AMATH 840: Advanced Numerical Methods for Computational and Data Science

Winter 2023

Part 1: Compressive Sensing

1.3: ℓ_1 -Optimization Algorithms

Winter 2023

Outline

Relations between $\ell_1\text{-}\mathsf{Optimization}$ Models

Minimizing the Sum of Two Convex Functions Proximal Operator Minimizing the Sum of Two Convex Functions

Some Popular l₁-Optimization Algorithms FISTA: A fast iterative shrinkage-thresholding algorithm Nesterov's Second Method spgl1 and Other Available Packages Alternating Direction Method of Multipliers (ADMM)

Some Popular Algorithms for Compressive Sensing - Part 2

• Basis pursuit:

$$\min_{\mathbf{z}\in\mathbb{C}^n} \|\mathbf{z}\|_1 \quad s.t. \quad A\mathbf{z} = \mathbf{y}. \tag{BP}$$

• Basis pursuit denoising:

$$\min_{\mathbf{z}\in\mathbb{C}^n} \|\mathbf{z}\|_1 \quad s.t. \quad \|A\mathbf{z}-\mathbf{y}\|_2 \le \eta, \tag{BP}_{\eta}$$

or

$$\min_{\mathbf{z}\in\mathbb{C}^n}\frac{1}{2}\|A\mathbf{z}-\mathbf{y}\|_2^2+\lambda\|\mathbf{z}\|_1.$$
 (QP_{\lambda})

Lasso:

$$\min_{\mathbf{z}\in\mathbb{C}^n}\frac{1}{2}\|A\mathbf{z}-\mathbf{y}\|_2^2 \quad s.t. \quad \|\mathbf{z}\|_1 \leq \tau.$$
 (LS_{\tau})

We use the same numbers of Theorems, Lemmas, Propositions from "A Mathematical Introduction to Compressive Sensing", by S. Foucart and H. Rauhut.

Relations between ℓ_1 -Optimization Models

Proposition 3.2. (Relations between (BP_{η}) , (QP_{λ}) , and (LS_{τ}) .

- 1. If \mathbf{z}_{qp} is a minimizer of (QP_{λ}) with $\lambda > 0$, then there exists $\sigma = \sigma_{\mathbf{z}_{qp}} \ge 0$ such that \mathbf{z}_{qp} is a minimizer of (BP_{η}) .
- 2. If \mathbf{z}_{bp} is a unique minimizer of (BP_{η}) with $\sigma \geq 0$, then there exists $\tau = \tau_{\mathbf{z}_{bp}} \geq 0$ such that \mathbf{z}_{bp} is a unique minimizer of (LS_{τ}) .
- 3. If \mathbf{z}_{ls} is a minimizer of (LS_{τ}) with $\tau > 0$, then there exists $\lambda = \lambda_{\mathbf{z}_{ls}} \ge 0$ such that \mathbf{z}_{ls} is a minimizer of (QP_{λ}) .

Proof Sketch.

- $(QP_{\lambda} \Rightarrow BP_{\eta})$. Set $\sigma := ||Az_{qp} y||_2$.
- $(BP_{\eta} \Rightarrow LS_{\tau})$. Set $\tau := ||z_{bp}||_1$.
- (LS_τ ⇒ QP_λ). See Theorem B.28 from "A Mathematical Introduction to Compressive Sensing", by S. Foucart and H. Rauhut.

Relations between ℓ_1 -Optimization Models (cont'd)

With suitable values of η, λ, τ , the solutions of $BP_{\eta}, QP_{\lambda}, LS_{\tau}$ coincide.

- If A is orthogonal, a suggestion is $\lambda = \eta \sqrt{2 \log(n)}$.
- In general, the relations among η, λ, τ cannot be known a priori.
- If λ is large enough, the solution of QP_{λ} problem is $z_{\lambda} = 0$.

Theorem (BP vs QP_{λ} .)

