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Linear Models: y = Aw

• Given y ∈ Cm and a measurement matrix A ∈ Cm×N ,

find w ∈ CN : Aw = y.

• The linear system may be inconsistent (no solutions), have one solution, or have

infinitely many solutions.

• For the remaining of this section, we only study consistent linear systems.

• The solution set is of the form

w# +W,

where Aw# = y and W is an (N − rank(A)) dim. subspace of CN .

• When m ≥ N and A is full column rank (i.e., rank(A) = N), then

dimW = N − rank(A) = 0⇒W = {~0}.

Therefore the consistent linear system has a unique solution.

• For example, the Nyquist-Shannon sampling theorem says that the

sampling rate of a continuous-time signal must be twice its highest

frequency in order to ensure reconstruction.
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Underdetermined system Aw = y, (m < N)

• If the consistent linear system is underdetermined, i.e., m < N, then the

number of free variables is

N − rank(A) ≥ N −min{m,N} = N −m > 0.

Therefore, the linear system has infinitely many solutions.

• In practice, we are only interested in finding a specific solution to the

system ⇒ Need additional information.

• Example 1: Given A ∈ Rm×N , y ∈ Rm and rank(A) = m. Then Ax = y has

at least one solution. Moreover, the solution with the smallest Euclidean

norm is unique and is given by

wls = AT (AAT )−1y.
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Underdetermined system Aw = y: Least Squares Solution

Proof.

• Suppose wls is a solution of Ax = y and wls has the smallest Euclidean norm

among all solutions of the system Ax = y.

• Then wls is a solution of the following optimization problem:

min
w∈RN

1

2
‖w‖2

2 s.t. Aw = y.

• The corresponding Lagrangian is

L =
1

2
‖w‖2

2 + λT (y − Aw), where λ ∈ Rm.

• At the critical point (wls , λls), we have:

0 = ∇wlsL = wls − ATλls ⇒ wls = ATλls , y = Awls = AATλls

• Since rank(AAT ) = rank(A) = m and AAT ∈ Rm×m, (AAT ) is invertible.

• Therefore

λls = (AAT )−1y and wls = AT (AAT )−1y.
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Underdetermined system Aw = y: Least Squares Solution

• Matlab code: w = A\y .

• Python code:

import numpy as np

# Load A and y .... #

w_ls = np.linalg.lstsq(A, y, rcond=None)[0]
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Underdetermined system Aw = y: Least Squares Solution

Recall: Given A ∈ Rm×N , y ∈ Rm and rank(A) = m. Consider

min
w∈RN

1

2
‖w‖2

2 s.t. Aw = y.

• Pros: A closed-form solution, wls = AT (AAT )−1y.

• Cons:

1. Least squares solutions likely overfit the data (See the codes).

2. Least squares solutions are not robust to noisy measurements.

3. In many applications, the solution with smallest Euclidean norm is

not the expected solution. For example, reconstruct a

one-dimensional discrete signal f : {1, . . . ,N} → C from a partial

collection of its Fourier coefficients {f̂ (ξ1), . . . , f̂ (ξm)}. Note that

m < N.
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Underdetermined system Aw = y: Sparse Solution

• Another assumption: w is a sparse vector, i.e., most components of w are

0. Note that we don’t know the locations of the nonzero entries. The

problem can be recast as

min ‖w‖0 s.t. Aw = y.

• Does the sparsity assumption valid?

• Related to simplicity, bet-on-sparsity principle, sparsity-of-effects
principle, Pareto principle.
• A system is usually dominated by main effects and low-order

interactions.

• Pareto principle: 80/20 rule or the law of the vital few.

• Many real-world signals and images are compressible, i.e.,

well-approximated by sparse signals after an appropriate change of

basis: MP3 signals, JPEG images,...

• In many applications, measurements are expensive or time consuming. 1

1See Section 1.2, “A Mathematical Introduction to Compressive Sensing”, by Foucart and

Rauhut.
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Example: Sampling Theory

Original Gray Image and Compressed Image (by keeping around 10% highest absolute

values of the Fourier coefficients)
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Compressive Sensing Problems

• Goal: Compress and Sense (acquire) data at the same time.

