AMATH 840:
 Advanced Numerical Methods for Computational and Data Science

Giang Tran
Department of Applied Mathematics, University of Waterloo
Winter 2024

Part 1: Sparse Optimization and Compressive Sensing

1.3: ℓ_{1}-Optimization Algorithms

Winter 2024

Outline

Relations between ℓ_{1}-Optimization Models

Minimizing the Sum of Two Convex Functions

Proximal Onerator
Minimizing the Sum of Two Convex Functions
Some Popular ℓ_{1}-Optimization Algorithms
FISTA: A fast iterative shrinkage-thresholding algorithm
Nesterov's Second Method
spgl1 and Other Available Packages
Alternating Direction Method of Multinliers (ADMM)

Some Popular Algorithms for Compressive Sensing - Part 2

- Basis pursuit:

$$
\begin{equation*}
\min _{\mathbf{z} \in \mathbb{C}^{n}}\|\mathbf{z}\|_{1} \quad \text { s.t. } \quad A \mathbf{z}=\mathbf{y} . \tag{BP}
\end{equation*}
$$

- Basis pursuit denoising:

$$
\min _{\mathbf{z} \in \mathbb{C}^{n}}\|\mathbf{z}\|_{1} \quad \text { s.t. } \quad\|A \mathbf{z}-\mathbf{y}\|_{2} \leq \eta
$$

or

$$
\min _{z \in \mathbb{C}^{n}} \frac{1}{2}\|A \mathbf{z}-\mathbf{y}\|_{2}^{2}+\lambda\|\mathbf{z}\|_{1}
$$

- Lasso:

$$
\min _{z \in \mathbb{C}^{n}} \frac{1}{2}\|A \mathbf{z}-\mathbf{y}\|_{2}^{2} \quad \text { s.t. } \quad\|\mathbf{z}\|_{1} \leq \tau
$$

References:

- Chapter 3 from "A Mathematical Introduction to Compressive Sensing", by S. Foucart and H. Rauhut.
- ECE236C, Optimization Methods for Large-Scale Systems, by Boyd and Vandenberghe

Relations between ℓ_{1}-Optimization Models

Proposition 3.2. (Relations between $\left(B P_{\eta}\right),\left(Q P_{\lambda}\right)$, and $\left(L S_{\tau}\right)$.

1. If $\mathbf{z}_{q p}$ is a minimizer of $\left(Q P_{\lambda}\right)$ with $\lambda>0$, then there exists $\sigma=\sigma_{\mathbf{z}_{q p}} \geq 0$ such that $\mathbf{z}_{q p}$ is a minimizer of $\left(B P_{\eta}\right)$.
2. If $\mathbf{z}_{b p}$ is a unique minimizer of $\left(B P_{\eta}\right)$ with $\sigma \geq 0$, then there exists $\tau=\tau_{\mathbf{z}_{b p}} \geq 0$ such that $\mathbf{z}_{b p}$ is a unique minimizer of $\left(L S_{\tau}\right)$.
3. If $\mathbf{z}_{/ s}$ is a minimizer of $\left(L S_{\tau}\right)$ with $\tau>0$, then there exists $\lambda=\lambda_{z_{/ s}} \geq 0$ such that $\mathbf{z}_{/ s}$ is a minimizer of $\left(Q P_{\lambda}\right)$.

Proof Sketch.

- $\left(Q P_{\lambda} \Rightarrow B P_{\eta}\right)$. Set $\sigma:=\left\|A z_{q p}-y\right\|_{2}$.
- $\left(B P_{\eta} \Rightarrow L S_{\tau}\right)$. Set $\tau:=\left\|z_{b p}\right\|_{1}$.
- $\left(L S_{\tau} \Rightarrow Q P_{\lambda}\right)$. See Theorem B. 28 from "A Mathematical Introduction to Compressive Sensing", by S. Foucart and H. Rauhut.

