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Relations between ¢;1-Optimization Models



Some Popular Algorithms for Compressive Sensi

e Basis pursuit:
i .t Az=y. BP
min [lz] s z=y (BP)

e Basis pursuit denoising:

min [|z[ly s.t. [|[Az—y|2<n, (BPy)

zeCr

or 1

o = o 2

min =[|Az —y[3 + Allzl;. (QPx)

e Lasso: 1
min S[lAz—yIE st el <7 (LS;)

References:

e Chapter 3 from “A Mathematical Introduction to Compressive Sensing”, by S.
Foucart and H. Rauhut.

e ECE236C, Optimization Methods for Large-Scale Systems, by Boyd and
Vandenberghe



Relations between /;-Optimization Models

Proposition 3.2. (Relations between (BPy), (QP»), and (LS;).

1. If zgp is a minimizer of (QPy) with A > 0, then there exists
0 = 02,4, > 0 such that zg, is a minimizer of (BP;).
2. If zpp is a unique minimizer of (BP,) with ¢ > 0, then there

exists 7 = 7z, > 0 such that z;, is a unique minimizer of (LS;).
bp P q

3. If ;s is a minimizer of (LS;) with 7 > 0, then there exists
A = Az, > 0 such that z is a minimizer of (QPy).

Proof Sketch.

o (QPx = BPy). Set o := [|Azgp — y||2.
e (BP, = LS;). Set T := || zep]|x.

o (LS; = QP»). See Theorem B.28 from “A Mathematical Introduction to
Compressive Sensing”, by S. Foucart and H. Rauhut.



Relations between ¢;-Optimization Models (cont’d)

With suitable values of 7, A, 7, the solutions of BP,, QPy, LS, coincide.

e If Ais orthogonal, a suggestion is A = ny/2log(n). 1

e In general, the relations among 7, A, 7 cannot be known a priori. 2

e If X is large enough, the solution of QP problem is zy, = 0.

Theorem (BP vs QP,.)

Assume that Aw = y has a solution. For each A > 0, let z\ be a
minimizer of (QPy). If the (BP) problem has a unique solution
z#  then

lim zy, = z7.
A—0+

L Atomic Decomposition by Basis Pursuit, by Chen, Donoho, and Saunders, SIAM Review, 2001
2 probing the Pareto frontier for basis pursuit solutions, by E. van den Berg and M. P. Friedlander, SIAM J. on Scientific Computing,
2008.



Minimizing the Sum of Two Convex Functions
Proximal Operator

Minimizing the Sum of Two Convex Functions



Proximal Operator

Definition
Let £ : R” — R U {+o0} be a closed, proper, convex function, which means
that its epigraph

epif ={(x,t) ER" xR : f(x) < t}
is a nonempty closed convex set.

e The proximal operator prox, : R” — R" is defined as follows:
1
proxs(xg) := argmin {f(x) + §||x - x0||§} , where x¢ € R".
X

e The proximal operator of the scaled function A\f, where A > 0, is also
called the proximal operator of f with parameter \.

\.

Subgradient characterization: u = prox¢(x) < x — u € 0f (u), where
Of(x) :={z:z" (y —x) < f(y) — f(x), Vy € dom(f)}.
3

3 Proximal Algorithms, by Parikh and Boyd, Foundations and Trends in Optimization 2013.



Examples of Proximal Operators

e Example 1: The proximal operator of the ¢; function is

. 1
proxa 1, (x0) i= argmin { x| + 3 1x = ol
X
= sign(xo) max(|xg| — A,0). (element-wise)
It is called a soft-thresholding operator.

e Example 2: The proximal operator of the ¢y function is
1
Proxyj.|, (Xo) := argmin {/\x||0 + EHX - x0||§} = (discuss in class).
X

It is called a hard-thresholding operator.

e Example 3: The proximal operator of the indicator function of closed
convex set C is

prox;_(xo) = argmin [|u — xo|3 = Pc(x0) (projection on C).
ueC



Examples of Projection on a Closed Convex Set

e For C={x€R"|a"x=b} with a # 0, then
b—a'x

Pc(x) = x+
llall3

e For C = {x € R" | Ax = b} (with A € RP*" and rank(A) = p < n):

Pc(x) = x+ AT(AAT)"1(b — Ax).

e For C={x€R"|a"x <b} with a# 0, then

i b—a'x

x4 — - =

Pc(x) = llall3
X ifa’x <b.

