\min \lambda \|\mathbf{w}\|_1 + \|A\mathbf{w} \mathbf{y}\|_2^2$,
- $\min \|A\mathbf{w} \mathbf{y}\|_2^2$ s.t. $\|\mathbf{w}\|_1 \leq \tau$.

Why ℓ_1 for Sparsity?

- The ℓ₁-norm || · ||₁ is a convex function ⇒ The ℓ₁-minimization problem can be solved by efficient algorithms from convex optimization.
- Ilustration of the ℓ_1 -minimization induces sparse solutions:

Theorem (Theorem 3.1.²)

Let $A \in \mathbb{R}^{m \times N}$ be a measurement matrix with columns $\mathbf{a}_1, \ldots, \mathbf{a}_N$. Assuming the uniqueness of a minimizer $\mathbf{x}^{\#}$ of

$$\min_{\mathbf{z}\in\mathbb{R}^N}\|\mathbf{z}\|_1 \quad s.t. \quad A\mathbf{z}=\mathbf{y},$$

then the system $\{a_j, j \in \operatorname{supp}(x^{\#})\}$ is linearly independent. In particular,

$$\|\mathbf{x}^{\#}\|_{0} = \operatorname{card}(\operatorname{supp}(\mathbf{x}^{\#})) \leq m.$$

 $^{^{2}\ ^{\}prime\prime}A$ Mathematical Introduction to Compressive Sensing", by Foucart and Rauhut.

- Other problems:
 - Robustness: The output measurements are contaminated by noise.
 Find a spare vector w from (A, y) such that

$$\mathbf{y} = A\mathbf{w} + \varepsilon, \quad \|\varepsilon\|_2 \le \eta.$$

How is the solution affected by the noise?

5. Stability: w is not sparse, but is well-approximated by a sparse vector (compressibility).

- 1. Applications:
 - 1.1 Magnetic Resonance Imaging
 - 1.2 Radar
- 2. Motivations:
 - 2.1 Sampling theory
 - 2.2 Sparse approximation
 - 2.3 Statistics and machine learning
- 3. Extensions:
 - 3.1 Low-rank recovery
 - 3.2 Matrix completion

Application: Magnetic Resonance Imaging ³

- Goal: achieve high-resolution images based on few samples
- Observe: Angiogram images are sparse in the pixel representation; more complicated images have a sparse representation after transforming into a suitable domain such as wavelets (mathematically, x = Wx' for some unitary matrix W ∈ C^{N×N} and some sparse vector x' ∈ C^N)
- Image reconstruction models: For example,

 $\min \|\psi \mathbf{x}\|_1 \quad \text{s.t.} \quad \|\mathcal{F}_u \mathbf{x} - \mathbf{y}\|_2 < \varepsilon,$

where ψ is the linear operator that transforms from pixel representation into a sparse representation; \mathcal{F}_u is a suitable undersampled Fourier transform, **x** is the reconstructed image, and **y** is the measured *k*-space data from the scanner.

 Compressive sensing results: Images with a sparse representation can be recovered from randomly undersampled k-space data, provided an appropriate nonlinear recovery scheme is used.

³Sparse MRI: The application of compressed sensing for rapid MR imaging, by M. Lustig, D. Donoho, and J. M. Pauly, https://onlinelibrary.wiley.com/doi/full/10.1002/mrm.21391

Transform-domain sparsity of images. (a) Axial T1 weighted brain image; (b) axial 3D contrast enhanced angiogram of the peripheral leg. The DCT, wavelet, and finite-differences transforms were calculated for all the images (Left column). The images were then reconstructed from a subset of 5, 10, and 20% of the largest transform coefficients. Source: Figure 3 from "Sparse MRI: The application of compressed sensing for rapid MR imaging", by M. Lustig, D. Donoho, and J. M. Pauly.

Contrast-enhanced 3D angiography reconstruction results as a function of acceleration. Left column: acceleration by LR. Note the diffused boundaries with acceleration. Middle column: ZF-w/dc reconstruction. Note the increase of apparent noise with acceleration. Right column: CS reconstruction with TV penalty from randomly undersampled k-space. Source: Figure 9 from "Sparse MRI: The application of compressed sensing for rapid MR imaging", by M. Lustig, D. Donoho, and J. M. Pauly.

