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Some Popular Algorithms for Compressive Sensing - Part 1

Problem: Given A ∈ Cm×n and y ∈ Cm. Find

w ∈ Cn such that y = Aw and ‖w‖0 ≤ s.

We will go over three important algorithms:

• Orthogonal Matching Pursuit (OMP)

• Iterative Hard Thresholding (IHT)

• Hard Thresholding Pursuit (HTP)

We use the same numbers of Theorems, Lemmas, Propositions from

Chapter 3 in “A Mathematical Introduction to Compressive Sensing”, by

S. Foucart and H. Rauhut.
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Outline

Orthogonal Matching Pursuit (OMP)

Iterative Hard Thresholding (IHT)

Hard Thresholding Pursuit (HTP)
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Orthogonal Matching Pursuit (OMP)

Problem: Given A ∈ Cm×n and y ∈ Cm. Find

w ∈ Cn such that y = Aw and ‖w‖0 ≤ s.

Main Idea of OMP: Initialize S0 = ∅ ⊆ [n] := {1, 2, . . . , n}.

• Add one index to a target support Sk ⊆ [n] at each iteration,

Sk+1 = Sk ∪ {jk+1}, so that

min
supp(z)⊆Sk+1

‖y − Az‖2 ≤ min
supp(z)⊆Sk

‖y − Az‖2.

• Update a target vector wk+1:

wk+1 := argmin
supp(z)⊆Sk+1

‖y − Az‖2.

In the next few slides, we will derive the steps of OMP.
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Orthogonal Matching Pursuit

Lemma 3.3. Given A = [a1 a2 . . . an] ∈ Cm×n such that ‖ak‖2 =

1, ∀k. Given S ⊆ [n] and j ∈ [n]. If

w := argmin{‖y − Az‖2 : supp(z) ⊆ S ∪ {j}},

then

‖y − Aw‖2
2 ≤ ‖y − Av‖2

2 − |(A∗(y − Av))j |2,

for all v ∈ Cn s.t. supp(v) ⊆ S .

⇒ OMP Algorithm: Choose j = arg max
j∈[n]

|(A∗(y − Av))j |.

Proof.

See the Appendix.
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Orthogonal Matching Pursuit

For z ∈ Cn and S ⊆ [n], denote vS := v |S ∈ C|S|, the restriction of v onto the

index set S .

Lemma 3.4. Given an index set S ⊆ [n]. If

v := argmin
z∈Cn

{‖y − Az‖2, supp(z) ⊆ S},

then

A∗Sy = A∗SASvS , i.e., (A∗(y − Av))S = 0.

⇒ OMP algorithm:

wk+1 := argmin
supp(z)⊆Sk+1

‖y − Az‖2

wk+1
Sk+1 = A†Sk+1y.
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Orthogonal Matching Pursuit: Pseudocode

Orthogonal Matching Pursuit

Input: Measurement matrix A ∈ Cm×n with `2-normalized

columns, measurement vector y ∈ Cm, sparsity level s or toler-

ance ε.

Initialization: S0 = ∅,w0 = 0.

Iteration: Repeat until Stopping Criterion is met.

jk+1 := arg max
j∈[n]

{|(A∗(y − Awk))j |}

Sk+1 := Sk ∪ {jk+1}
Find wk+1 s.t A∗Sk+1y = A∗Sk+1ASk+1wk+1

Sk+1

Output: The sparse vector w#.
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OMP

import numpy as np

from sklearn.linear_model import OrthogonalMatchingPursuit as omp

Remarks about `2-normalized columns of the measurement matrix A:

• It is not strictly required. However, if we work with a general matrix A, we

need to adjust the steps in the iterations accordingly.

• For A = [a1 a2 . . . an] ∈ Cm×n and w = [w1,w2, . . . ,wn]
T ∈ Cn, we have

Aw =
n∑

k=1

wkak =
n∑

k=1

(
wk‖ak‖2

) ak
‖ak‖2

= Âŵ,

where Â =

[
a1

‖a1‖2

a2

‖a2‖2
· · · an

‖an‖2

]
and ŵk = wk‖ak‖2.

Using OMP to solve:

Find ŵ sparse s.t. y = Âŵ,

and get back to the original solution w.
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Orthogonal Matching Pursuit: Some Remarks

1. Recall: jk+1 := arg max
j∈[n]

{|(A∗(y − Awk))j |}, A∗Sk y = A∗SkASkwk
Sk .