Assume that Aw = y has a solution. For each $\lambda > 0$, let z_{λ} be a minimizer of (QP_{λ}) . If the (BP) problem has a unique solution $z^{\#}$, then

$$\lim_{\lambda\to 0^+} z_{\lambda} = z^{\#}.$$

2

¹Atomic Decomposition by Basis Pursuit, by Chen, Donoho, and Saunders, SIAM Review, 2001.

² Probing the Pareto frontier for basis pursuit solutions, by E. van den Berg and M. P. Friedlander, SIAM J. on Scientific Computing, 2008.

Outline

Relations between ℓ_1 -Optimization Models

Minimizing the Sum of Two Convex Functions Proximal Operator Minimizing the Sum of Two Convex Functions

Some Popular ℓ_1 -Optimization Algorithms

- FISTA: A fast iterative shrinkage-thresholding algorithm
- Nesterov's Second Method
- spgl1 and Other Available Packages
- Alternating Direction Method of Multipliers (ADMM)

Definition

Let $f:\mathbb{R}^n\to\mathbb{R}\cup\{+\infty\}$ be a closed, proper, convex function, which means that its epigraph

$$epi f = \{(x, t) \in \mathbb{R}^n \times \mathbb{R} : f(x) \le t\}$$

is a nonempty closed convex set.

• The proximal operator $\operatorname{prox}_f : \mathbb{R}^n \to \mathbb{R}^n$ is defined as follows:

$$\operatorname{prox}_f(\mathbf{x}_0) := \operatorname*{argmin}_{\mathbf{x}} \left\{ f(\mathbf{x}) + \frac{1}{2} \|\mathbf{x} - \mathbf{x}_0\|_2^2 \right\}, \quad \text{where} \quad \mathbf{x}_0 \in \mathbb{R}^n.$$

• The proximal operator of the scaled function λf , where $\lambda > 0$,

$$\operatorname{prox}_{\lambda f}(\mathbf{x}_0) := \operatorname*{argmin}_{\mathbf{x}} \left\{ \lambda f(\mathbf{x}) + \frac{1}{2} \|\mathbf{x} - \mathbf{x}_0\|_2^2 \right\}, \quad \text{where} \quad \mathbf{x}_0 \in \mathbb{R}^n,$$

is also called the proximal operator of f with parameter λ .

³ Proximal Algorithms, by Parikh and Boyd, Foundations and Trends in Optimization 2013.

Examples of Proximal Operators

• Example 1: The proximal operator of the ℓ_1 function is

$$\begin{split} & \operatorname{prox}_{\lambda \| \cdot \|_{1}}(\mathbf{x}_{0}) := \underset{\mathbf{x}}{\operatorname{argmin}} \left\{ \lambda \| \mathbf{x} \|_{1} + \frac{1}{2} \| \mathbf{x} - \mathbf{x}_{0} \|_{2}^{2} \right\} \\ &= \operatorname{sign}(\mathbf{x}_{0}) \max(|\mathbf{x}_{0}| - \lambda, 0). \quad (\text{element-wise}) \end{split}$$

It is called a soft-thresholding operator.

• Example 2: The proximal operator of the ℓ_0 function is

$$\operatorname{prox}_{\lambda\|\cdot\|_0}(\mathbf{x}_0) := \operatorname{argmin}_{\mathbf{x}} \left\{ \lambda \|\mathbf{x}\|_0 + \frac{1}{2} \|\mathbf{x} - \mathbf{x}_0\|_2^2 \right\} = (\operatorname{discuss in class}).$$

It is called a hard-thresholding operator.

• Example 3: The proximal operator of the indicator function is (discuss in class).

Minimizing the Sum of Two Convex Functions

• Consider the following nonsmooth convex optimization problem:

$$\min\{F(\mathbf{x}) = f(\mathbf{x}) + g(\mathbf{x}) : \mathbf{x} \in \mathbb{R}^n\}$$

where

 f : ℝⁿ → ℝ is closed proper convex, continuously differentiable with Lipschitz continous gradient L(f):

 $\|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\|_2 \leq L(f) \|\mathbf{x} - \mathbf{y}\|_2.$

- $g : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is closed proper convex, continuous function which is possibly nonsmooth, with inexpensive proximal operator $\operatorname{prox}_g(\cdot)$.
- The optimization problem is solvable, i.e., argmin $F \neq \emptyset$.
- In the remaining slides, we assume the functions f and g have those properties, unless stated otherwise.