Relations between ℓ_{1}-Optimization Models (cont'd)

With suitable values of η, λ, τ, the solutions of $B P_{\eta}, Q P_{\lambda}, L S_{\tau}$ coincide.

- If A is orthogonal, a suggestion is $\lambda=\eta \sqrt{2 \log (n)} . \quad 1$
- In general, the relations among η, λ, τ cannot be known a priori.
- If λ is large enough, the solution of $Q P_{\lambda}$ problem is $z_{\lambda}=0$.

Theorem (BP vs $Q P_{\lambda}$.)
Assume that $A w=y$ has a solution. For each $\lambda>0$, let z_{λ} be a minimizer of $\left(Q P_{\lambda}\right)$. If the $(B P)$ problem has a unique solution $z^{\#}$, then

$$
\lim _{\lambda \rightarrow 0^{+}} z_{\lambda}=z^{\#}
$$

[^0]
Outline

Relations between ℓ_{1}-Optimization Models

Minimizing the Sum of Two Convex Functions
Proximal Operator
Minimizing the Sum of Two Convex Functions

Some Popular ℓ_{1}-Optimization Algorithms
FISTA: A fast iterative shrinkage-thresholeling algorithm
Nesterov's Second Method
spgl1 and Other Available Packages
Alternating Direction Method of Multipliers (ADMM)

Proximal Operator

Definition

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{+\infty\}$ be a closed, proper, convex function, which means that its epigraph

$$
\text { epi } f=\left\{(x, t) \in \mathbb{R}^{n} \times \mathbb{R}: f(x) \leq t\right\}
$$

is a nonempty closed convex set.

- The proximal operator prox $_{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is defined as follows:

$$
\operatorname{prox}_{f}\left(\mathbf{x}_{0}\right):=\underset{\mathbf{x}}{\operatorname{argmin}}\left\{f(\mathbf{x})+\frac{1}{2}\left\|\mathbf{x}-\mathbf{x}_{0}\right\|_{2}^{2}\right\}, \quad \text { where } \quad \mathbf{x}_{0} \in \mathbb{R}^{n} .
$$

- The proximal operator of the scaled function λf, where $\lambda>0$, is also called the proximal operator of f with parameter λ.

Subgradient characterization: $u=\operatorname{prox}_{f}(x) \Leftrightarrow x-u \in \partial f(u)$, where

$$
\partial f(\mathbf{x}):=\left\{\mathbf{z}: \mathbf{z}^{T}(\mathbf{y}-\mathbf{x}) \leq f(\mathbf{y})-f(\mathbf{x}), \forall \mathbf{y} \in \operatorname{dom}(f)\right\} .
$$

3

[^1]
Examples of Proximal Operators

- Example 1: The proximal operator of the ℓ_{1} function is

$$
\begin{aligned}
\operatorname{prox}_{\lambda\|\cdot\|_{1}}\left(\mathbf{x}_{0}\right) & :=\underset{\mathbf{x}}{\operatorname{argmin}}\left\{\lambda\|\mathbf{x}\|_{1}+\frac{1}{2}\left\|\mathbf{x}-\mathbf{x}_{0}\right\|_{2}^{2}\right\} \\
& =\operatorname{sign}\left(\mathbf{x}_{0}\right) \max \left(\left|\mathbf{x}_{0}\right|-\lambda, 0\right) . \quad \text { (element-wise) }
\end{aligned}
$$

It is called a soft-thresholding operator.

- Example 2: The proximal operator of the ℓ_{0} function is

$$
\operatorname{prox}_{\lambda\|\cdot\|_{0}}\left(\mathbf{x}_{0}\right):=\underset{\mathbf{x}}{\operatorname{argmin}}\left\{\lambda\|\mathbf{x}\|_{0}+\frac{1}{2}\left\|\mathbf{x}-\mathbf{x}_{0}\right\|_{2}^{2}\right\}=\text { (discuss in class). }
$$

It is called a hard-thresholding operator.