2. How to speed up?

• Use QR decomposition of the matrix ASk

• Fast algorithm to update QR decomposition of ASk+1 from ASk .

• Use fast matrix-vector multiplication for A (Fourier transform)

3. Stopping criterions:

3.1 If we know the sparsity level s, stop after Cs iterations.

3.2 To account for measurement and computational errors, stop when

‖y − Aw k‖2 ≤ ε, or ‖A∗(y − Aw k)‖∞ ≤ ε,

where ε is a chosen tolerance.
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Orthogonal Matching Pursuit: Some Remarks (cont’d)

1. OMP never selects the same index twice because the residual is

orthogonal to Az of related chosen indices.

2. OMP works well if s is small. If s is not small compared to n, the

OMP may require more time. In that case, suitable basis pursuit

algorithms can be significantly faster than OMP.

3. Cons: Once an incorrect index has been selected in a target support

Sk , it remains in al the subsequent target supports.
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OMP - Special Example

• Consider an n × n matrix with `2-normalized columns defined by

A =

Idn×n | η

n − 1
1n

0 |
√

1− η2

n

 .

• The n-sparse vector x = [1, . . . , 1, 0]T is not recovered from y = Ax

after n iterations since the wrong index n + 1 is picked at the first

iteration. (See page 157 in the textbook)
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Appendix A.3. Least Squares Problems

Here are some important results to least squares problems.

Proposition (Prop. A.20.)

Let A ∈ Cm×n and y ∈ Cm. Define

M := {x ∈ Cn s.t. x is a minimizer of min ‖Az− y‖2}.

Then the optimization problem

min
x∈M
‖x‖2

has the unique solution x# = A†y.
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Appendix A.3. Least Squares Problems

Corollary

Let A ∈ Cm×n s.t. rank(A) = min{m, n} (full rank) and let y ∈ Cm.

Then

1. If m ≥ n, then the least squares problem

min
x∈Cn
‖Ax− y‖2

has the unique solution x# = A†y.

2. If n ≥ m, then the least squares problem

min
x∈Cn
‖x‖2 s.t. Ax = y

has the unique solution x# = A†y.
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Iterative Hard Thresholding (IHT)

Hard Thresholding Pursuit (HTP)
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Iterative Hard Thresholding (IHT)

Problem: Given A ∈ Cm×n and y ∈ Cm. Find

w ∈ Cn such that y = Aw and ‖w‖0 ≤ s.

Motivation: Solve Aw = y by iteration methods. Indeed, from y = Aw,

we have:

0 = A∗(y − Aw)

w = w + γA∗(y − Aw), where γ ∈ R

wk+1 = wk + γA∗(y − Awk) (fixed-point iterate)

Then we apply a projection method to ensure the iterates wk have at

most s nonzero entries.
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Banach Fixed-Point Theorem

Theorem

Given p ∈ [1,∞]. Assume that:

(i) M is a closed, nonempty set in the Banach space Cn or Rn.

(ii) The operator A : M → M is L-contractive for some fixed L ∈ [0, 1):

‖Au−Av‖p ≤ L‖u− v‖p for all u, v ∈ M.

Then the following statements hold true:

1. The equation u = Au, u ∈ M, has exactly one solution u∗ ∈ M.

2. For each given u0 ∈ M, the sequence {uk} constructed by the iteration method,

uk+1 = Auk , converges to the unique solution u∗ of u = Au and

‖uk − u∗‖p ≤
Lk

1− L
‖u1 − u0‖p ,
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Iterative Hard Thresholding (IHT)

Denote

Ls(z) := Index set of s largest absolute entries of z ∈ Cn,

Hs(z) := zLs(z).

Iterative Hard Thresholding (IHT)

Input: Measurement matrix A, measurement vector y, sparsity

level s, hyperparameter γ.

Initialization: s-sparse vector w0, typically w0 = 0.

Iteration: Repeat until a stopping criterion is met.

wk+1 = Hs(wk + γA∗(y − Awk)).

Output: The s-sparse vector w#.

Remark: The IHT does not require the computation of any orthogonal projection.
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Outline

Orthogonal Matching Pursuit (OMP)

Iterative Hard Thresholding (IHT)

Hard Thresholding Pursuit (HTP)
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Hard Thresholding Pursuit (HTP)

Motivation: Basic Thresholding + Orthogonal Projection

Hard Thresholding Pursuit

Input: Measurement matrix A, measurement vector y, sparsity

level s, hyperparameter γ.