• Example: The ℓ_1 regularization problem (QP_λ), where

$$f(\mathbf{z}) = \frac{1}{2} \|A\mathbf{z} - \mathbf{y}\|^2, g(\mathbf{z}) = \lambda \|\mathbf{z}\|_1, \text{ and } L(f) = \lambda_{\max}(A^T A).$$

Outline

Relations between ℓ_1 -Optimization Models

Minimizing the Sum of Two Convex Functions Proximal Operator Minimizing the Sum of Two Convex Functions

Some Popular ℓ_1 -Optimization Algorithms

FISTA: A fast iterative shrinkage-thresholding algorithm

Nesterov's Second Method

spgl1 and Other Available Packages

Alternating Direction Method of Multipliers (ADMM)

FISTA: A fast iterative shrinkage-thresholding algorithm

• FISTA is an iterative shrinkage-thresholding algorithm (ISTA) with complexity result of $O(1/k^2)$ (see Theorem 4.4 in ⁴) to solve

 $\min\{F(\mathbf{x}) = f(\mathbf{x}) + g(\mathbf{x}) : \mathbf{x} \in \mathbb{R}^n\}.$

FISTA with constant stepsize - $\min_{\mathbf{x} \in \mathbb{R}^n} (f(\mathbf{x}) + g(\mathbf{x}))$ **Input:** L = L(f), a Lipschitz constant of ∇f , and final step K. **Step 0.** $y_1 = x_0 \in \mathbb{R}^n, t_1 = 1.$ **Step k.** $(k \ge 1)$ Compute $\mathbf{x}_{k} = \underset{\mathbf{x}}{\operatorname{argmin}} \left\{ g(\mathbf{x}) + \frac{L}{2} \left\| \mathbf{x} - \left(\mathbf{y}_{k} - \frac{1}{L} \nabla f(\mathbf{y}_{k}) \right) \right\|^{2} \right\}$ $= \operatorname{prox}_{(1/L)g} \Big(\mathbf{y}_k - \frac{1}{L} \nabla f(\mathbf{y}_k) \Big),$ $t_{k+1}=\frac{1+\sqrt{1+4t_k^2}}{2},$ $\mathbf{y}_{k+1} = \mathbf{x}_k + \frac{t_k - 1}{t_{k-1}} (\mathbf{x}_k - \mathbf{x}_{k-1}).$ Output: x_K

⁴A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems, by Beck & Teboulle, SIAM J. Imaging Sciences, 2009.

FISTA (cont'd)

FISTA - Another Version - $\min_{\mathbf{x} \in \mathbb{R}^n} (f(\mathbf{x}) + g(\mathbf{x}))$ **Input:** L = L(f), a Lipschitz constant of ∇f , and final step K. **Step 0.** Choose any $\mathbf{x}_1 = \mathbf{x}_0 \in \mathbb{R}^n$. **Step k.** $(k \ge 1)$ Compute $\mathbf{y} = \mathbf{x}_k + rac{k-1}{k+2}(\mathbf{x}_k - \mathbf{x}_{k-1})$ $\mathbf{x}_{k+1} = \operatorname{prox}_{t_{k+1}g} (\mathbf{y} - t_{k+1} \nabla f(\mathbf{y})),$ where step size $t_k = \frac{1}{l}, \forall k$ or is determined by line search. Output: x_K

5

⁵http://www.seas.ucla.edu/~vandenbe/236C/lectures/fista.pdf, by Boyd & Vandenberghe

FISTA: Examples

Using FISTA to solve

$$\min_{\mathbf{x}\in\mathbb{R}^n}\left(\frac{1}{2}\|A\mathbf{x}-\mathbf{b}\|_2^2+\lambda\|\mathbf{x}\|_1\right).$$

In this case, $f(\mathbf{x}) = \frac{1}{2} \|A\mathbf{x} - \mathbf{b}\|_2^2$, $L(f) = \lambda_{\max}(A^T A)$, and $g(\mathbf{x}) = \lambda \|\mathbf{x}\|_1$.