- Example 3: The proximal operator of the indicator function of closed convex set C is

$$
\left.\operatorname{prox}_{i_{C}}\left(\mathbf{x}_{0}\right)=\underset{\mathbf{u} \in C}{\operatorname{argmin}}\left\|\mathbf{u}-\mathbf{x}_{0}\right\|_{2}^{2}=P_{C}\left(\mathbf{x}_{0}\right) \quad \text { (projection on } C\right) .
$$

Examples of Projection on a Closed Convex Set

- For $C=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \mathbf{a}^{T} \mathbf{x}=\mathbf{b}\right\}$ with $\mathbf{a} \neq 0$, then

$$
P_{C}(\mathbf{x})=\mathbf{x}+\frac{\mathbf{b}-\mathbf{a}^{T} \mathbf{x}}{\|\mathbf{a}\|_{2}^{2}} \mathbf{a}
$$

- For $C=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid A \mathbf{x}=\mathbf{b}\right\}$ (with $A \in \mathbb{R}^{p \times n}$ and $\operatorname{rank}(A)=p \ll n$):

$$
P_{C}(\mathbf{x})=\mathbf{x}+A^{T}\left(A A^{T}\right)^{-1}(\mathbf{b}-A \mathbf{x})
$$

- For $C=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \mathbf{a}^{T} \mathbf{x} \leq \mathbf{b}\right\}$ with $\mathbf{a} \neq 0$, then

$$
P_{C}(\mathbf{x})= \begin{cases}\mathbf{x}+\frac{\mathbf{b}-\mathbf{a}^{T} \mathbf{x}}{\|\mathbf{a}\|_{2}^{2}} \mathbf{a} & \text { if } \mathbf{a}^{T} \mathbf{x}>\mathbf{b} \\ \mathbf{x} & \text { if } \mathbf{a}^{T} \mathbf{x} \leq \mathbf{b}\end{cases}
$$

4

[^2]
Examples of Projection on a Closed Convex Set (cont'd)

- For $C=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \ell \preceq x \preceq \mathbf{u}\right\}$, then

$$
P_{C}(\mathbf{x})= \begin{cases}\ell_{k} & \text { when } \quad x_{k} \leq \ell_{k} \\ x_{k} & \text { when } \quad \ell_{k} \leq x_{k} \leq u_{k} \\ u_{k} & \text { when } \quad x_{k} \geq u_{k}\end{cases}
$$

- For $C=\mathbb{R}_{+}^{n}$, then $P_{C}(\mathbf{x})=\operatorname{ReL} U(\mathbf{x}) \in C$.
- For $C=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid 1^{T} \mathbf{x}=1, \mathbf{x} \succeq 0\right\}$, then $P_{C}(\mathbf{x})=(\mathbf{x}-\lambda \mathbf{1})_{+}$, where λ is the solution of the equation

$$
\mathbf{1}^{T}(\mathbf{x}-\lambda \mathbf{1})_{+}=\sum_{i=1}^{n} \max \left\{0, x_{k}-\lambda\right\}=1 .
$$

5

[^3]
Minimizing the Sum of Two Convex Functions

- Consider the following nonsmooth convex optimization problem:

$$
\min \left\{F(\mathbf{x})=f(\mathbf{x})+g(\mathbf{x}): \mathbf{x} \in \mathbb{R}^{n}\right\}
$$

where

- $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is closed proper convex, continuously differentiable with Lipschitz continous gradient L_{f} :

$$
\|\nabla f(\mathbf{x})-\nabla f(\mathbf{y})\|_{2} \leq L_{f}\|\mathbf{x}-\mathbf{y}\|_{2}
$$

- $g: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{+\infty\}$ is closed proper convex, continuous function which is possibly nonsmooth, with inexpensive proximal operator prox $_{g}(\cdot)$.
- The optimization problem is solvable, i.e., $\operatorname{argmin} F \neq \emptyset$.
- In the remaining slides, we assume the functions f and g have those properties, unless stated otherwise.