• Acquire the compressed version of a signal directly via much fewer

measured data than the signal length.

• Reconstruct an s-sparse vector w ∈ CN from an underdetermined

system y = Aw ∈ Cm, where m� N.

• Terminologies: Compressive sensing, compressed sensing,

compressive sampling, sparse recovery.

• Definition: A vector w ∈ CN is called s-sparse if at most s of its

entries are nonzero.

• Challenges: The locations of the non-zero entries of w is unknown

−→ Introduce the nonlinearity.
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Compressive Sensing Problems

• Main questions:

1. What matrices A are suitable?

• Compressed sensing is not suitable for arbitrary matrices A.

• Need to design a suitable linear measurement process.

2. What is the minimal number of measurements? ← Should depends

on the compressed size, not on its uncompressed size!

3. What are efficient (fast, stable, robust) reconstruction algorithms?

Some popular ones are:

• `0-algorithms: Orthogonal Matching Pursuit (OMP), Iterative Hard

Thresholding (IHT), Hard Thresholding Pursuit (HTP)

• `1-Optimization algorithms: FISTA, spgl1, Split Bregman/ADMM,

SpaRSA, first-order primal-dual algorithm with linesearch.
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Explain why compressed sensing is not suitable for arbitrary matrices A.
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Compressive Sensing Problem: Models

• `0-minimization: NP-hard in general.

min ‖w‖0 s.t. Aw = y.

• `1-minimization (convex relaxation of the `0-minimization):

min ‖w‖1 s.t. Aw = y (Basis Pursuit).

Other models:

• min ‖w‖1 s.t. ‖Aw − y‖2 ≤ η,

• minλ‖w‖1 + ‖Aw − y‖2
2,

• min ‖Aw − y‖2
2 s.t. ‖w‖1 ≤ τ.
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Why `1 for Sparsity?

I The `1-norm k · k1 is a convex function ) The
`1-minimization problem can be solved by e�cient algorithms
from convex optimization.

I Ilustration of the `1-minimization induces sparse solutions:
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Why `1 for sparsity

Theorem (Theorem 3.1.2)

Let A ∈ Rm×N be a measurement matrix with columns a1, . . . , aN .

Assuming the uniqueness of a minimizer x# of

min
z∈RN

‖z‖1 s.t. Az = y,

then the system {aj , j ∈ supp(x#)} is linearly independent. In particular,

‖x#‖0 = card(supp(x#)) ≤ m.

2“A Mathematical Introduction to Compressive Sensing”, by Foucart and Rauhut.
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Compressive Sensing Problems

• Other problems:

4. Robustness: The output measurements are contaminated by noise.

Find a spare vector w from (A, y) such that

y = Aw + ε, ‖ε‖2 ≤ η.

How is the solution affected by the noise?

5. Stability: w is not sparse, but is well-approximated by a sparse vector

(compressibility).
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Applications, Motivations, and Extensions

1. Applications:

1.1 Magnetic Resonance Imaging

1.2 Radar

2. Motivations:

2.1 Sampling theory

2.2 Sparse approximation

2.3 Statistics and machine learning

3. Extensions:

3.1 Low-rank recovery

3.2 Matrix completion
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Application: Magnetic Resonance Imaging 3

• Goal: achieve high-resolution images based on few samples

• Observe: Angiogram images are sparse in the pixel representation; more

complicated images have a sparse representation after transforming into a

suitable domain such as wavelets (mathematically, x = Wx′ for some unitary

matrix W ∈ CN×N and some sparse vector x′ ∈ CN)

• Image reconstruction models: For example,

min ‖ψx‖1 s.t. ‖Fux− y‖2 < ε,

where ψ is the linear operator that transforms from pixel representation into a

sparse representation; Fu is a suitable undersampled Fourier transform, x is the

reconstructed image, and y is the measured k-space data from the scanner.