FISTA to Solve - $\min_{\mathbf{x} \in \mathbb{D}^n} \left(\frac{1}{2} \| A \mathbf{x} - \mathbf{b} \|_2^2 + \lambda \| \mathbf{x} \|_1 \right)$ Input: Final step K. **Step 0.** Choose any $\mathbf{x}_1 = \mathbf{x}_0 \in \mathbb{R}^n$. **Step k.** $(k \ge 1)$ Compute $\mathbf{y} = \mathbf{x}_k + \frac{k-1}{k+2}(\mathbf{x}_k - \mathbf{x}_{k-1})$ $\hat{\mathbf{y}} = \mathbf{y} - \frac{1}{L} A^T (A\mathbf{y} - \mathbf{b})$ $\mathbf{x}_{k+1} = \operatorname{prox}_{(1/L)g}(\hat{\mathbf{y}}) = \operatorname{sign}(\hat{\mathbf{y}}) \max(|\hat{\mathbf{y}}| - \frac{\lambda}{L}, 0),$ where $L = \lambda_{\max}(A^T A)$. Output: x_K

Nesterov's Second Method

 Nesterov's second method is a gradient projection method with (1/k²) convergence rate.

Nesterov's Second Method **Input:** L = L(f), a Lipschitz constant of ∇f , and final step K. **Step 0.** Choose any $\mathbf{x}_0 = \mathbf{z}_0 \in \mathbb{R}^n$. **Step k.** $(k \ge 1)$ Compute $\mathbf{v} = (1 - \theta_k)\mathbf{x}_{k-1} + \theta_k \mathbf{z}_{k-1}$ $\mathbf{z}_{k} = \operatorname{prox}_{(t_{k}/\theta_{k})g}\left(\mathbf{z}_{k-1} - \frac{t_{k}}{\theta_{k}}\nabla f(\mathbf{y})\right)$ $\mathbf{x}_{k} = (1 - \theta_{k})\mathbf{x}_{k-1} + \theta_{k}\mathbf{z}_{k},$ where $\theta_k = \frac{2}{k+1}$ and $t_k = \frac{1}{l}$, or one of the line search methods. Output: x_K

^{6 7}

- spgl1⁸. Matlab and Python codes can be downloaded from https://friedlander.io/spgl1/install
- Python packages: scikit-learn package.
 - Link: https:

//scikit-learn.org/stable/modules/linear_model.html

• Solve the (QP_{λ}) by coordinate descent method ⁹.

⁸ SPGL1: A solver for large-scale sparse reconstruction, by Den Berg and Friedlander, 2007. ⁹ Regularization Path For Generalized linear Models by Coordinate Descent, by Friedman, Hastie and Tibshirani.

Alternating Direction Method of Multipliers (ADMM)

Here we assume that f and g are convex, closed, proper and L_0 has a saddle point.

• Consider the following optimization problem:

minimize $f(\mathbf{x}) + g(\mathbf{z})$ subject to $A\mathbf{x} + B\mathbf{z} = \mathbf{c}$.

• The corresponding augmented Lagrangian is

$$L_{\rho}(\mathbf{x}, \mathbf{z}, \mathbf{y}) = f(\mathbf{x}) + g(\mathbf{z}) + \mathbf{y}^{\mathsf{T}} (A\mathbf{x} + B\mathbf{z} - \mathbf{c}) + \frac{\rho}{2} \|A\mathbf{x} + B\mathbf{z} - \mathbf{c}\|_{2}^{2}$$

• ADMM algorithm:

$$\begin{aligned} \mathbf{x}_{k+1} &:= \operatorname*{argmin}_{x} L_{\rho}(\mathbf{x}, \mathbf{z}_{k}, \mathbf{y}_{k}) & (x-\text{minimization}) \\ \mathbf{z}_{k+1} &:= \operatorname*{argmin}_{z} L_{\rho}(\mathbf{x}_{k+1}, \mathbf{z}, \mathbf{y}_{k}) & (z-\text{minimization}) \end{aligned}$$

$$\mathbf{y}_{k+1} := y_k + \rho(A\mathbf{x}_{k+1} + B\mathbf{z}_{k+1} - \mathbf{c}) \qquad (\text{dual update})$$

10 11 12

¹⁰ADMM is proposed by Gabay, Mercier, Glowinski, Marrocco in 1976.