Minimizing the Sum of Two Convex Functions (cont'd)

- Example: The $\ell_{1}-$ regularization problem $\left(Q P_{\lambda}\right)$, where

$$
f(\mathbf{z})=\frac{1}{2}\|A \mathbf{z}-\mathbf{y}\|^{2}, \quad g(\mathbf{z})=\lambda\|\mathbf{z}\|_{1}, \quad \text { and } L_{f}=\lambda_{\max }\left(A^{T} A\right) .
$$

Outline

Relations between ℓ_{1}-Optimization Models

Minimizing the Sum of Two Convex Functions

Proximal Operator
Minimizing the Sum of Two Convex Functions

Some Popular ℓ_{1}-Optimization Algorithms
FISTA: A fast iterative shrinkage-thresholding algorithm
Nesterov's Second Method
spgl1 and Other Available Packages
Alternating Direction Method of Multipliers (ADMM)

FISTA: A fast iterative shrinkage-thresholding algorithm

- FISTA is an iterative shrinkage-thresholding algorithm (ISTA) with complexity result of $\mathcal{O}\left(1 / k^{2}\right)$ (see Theorem 4.4 in ${ }^{6}$) to solve

$$
\min \left\{F(\mathbf{x})=f(\mathbf{x})+g(\mathbf{x}): \mathbf{x} \in \mathbb{R}^{n}\right\} .
$$

FISTA with constant stepsize $-\min _{x \in \mathbb{R}^{n}}(f(\mathbf{x})+g(\mathbf{x}))$
Input: $L=L_{f}$, a Lipschitz constant of ∇f, and final step K.
Step 0. $\mathbf{y}_{1}=\mathrm{x}_{0} \in \mathbb{R}^{n}, t_{1}=1$.
Step k. $(k \geq 1)$ Compute

$$
\begin{aligned}
\mathbf{x}_{k} & =\underset{\mathbf{x}}{\operatorname{argmin}}\left\{g(\mathbf{x})+\frac{L}{2}\left\|\mathbf{x}-\left(\mathbf{y}_{k}-\frac{1}{L} \nabla f\left(\mathbf{y}_{k}\right)\right)\right\|^{2}\right\} \\
& =\operatorname{prox}_{(1 / L) g}\left(\mathbf{y}_{k}-\frac{1}{L} \nabla f\left(\mathbf{y}_{k}\right)\right) \\
t_{k+1} & =\frac{1+\sqrt{1+4 t_{k}^{2}}}{2} \\
\mathbf{y}_{k+1} & =\mathbf{x}_{k}+\frac{t_{k}-1}{t_{k+1}}\left(\mathbf{x}_{k}-\mathbf{x}_{k-1}\right)
\end{aligned}
$$

Output: \mathbf{x}_{K}

FISTA (cont'd)

FISTA - Another Version - $\min _{\mathbf{x} \in \mathbb{R}^{n}}(f(\mathbf{x})+g(\mathbf{x}))$
Input: $L=L_{f}$, a Lipschitz constant of ∇f, and final step K.
Step 0. Choose any $\mathbf{x}_{1}=\mathbf{x}_{0} \in \mathbb{R}^{n}$.
Step k. $(k \geq 1)$ Compute

$$
\begin{aligned}
\mathbf{y} & =\mathbf{x}_{k}+\frac{k-1}{k+2}\left(\mathbf{x}_{k}-\mathbf{x}_{k-1}\right) \\
\mathbf{x}_{k+1} & =\operatorname{prox}_{t_{k+1}}\left(\mathbf{y}-t_{k+1} \nabla f(\mathbf{y})\right),
\end{aligned}
$$

where step size $t_{k}=\frac{1}{L}, \forall k$ or is determined by line search.
Output: \mathbf{x}_{K}

7
${ }^{7}$ http://www.seas.ucla.edu/~vandenbe/236C/lectures/fista.pdf, by Boyd \& Vandenberghe

FISTA: Examples

Using FISTA to solve

$$
\min _{\mathbf{x} \in \mathbb{R}^{n}}\left(\frac{1}{2}\|A \mathbf{x}-\mathbf{b}\|_{2}^{2}+\lambda\|\mathbf{x}\|_{1}\right)
$$

In this case, $f(\mathbf{x})=\frac{1}{2}\|A \mathbf{x}-\mathbf{b}\|_{2}^{2}, L_{f}=\lambda_{\max }\left(A^{T} A\right)$, and $g(\mathbf{x})=\lambda\|\mathbf{x}\|_{1}$.