Initialization: s-sparse vector w0, typically w0 = 0.

Iteration: Repeat until a stopping criterion is met.

Sk+1 = Ls(wk + γA∗(y − Awk)),

wk+1 = argmin
z∈Cn

{‖y − Az‖2, supp(z) ⊆ Sk+1}

Output: The s-sparse vector w#.
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Remarks:

• If we don’t know the sparsity s, we can base on the absolute values

of entries in each iteration and decide how many entries we would

like to keep. For example, in the input of IHT, instead of using the

sparsity level s, we can choose a hyperparameter ε and Hs is

replaced by Hε, where

Hε(z) =

{
z if |z | > ε,

0 otherwise

• The error estimations rely on the property of the matrix A (for e.g,

RIP-like condition).
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Which basic algorithms to choose?

• First criterion - the minimal number of measurements for a sparsity

level s and a signal length N may vary with each algorithm (Study

later)

• 2nd criterion - Speed of the algorithm. In general, when s is small,

OMP is extremely fast because the speed depends on the number of

iterations (which is s when the algorithm succeeds). The runtime of

IHT is almost not influenced by the sparsity s.
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Exercises

1. (Prob. 3.11) Implement OMP, IHT, HTP. Choose A ∈ Rm×N with independent

random entries equal to 1/
√
m or −1/

√
m, each with probability 1/2. Test the

algorithms on randomly generated s-sparse signals, where first support is chosen

at random and then the nonzero coefficients. By varying N,m, s, evaluate the

empirical success probability of recovery.

2. (Prob. 3.7) Given A ∈ Cm×N and τ > 0, show that the solution of

min ‖Az− y‖2
2 + τ‖z‖2

2

is given by

z# = (A∗A + τ Id)−1A∗y.

3. (Prob. 3.3.) Let A ∈ Rm×N and y ∈ Rm. Assuming the uniqueness of the

minimizer x# of

min
z∈RN

‖z‖1 s.t. ‖Az− y‖ ≤ η,

where η ≥ 0 and ‖ · ‖ is an arbitrary norm on Rm, prove that x# is necessarily

m-sparse.

4. QR property of a matrix after adding one column vector.
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Appendix: Some Proofs
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Orthogonal Matching Pursuit

Proof Sketch of Lemma 3.3.

Let v ∈ Cn s.t. supp(v) ⊆ S .

• For any t ∈ C, supp(v + tej) ⊆ S ∪ {j}, show that

‖y − A(v + tej)‖2
2 ≥ ‖y − Av‖2

2 − |(A∗(y − Av))j |2,

and the quality holds when |t| = |(A∗(y − Av))j |.

• Therefore,

‖y − Aw‖2
2 = min{‖y − Az‖2

2 : supp(z) ⊆ S ∪ {j}}
≤ min

t∈C
‖y − A(v + tej)‖2

2

≤ ‖y − Av‖2
2 − |(A∗(y − Av))j |2.
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Proof. We have

‖y − A(v + tej )‖2
2 = ‖y − Av − tAej‖2

2

= ‖y − Av‖2
2 + |t|2‖Aej‖2

2 − 2Re〈y − Av , tAej 〉

= ‖y − Av‖2
2 + |t|2 − 2Re

(
teTj A∗(y − Av)

)
≥ ‖y − Av‖2

2 + |t|2 − 2|t||(A∗(y − Av))j |

≥ ‖y − Av‖2
2 − |(A∗(y − Av))j |2.

The equality holds when |t| = |(A∗(y − Av))j | and

Re
(
teTj A∗(y − Av)

)
= |t| |teTj A∗(y − Av)|.

Therefore,

min
t∈C
‖y − A(v + tej )‖2

2 = ‖y − Av‖2
2 − |(A∗(y − Av))j |2,

and

‖y − Aw‖2
2 = min

supp(z)⊆S∪{j}
{‖y − Az‖2

2} ≤ min
t∈C
‖y − A(v + tej )‖2

2

≤ ‖y − Av‖2
2 − |(A∗(y − Av))j |2.
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Orthogonal Matching Pursuit

Proof of Lemma 3.4. We rewrite the constraint optimization problem

v := argmin
z∈Cn

{‖y − Az‖2, supp(z) ⊆ S}

to an unconstraint optimization problem:

v = argmin
z∈Cn

{‖y − ASzS‖2} = argmin
u∈C|S|

{‖y − ASu‖2}

By the orthogonality condition, we have

A∗Sy = A∗SASvS .
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