¹¹ The Split Bregman Method for L1-Regularized Problems, by Goldstein and Osher, SIAM J. Imaging Sciences, 2009.

¹²https://web.stanford.edu/class/ee364b/lectures/admm_slides.pdf

- Under the stated assumptions, ADMM converges in the sense that
 - Iterates approach feasibility: $A\mathbf{x}_k + B\mathbf{z}_k \mathbf{c} \rightarrow \mathbf{0}$
 - Objective approaches optimal value: $f(\mathbf{x}_k) + g(\mathbf{z}_k) o p_*$
- Related algorithms:
 - operator splitting methods
 - proximal point algorithm
 - Bregman iterative methods

Example 1: Consider ADMM for

min $f(\mathbf{x})$ subject to $\mathbf{x} \in \mathbb{C}$.

Answer:

• The ADMM form with $g(\mathbf{z}) = I_C(\mathbf{z})$, the indicator function of set C:

minimize $f(\mathbf{x}) + g(\mathbf{z})$ subject to $\mathbf{x} - \mathbf{z} = 0$.

Example 2: Consider ADMM for

$$\min \frac{1}{2} \|A\mathbf{x} - \mathbf{b}\|_2^2 + \lambda \|\mathbf{x}\|_1.$$

Answer:

• The ADMM form with $g(\mathbf{z}) = \lambda \|\mathbf{z}\|_1$:

$$\begin{array}{ll} \mbox{minimize} & \frac{1}{2} \| A \mathbf{x} - \mathbf{b} \|_2^2 + \lambda \| \mathbf{z} \|_1 \\ \mbox{subject to} & \mathbf{x} - \mathbf{z} = \mathbf{0}. \end{array}$$

Example 3: Consider ADMM for

$$\min \frac{1}{2} \| A \mathbf{x} - \mathbf{b} \|_2^2 + \lambda \| C \mathbf{x} - \mathbf{d} \|_1.$$

Answer:

• The ADMM form with $g(\mathbf{z}) = \lambda \|\mathbf{z} - \mathbf{d}\|_1$:

minimize
$$\frac{1}{2} \|A\mathbf{x} - \mathbf{b}\|_2^2 + \lambda \|\mathbf{z} - \mathbf{d}\|_1$$
subject to $C\mathbf{x} - \mathbf{z} = 0.$

Example 4: Given a 2D noisy image *f*, consider ADMM for the TV denoising model:

$$\min_{u} \frac{\mu}{2} \|u - f\|_{2}^{2} + \|\nabla_{x}u\|_{1} + \|\nabla_{y}u\|_{1}.$$

Answer:

• The ADMM form:

$$\min_{u, d_x, d_y} \quad \frac{\mu}{2} \|u - f\|_2^2 + \|d_x\|_1 + \|d_y\|_1$$

subject to $d_x - \nabla_x u = 0$ and $d_y - \nabla_y u = 0.$

Remarks:

- Global rate of convergence $\mathcal{O}(1/k^2)$ can be achieved, for example, with FISTA and Nesterov's 2nd method. 13
- The speed of some algorithms for ℓ₁-minimization problems does not depend on the sparsity level s, such as the primal-dual algorithm → Use ℓ₁-minimization solvers for mildly large s.
- Debiasing technique: Suppose z_{sol} is the num. soln. of the (QP_λ) problem. Let S := supp(z_{final}) and solve

$$\min\{\|Az - y\|_2^2 : \operatorname{supp}(z) \subset S\}.$$

¹³ http://www.seas.ucla.edu/~vandenbe/236C/lectures/fista.pdf