FISTA to Solve $-\min _{\mathbf{x} \in \mathbb{R}^{n}}\left(\frac{1}{2}\|A \mathbf{x}-\mathbf{b}\|_{2}^{2}+\lambda\|\mathbf{x}\|_{1}\right)$
Input: Final step K.
Step 0 . Choose any $\mathbf{x}_{1}=\mathbf{x}_{0} \in \mathbb{R}^{n}$.
Step k. $(k \geq 1)$ Compute

$$
\begin{aligned}
\mathbf{y} & =\mathbf{x}_{k}+\frac{k-1}{k+2}\left(\mathbf{x}_{k}-\mathbf{x}_{k-1}\right) \\
\hat{\mathbf{y}} & =\mathbf{y}-\frac{1}{L} A^{T}(A \mathbf{y}-\mathbf{b}) \\
\mathbf{x}_{k+1} & =\operatorname{prox}_{(1 / L) g}(\hat{\mathbf{y}})=\operatorname{sign}(\hat{\mathbf{y}}) \max \left(|\hat{\mathbf{y}}|-\frac{\lambda}{L}, 0\right),
\end{aligned}
$$

where $L=\lambda_{\max }\left(A^{T} A\right)$.
Output: \mathbf{x}_{K}

Nesterov's Second Method

- Nesterov's second method is a gradient projection method with $\left(1 / k^{2}\right)$ convergence rate.

Nesterov's Second Method

Input: $\mathrm{L}=\mathrm{L}(\mathrm{f})$, a Lipschitz constant of ∇f, and final step K.
Step 0. Choose any $\mathbf{x}_{0}=\mathbf{z}_{0} \in \mathbb{R}^{n}$.
Step k. ($k \geq 1$) Compute

$$
\begin{aligned}
\mathbf{y} & =\left(1-\theta_{k}\right) \mathbf{x}_{k-1}+\theta_{k} \mathbf{z}_{k-1} \\
\mathbf{z}_{k} & =\operatorname{prox}_{\left(t_{k} / \theta_{k}\right) g}\left(\mathbf{z}_{k-1}-\frac{t_{k}}{\theta_{k}} \nabla f(\mathbf{y})\right) \\
\mathbf{x}_{k} & =\left(1-\theta_{k}\right) \mathbf{x}_{k-1}+\theta_{k} \mathbf{z}_{k},
\end{aligned}
$$

where $\theta_{k}=\frac{2}{k+1}$ and $t_{k}=\frac{1}{L}$, or one of the line search methods.
Output: \mathbf{x}_{K}

[^4]
spgl1 and Other Available Packages

- spgl1 ${ }^{10}$. Matlab and Python codes can be downloaded from https://friedlander.io/spgl1/install
- Python packages: scikit-learn package.
- Link: https:
//scikit-learn.org/stable/modules/linear_model.html
- Solve the $\left(Q P_{\lambda}\right)$ by coordinate descent method ${ }^{11}$.

[^5]
Alternating Direction Method of Multipliers (ADMM)

Here we assume that f and g are convex, closed, proper and L_{0} has a saddle point.