a ifa’x>b,

4ht1:p ://www.seas.ucla.edu/~vandenbe/236C/lectures/proxop.pdf
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Examples of Projection on a Closed Convex Set (cont’d)

e For C={x€R"| ¢ =< x < u}, then

li when x, <l
Pc(x) =9 x¢ when £, < x < g,

u,  when xi > uy.

e For C =R, then Pc(x) = ReLU(x) € C.

e For C={x€R"|17x = 1,x = 0}, then Pc(x) = (x — A1)}, where X is the
solution of the equation

17 (x — A1); = Z max{0, x, — A} = 1.
i=1

5ht1:p ://www.seas.ucla.edu/~vandenbe/236C/lectures/proxop.pdf
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Minimizing the Sum of Two Convex Functions

e Consider the following nonsmooth convex optimization problem:
min{F(x) = f(x) + g(x) : x € R"}

where

e f:R" — R is closed proper convex, continuously differentiable with
Lipschitz continous gradient L¢:

[VF(x) = VE(y)ll2 < Lellx = y]2.

e g:R" —» RU{+o0} is closed proper convex, continuous function
which is possibly nonsmooth, with inexpensive proximal operator

prox, (-).

e The optimization problem is solvable, i.e., argmin F # ().

e |n the remaining slides, we assume the functions f and g have those
properties, unless stated otherwise.

12



Minimizing the Sum of Two Convex Functions (cont’d)

e Example: The ¢;— regularization problem (QP,), where

1
f(2) = 5llAz - vyl g(z) =Alzlli, and Lr = Amax(ATA).

13



Some Popular ¢1-Optimization Algorithms
FISTA: A fast iterative shrinkage-thresholding algorithm
Nesterov's Second Method
spgll and Other Available Packages
Alternating Direction Method of Multipliers (ADMM)

14



FISTA: A fast iterative shrinkage-thresholding algorithm

e FISTA is an iterative shrinkage-thresholding algorithm (ISTA) with complexity
result of O(1/k?) (see Theorem 4.4 in ©) to solve

min{F(x) = f(x) + g(x) : x € R"}.

FISTA with constant stepsize - m]iRn (F(x) + g(x))
x€R"
Input: L = Ly, a Lipschitz constant of V£, and final step K.
Step 0. y1 =x0 € R, t; = 1.
Step k. (k > 1) Compute

X — (Yk = %Vf()’k)) 2}

. L
X, = argmin {g(x) + =
x 2

1
= ProX(1/1)g (Yk = ZVf(Yk)),

1+ /1 + 4t

tt1 = 5 ,
te — 1

Yie1 = Xk + (Xk — Xk—1)-
tit1

Output: xyx

6A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems, by Beck & Teboulle, SIAM J. Imaging Sciences, 2009 15



FISTA (cont’d)

N

FISTA - Another Version - Qg]iRnn(f(x) + g(x))

Input: L = Lf, a Lipschitz constant of Vf, and final step K.
Step 0. Choose any x; = xp € R”.

Step k. (k > 1) Compute

k+2
Xk4+1 = ProX, . (y - tk+1Vf(y)>,

Yy =Xk + (XK — Xk—1)

. 1 . . .
where step size t; = Z,Vk or is determined by line search.

Output: xx

7

7http://www.seas.ucla.edu/~vandenbe/236C/1ectures/fista.pdf, by Boyd & Vandenberghe
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FISTA: Examples

Using FISTA to solve
. 1 2
min (§HAX —bl2+ Al\xlh) :

In this case, f(x) = 3||Ax — b3, Lr = Amax(AT A), and g(x) = Al|x[]1.

FISTA to Solve - min (3[Ax — b||3 + A||x[|1)
x€R"

Input: Final step K.

Step 0. Choose any x; = xo € R".

Step k. (k > 1) Compute

A A
Xis1 = Prox i) (9) = sign(§) max(|y] — 7, 0),

where L = Amax(AT A).

Output: xx
17




Nesterov’s Second Method

o Nesterov's second method is a gradient projection method with (1/k?)

convergence rate.

Nesterov’s Second Method

Input: L = L(f), a Lipschitz constant of Vf, and final step K.
Step 0. Choose any xg = zp € R".

Step k. (k > 1) Compute

y=(1—0k)xk—1+0kzx_1

t,
Z) = ProX(s, /6,)g (Zk—l — éVf(y))

Xk = (1 — Ok)xk—1 + Okzg,

where 0, = % and t, = %, or one of the line search methods.