• Compressive sensing results: Images with a sparse representation can be

recovered from randomly undersampled k-space data, provided an appropriate

nonlinear recovery scheme is used.

3Sparse MRI: The application of compressed sensing for rapid MR imaging, by M. Lustig, D.

Donoho, and J. M. Pauly, https://onlinelibrary.wiley.com/doi/full/10.1002/mrm.21391
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Transform-domain sparsity of images. (a) Axial T1 weighted brain image; (b) axial 3D contrast enhanced angiogram of the peripheral leg.

The DCT, wavelet, and finite-differences transforms were calculated for all the images (Left column). The images were then reconstructed

from a subset of 5, 10, and 20% of the largest transform coefficients. Source: Figure 3 from “Sparse MRI: The application of compressed

sensing for rapid MR imaging”, by M. Lustig, D. Donoho, and J. M. Pauly. 20



Contrast-enhanced 3D angiography reconstruction results as a function of acceleration. Left column: acceleration by LR. Note the diffused

boundaries with acceleration. Middle column: ZF-w/dc reconstruction. Note the increase of apparent noise with acceleration. Right

column: CS reconstruction with TV penalty from randomly undersampled k-space. Source: Figure 9 from “Sparse MRI: The application of

compressed sensing for rapid MR imaging”, by M. Lustig, D. Donoho, and J. M. Pauly. 21



Sparse Approximation and Compressive Sensing

• Consider a set {a1, . . . , aN} ⊂ Cm s.t. span{a1, . . . , aN} = Cm,

called a dictionary. So N ≥ m. For example, a union of several

bases.

• Note that a dictionary may be linearly dependent. Indeed,

redundancy may be desired when linearly independence is too

restrictive.

• So, a representation y =
N∑
j=1

wjaj , where w = [w1, . . . ,wN ]T ∈ CN ,

is not unique.

• Consider a representation with the smallest number of terms – a

sparest representation.

• Mathematically, let A ∈ Cm×N with columns a1, . . . , aN and

y ∈ Cm. Solve

min ‖w‖0 s.t. Aw = y.
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Sparse Approximation and Compressive Sensing (cont’d)

Compressive Sensing Sparse Approximation

• Free to design A with

appropriate properties

• A is prescribed

• Estimate

‖xoriginal − x#
reconstructed‖

• Estimate

‖ygiven − y#
sparse expansion‖
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Statistics & Machine Learning and Compressive Sensing

• Statistical regression: Given an output data y ∈ Rm and a data

matrix A ∈ Rm×N , estimate w ∈ RN from

y = Aw + e.

Here e is a random noise vector.

• In practice, the number N of parameters is often much larger than

the number of observations.

• Selecting relevant explanatory variables (model selection problem is

equivalent to find a sparse vector w:

min ‖w‖1 s.t ‖Aw − y‖2 ≤ η.
Other models:

min ‖Aw − y‖2
2 s.t. ‖w‖1 ≤ τ.

min
1

2
‖Aw − y‖2

2 + λ‖w‖1.

min ‖w‖1 s.t ‖A∗(Aw − y)‖∞ ≤ λ.
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Exercises

1. Let A ∈ Rm×N . Prove that

rank(A) = rank(AT ) = rank(ATA) = rank(AAT ).

2. Recall about pseudo inverse of a matrix, SVD.

3. Least squares problems (Prop. A.20.) Let A ∈ Cm×n and y ∈ Cm. Define

M := {x ∈ Cn s.t. x is a minimizer of min ‖Az− y‖2}. Then the optimization

problem

min
x∈M

‖x‖2

has the unique solution x# = A†y.

4. Let A ∈ Cm×n s.t. rank(A) = min{m, n} (full rank) and let y ∈ Cm. Then

4.1 If m ≥ n, then the least squares problem

min
x∈Cn
‖Ax− y‖2

has the unique solution x# = A†y.

4.2 If n ≥ m, then the least squares problem

min
x∈Cn
‖x‖2 s.t. Ax = y

has the unique solution x# = A†y.
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