- Consider the following optimization problem:

$$
\begin{array}{ll}
\operatorname{minimize} & f(\mathbf{x})+g(\mathbf{z}) \\
\text { subject to } & A \mathbf{x}+B \mathbf{z}=\mathbf{c} .
\end{array}
$$

- The corresponding augmented Lagrangian is

$$
L_{\rho}(\mathbf{x}, \mathbf{z}, \mathbf{y})=f(\mathbf{x})+g(\mathbf{z})+\mathbf{y}^{T}(A \mathbf{x}+B \mathbf{z}-\mathbf{c})+\frac{\rho}{2}\|A \mathbf{x}+B \mathbf{z}-\mathbf{c}\|_{2}^{2}
$$

- ADMM algorithm:

$$
\begin{array}{lr}
\mathbf{x}_{k+1}:=\underset{x}{\operatorname{argmin}} L_{\rho}\left(\mathbf{x}, \mathbf{z}_{k}, \mathbf{y}_{k}\right) & \text { (x-minimization) } \\
\mathbf{z}_{k+1}:=\underset{z}{\operatorname{argmin}} L_{\rho}\left(\mathbf{x}_{k+1}, \mathbf{z}, \mathbf{y}_{k}\right) & \text { (z-minimization) } \\
\mathbf{y}_{k+1}:=y_{k}+\rho\left(A \mathbf{x}_{k+1}+B \mathbf{z}_{k+1}-\mathbf{c}\right) & \text { (dual update) }
\end{array}
$$

121314
${ }^{12}$ ADMM is proposed by Gabay, Mercier, Glowinski, Marrocco in 1976.
${ }^{13}$ The Split Bregman Method for L1-Regularized Problems, by Goldstein and Osher, SIAM J. Imaging Sciences, 2009.
${ }^{14}$ https://web.stanford.edu/class/ee364b/lectures/admm_slides.pdf

ADMM and Related Algorithms

- Under the stated assumptions, ADMM converges in the sense that
- Iterates approach feasibility: $A \mathbf{x}_{k}+B \mathbf{z}_{k}-\mathbf{c} \rightarrow 0$
- Objective approaches optimal value: $f\left(\mathbf{x}_{k}\right)+g\left(\mathbf{z}_{k}\right) \rightarrow p_{*}$
- Related algorithms:
- operator splitting methods
- proximal point algorithm
- Bregman iterative methods

ADMM: Examples

Example 1: Consider ADMM for

$$
\min f(\mathbf{x}) \quad \text { subject to } \quad \mathbf{x} \in \mathbb{C} \text {. }
$$

Answer:

- The ADMM form with $g(\mathbf{z})=I_{C}(\mathbf{z})$, the indicator function of set C :

$$
\begin{array}{ll}
\operatorname{minimize} & f(\mathbf{x})+g(\mathbf{z}) \\
\text { subject to } & \mathbf{x}-\mathbf{z}=0 .
\end{array}
$$

- ADMM algorithm (discuss in class)

ADMM: Examples

Example 2: Consider ADMM for

$$
\min \frac{1}{2}\|A \mathbf{x}-\mathbf{b}\|_{2}^{2}+\lambda\|\mathbf{x}\|_{1}
$$

Answer:

- The ADMM form with $g(\mathbf{z})=\lambda\|\mathbf{z}\|_{1}$:

$$
\begin{array}{ll}
\operatorname{minimize} & \frac{1}{2}\|A \mathbf{x}-\mathbf{b}\|_{2}^{2}+\lambda\|\mathbf{z}\|_{1} \\
\text { subject to } & \mathbf{x}-\mathbf{z}=0
\end{array}
$$

- ADMM algorithm (discuss in class)

ADMM: Examples

Example 3: Consider ADMM for

$$
\min \frac{1}{2}\|A \mathbf{x}-\mathbf{b}\|_{2}^{2}+\lambda\|C \mathbf{x}-\mathbf{d}\|_{1} .
$$

Answer:

- The ADMM form with $g(\mathbf{z})=\lambda\|\mathbf{z}-\mathbf{d}\|_{1}$:

$$
\begin{aligned}
& \operatorname{minimize} \quad \frac{1}{2}\|A \mathbf{x}-\mathbf{b}\|_{2}^{2}+\lambda\|\mathbf{z}-\mathbf{d}\|_{1} \\
& \text { subject to } \quad C \mathbf{x}-\mathbf{z}=0
\end{aligned}
$$