Sparse Approximation and Compressive Sensing

- Consider a set {a₁,..., a_N} ⊂ C^m s.t. span{a₁,..., a_N} = C^m, called a dictionary. So N ≥ m. For example, a union of several bases.
- Note that a dictionary may be linearly dependent. Indeed, redundancy may be desired when linearly independence is too restrictive.
- So, a representation $\mathbf{y} = \sum_{j=1}^{N} w_j \mathbf{a}_j$, where $\mathbf{w} = [w_1, \dots, w_N]^T \in \mathbb{C}^N$, is not unique.
- Consider a representation with the smallest number of terms a sparest representation.
- Mathematically, let $A \in \mathbb{C}^{m \times N}$ with columns $\mathbf{a}_1, \dots, \mathbf{a}_N$ and $\mathbf{y} \in \mathbb{C}^m$. Solve

$$\min \|\mathbf{w}\|_0$$
 s.t. $A\mathbf{w} = \mathbf{y}$.

Compressive Sensing	Sparse Approximation
• Free to design <i>A</i> with appropriate properties	• A is prescribed
• Estimate $\ \mathbf{x}_{original} - \mathbf{x}_{reconstructed}^{\#}\ $	• Estimate $\ \mathbf{y}_{given} - \mathbf{y}_{sparse expansion}^{\#}\ $

Statistics & Machine Learning and Compressive Sensing

Statistical regression: Given an output data y ∈ ℝ^m and a data matrix A ∈ ℝ^{m×N}, estimate w ∈ ℝ^N from

$$\mathbf{y} = A\mathbf{w} + \mathbf{e}.$$

Here **e** is a random noise vector.

- In practice, the number *N* of parameters is often much larger than the number of observations.
- Selecting relevant explanatory variables (model selection problem is equivalent to find a sparse vector **w**:

$$\min \|\mathbf{w}\|_1 \quad \text{s.t} \quad \|A\mathbf{w} - \mathbf{y}\|_2 \le \eta.$$

Other models:

$$\begin{split} \min \|A\mathbf{w} - \mathbf{y}\|_2^2 \quad \text{s.t.} \quad \|\mathbf{w}\|_1 \leq \tau. \\ \min \frac{1}{2} \|A\mathbf{w} - \mathbf{y}\|_2^2 + \lambda \|\mathbf{w}\|_1. \\ \min \|\mathbf{w}\|_1 \quad \text{s.t.} \quad \|A^*(A\mathbf{w} - \mathbf{y})\|_\infty \leq \lambda. \end{split}$$

- A Mathematical Introduction to Compressive Sensing, by S. Foucart and H. Rauhut. Chapters 1 and 2.
- Statistical Learning with Sparsity, The Lasso and Generalizations, by T. Hastie, R. Tibshirani, and M. Wainwright. Chapter 1.
- Data-driven Science and Engineering, Machine Learning, Dynamical Systems, and Control, by S. L. Brunton and J. N. Kutz.
- Talks and lectures by T. Tao, S. Foucart, R. Willett, S. Brunton, H. Schaeffer,....

Exercises

1. Let $A \in \mathbb{R}^{m \times N}$. Prove that

$$\operatorname{rank}(A) = \operatorname{rank}(A^T) = \operatorname{rank}(A^T A) = \operatorname{rank}(A A^T).$$

- 2. Recall about pseudo inverse of a matrix, SVD.
- Least squares problems (Prop. A.20.) Let A ∈ C^{m×n} and y ∈ C^m. Define
 M := {x ∈ Cⁿ s.t. x is a minimizer of min ||Az − y||₂}. Then the optimization problem

$$\min_{\mathbf{x}\in\mathcal{M}}\|\mathbf{x}\|_2$$

has the unique solution $\mathbf{x}^{\#} = A^{\dagger} \mathbf{y}$.

4. Let $A \in \mathbb{C}^{m \times n}$ s.t. rank $(A) = \min\{m, n\}$ (full rank) and let $\mathbf{y} \in \mathbb{C}^m$. Then 4.1 If $m \ge n$, then the least squares problem

$$\min_{\mathbf{x}\in\mathbb{C}^n}\|A\mathbf{x}-\mathbf{y}\|_2$$

has the unique solution $\mathbf{x}^{\#} = A^{\dagger} \mathbf{y}$.

4.2 If $n \ge m$, then the least squares problem

$$\min_{\mathbf{x}\in\mathbb{C}^n} \|x\|_2 \quad \text{s.t.} \quad A\mathbf{x} = \mathbf{y}$$

has the unique solution $\mathbf{x}^{\#} = A^{\dagger} \mathbf{y}$.