T
Output: xx

\ J

89
8ht‘tp://www.seas.ucla.edu/~vandenbe/236C/lectures/fista.pdf by Boyd & Vandenberghe
90n Accelerated Proximal Gradient Methods for Convex-Concave Optimization, by Tseng, 2008.

18
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spgll and Other Available Packages

e spgl1!®. Matlab and Python codes can be downloaded from
https://friedlander.io/spgll/install

e Python packages: scikit-learn package.
e Link: https:
//scikit-learn.org/stable/modules/linear_model.html

o Solve the (QP») by coordinate descent method **.

05PGLI: A solver for large-scale sparse reconstruction, by Den Berg and Friedlander, 2007.
11:‘i’egularization Path For Generalized linear Models by Coordinate Descent, by Friedman, Hastie
and Tibshirani.

19
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Alternating Direction Method of Multipliers (ADMM)

Here we assume that f and g are convex, closed, proper and Ly has a saddle point.

e Consider the following optimization problem:
minimize f(x) + g(z)
subject to Ax+ Bz =rc.
e The corresponding augmented Lagrangian is
Lo(x,2,y) = £(x) + &(2) + y7 (Ax+ Bz — ) + £ || Ax + Bz — |3

e ADMM algorithm:

Xpt1 1= argmin Ly(X, zx, yk) (x-minimization)
X

Zq1 = argmin Ly (X141, 2, Yk) (z-minimization)
z

Yit1 = Yk + p(Axpy1 + Bz — ) (dual update)

12 13 14
12ADMM is proposed by Gabay, Mercier, Glowinski, Marrocco in 1976.

B3 The Split Bregman Method for L1-Regularized Problems, by Goldstein and Osher, SIAM J.
Imaging Sciences, 2009.

14https ://web.stanford.edu/class/ee364b/lectures/admm_slides.pdf
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ADMM and Related Algorithms

e Under the stated assumptions, ADMM converges in the sense that

e |terates approach feasibility: Axx + Bz —c — 0
e Objective approaches optimal value: f(x«) + g(z«) — p«

e Related algorithms:

e operator splitting methods
e proximal point algorithm
e Bregman iterative methods

21



ADMM: Examples

Example 1: Consider ADMM for
min f(x) subjectto x € C.

Answer:
e The ADMM form with g(z) = Ic(z), the indicator function of set C:

minimize f(x) + g(z)

subject to x—z=0.

e ADMM algorithm (discuss in class)

22



ADMM: Examples

Example 2: Consider ADMM for
1 %
min EHAX —b||5 + Allx||1.

Answer:

e The ADMM form with g(z) = Al|z||:

1
minimize §||Ax—b|\§+)\Hz||1
subject to x—z=0.

e ADMM algorithm (discuss in class)

23



ADMM: Examples

Example 3: Consider ADMM for
o1 z
min EHAX —b|5+ A Cx —d||1.

Answer:

e The ADMM form with g(z) = Aljlz —d||1:

1
minimize 5||A><—|)|\§+Auz—d||1
subject to Cx—z=0.

e ADMM algorithm (discuss in class)

24



ADMM: Examples

Example 4: Given a 2D noisy image f, consider ADMM for the TV
denoising model:

.
min EHU — f13 + | Vxul1 + IVyuls.
Answer:
e The ADMM form:
. H
min, EIIU—f||§+||dx|\1+|\dy||1

subjectto dy —V,u=0 and d, —V,u=0.

e ADMM algorithm (discuss in class)

25



Primal-Dual Algorithm - TO BE EDITED

Given A € C™N | the functions f : C™ — (—o0, 00| and
g : CN — (—o0, 00] are extended real-valued lower semicontinuous
convex functions. Consider:

in f(A
min, F{Ax) + g(x)

26



Algorithms for (QP,) Problem (cont’d)

Remarks:

e Global rate of convergence O(1/k?) can be achieved, for example, with
FISTA and Nesterov's 2nd method. *°

e The speed of some algorithms for ¢1-minimization problems does not
depend on the sparsity level s, such as the primal-dual algorithm — Use
{1-minimization solvers for mildly large s.

e Debiasing technique: Suppose zs, is the num. soln. of the (QP)
problem. Let S := supp(zfinar) and solve

min{||Az — y|}3 : supp(z) C S}.

15http://www.seas .ucla.edu/~vandenbe/236C/lectures/fista.pdf
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