- ADMM algorithm (discuss in class)

ADMM: Examples

Example 4: Given a 2D noisy image f, consider ADMM for the TV denoising model:

$$
\min _{u} \frac{\mu}{2}\|u-f\|_{2}^{2}+\left\|\nabla_{x} u\right\|_{1}+\left\|\nabla_{y} u\right\|_{1} .
$$

Answer:

- The ADMM form:

$$
\begin{aligned}
& \min _{u, d_{x}, d_{y}} \frac{\mu}{2}\|u-f\|_{2}^{2}+\left\|d_{x}\right\|_{1}+\left\|d_{y}\right\|_{1} \\
& \text { subject to } \quad d_{x}-\nabla_{x} u=0 \quad \text { and } \quad d_{y}-\nabla_{y} u=0 .
\end{aligned}
$$

- ADMM algorithm (discuss in class)

Primal-Dual Algorithm - TO BE EDITED

Given $A \in \mathbb{C}^{m \times N}$, the functions $f: \mathbb{C}^{m} \rightarrow(-\infty, \infty]$ and $g: \mathbb{C}^{N} \rightarrow(-\infty, \infty]$ are extended real-valued lower semicontinuous convex functions. Consider:

$$
\min _{\mathbf{x} \in \mathbb{C}^{N}} f(A \mathbf{x})+g(\mathbf{x})
$$

ℓ_{1}-Algorithms for $\left(Q P_{\lambda}\right)$ Problem (cont'd)

Remarks:

- Global rate of convergence $\mathcal{O}\left(1 / k^{2}\right)$ can be achieved, for example, with FISTA and Nesterov's 2nd method. ${ }^{15}$
- The speed of some algorithms for ℓ_{1}-minimization problems does not depend on the sparsity level s, such as the primal-dual algorithm \rightarrow Use ℓ_{1}-minimization solvers for mildly large s.
- Debiasing technique: Suppose $z_{s o l}$ is the num. soln. of the $\left(Q P_{\lambda}\right)$ problem. Let $S:=\operatorname{supp}\left(z_{\text {final }}\right)$ and solve

$$
\min \left\{\|A z-y\|_{2}^{2}: \operatorname{supp}(z) \subset S\right\}
$$

[^6]
[^0]: $1_{\text {Atomic Decomposition by Basis Pursuit, by Chen, Donoho, and Saunders, SIAM Review, } 2001 . ~}^{\text {Sin }}$
 ${ }^{2}$ Probing the Pareto frontier for basis pursuit solutions, by E. van den Berg and M. P. Friedlander, SIAM J. on Scientific Computing, 2008.

[^1]: ${ }^{3}$ Proximal Algorithms, by Parikh and Boyd, Foundations and Trends in Optimization 2013.

[^2]: ${ }^{4}$ http://www.seas.ucla.edu/~vandenbe/236C/lectures/proxop.pdf

[^3]: ${ }^{5}$ http://www.seas.ucla.edu/~vandenbe/236C/lectures/proxop.pdf

[^4]: 89
 ${ }^{8}$ http://www.seas.ucla.edu/~vandenbe/236C/lectures/fista.pdf by Boyd \& Vandenberghe ${ }^{9}$ On Accelerated Proximal Gradient Methods for Convex-Concave Optimization, by Tseng, 2008.

[^5]: ${ }^{10}$ SPGL1: A solver for large-scale sparse reconstruction, by Den Berg and Friedlander, 2007.
 ${ }^{11}$ Regularization Path For Generalized linear Models by Coordinate Descent, by Friedman, Hastie and Tibshirani.

[^6]: $15_{\text {http://www.seas.ucla.edu/~vandenbe/236C/lectures/fista.pdf }}$

