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Some Popular Algorithms for Compressive Sensing - Part 2

• Basis pursuit:

min
z∈Cn
‖z‖1 s.t. Az = y. (BP)

• Basis pursuit denoising:

min
z∈Cn
‖z‖1 s.t. ‖Az− y‖2 ≤ η, (BPη)

or

min
z∈Cn

1

2
‖Az− y‖2

2 + λ‖z‖1. (QPλ)

• Lasso:

min
z∈Cn

1

2
‖Az− y‖2

2 s.t. ‖z‖1 ≤ τ . (LSτ )

References:

• Chapter 3 from “A Mathematical Introduction to Compressive Sensing”, by S.

Foucart and H. Rauhut.

• ECE236C, Optimization Methods for Large-Scale Systems, by Boyd and

Vandenberghe
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Relations between `1-Optimization Models

Proposition 3.2. (Relations between (BPη), (QPλ), and (LSτ ).

1. If zqp is a minimizer of (QPλ) with λ > 0, then there exists

σ = σzqp ≥ 0 such that zqp is a minimizer of (BPη).

2. If zbp is a unique minimizer of (BPη) with σ ≥ 0, then there

exists τ = τzbp ≥ 0 such that zbp is a unique minimizer of (LSτ ).

3. If zls is a minimizer of (LSτ ) with τ > 0, then there exists

λ = λzls ≥ 0 such that zls is a minimizer of (QPλ).

Proof Sketch.

• (QPλ ⇒ BPη). Set σ := ‖Azqp − y‖2.

• (BPη ⇒ LSτ ). Set τ := ‖zbp‖1.

• (LSτ ⇒ QPλ). See Theorem B.28 from “A Mathematical Introduction to

Compressive Sensing”, by S. Foucart and H. Rauhut.
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Relations between `1-Optimization Models (cont’d)

With suitable values of η, λ, τ , the solutions of BPη,QPλ, LSτ coincide.

• If A is orthogonal, a suggestion is λ = η
√

2 log(n). 1

• In general, the relations among η, λ, τ cannot be known a priori. 2

• If λ is large enough, the solution of QPλ problem is zλ = 0.

Theorem (BP vs QPλ.)

Assume that Aw = y has a solution. For each λ > 0, let zλ be a

minimizer of (QPλ). If the (BP) problem has a unique solution

z#, then

lim
λ→0+

zλ = z#.

1
Atomic Decomposition by Basis Pursuit, by Chen, Donoho, and Saunders, SIAM Review, 2001.

2
Probing the Pareto frontier for basis pursuit solutions, by E. van den Berg and M. P. Friedlander, SIAM J. on Scientific Computing,

2008.
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Proximal Operator

Definition

Let f : Rn → R ∪ {+∞} be a closed, proper, convex function, which means

that its epigraph

epi f = {(x , t) ∈ Rn × R : f (x) ≤ t}

is a nonempty closed convex set.

• The proximal operator proxf : Rn → Rn is defined as follows:

proxf (x0) := argmin
x

{
f (x) +

1

2
‖x− x0‖2

2

}
, where x0 ∈ Rn.

• The proximal operator of the scaled function λf , where λ > 0, is also

called the proximal operator of f with parameter λ.

Subgradient characterization: u = proxf (x)⇔ x − u ∈ ∂f (u), where

∂f (x) := {z : zT (y − x) ≤ f (y)− f (x), ∀y ∈ dom(f )}.
3

3Proximal Algorithms, by Parikh and Boyd, Foundations and Trends in Optimization 2013.

8



Examples of Proximal Operators

• Example 1: The proximal operator of the `1 function is

proxλ‖·‖1
(x0) := argmin

x

{
λ‖x‖1 +

1

2
‖x− x0‖2

2

}
= sign(x0) max(|x0| − λ, 0). (element-wise)

It is called a soft-thresholding operator.

• Example 2: The proximal operator of the `0 function is

proxλ‖·‖0
(x0) := argmin

x

{
λ‖x‖0 +

1

2
‖x− x0‖2

2

}
= (discuss in class).

It is called a hard-thresholding operator.

• Example 3: The proximal operator of the indicator function of closed

convex set C is

proxiC (x0) = argmin
u∈C

‖u− x0‖2
2 = PC (x0) (projection on C ).
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Examples of Projection on a Closed Convex Set

• For C = {x ∈ Rn | aT x = b} with a 6= 0, then

PC (x) = x +
b− aT x

‖a‖2
2

a.

• For C = {x ∈ Rn | Ax = b} (with A ∈ Rp×n and rank(A) = p � n):

PC (x) = x + AT (AAT )−1(b− Ax).

• For C = {x ∈ Rn | aT x ≤ b} with a 6= 0, then

PC (x) =

x +
b− aT x

‖a‖2
2

a if aT x > b,

x if aT x ≤ b.

4

4http://www.seas.ucla.edu/~vandenbe/236C/lectures/proxop.pdf
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Examples of Projection on a Closed Convex Set (cont’d)

• For C = {x ∈ Rn | ` � x � u}, then

PC (x) =


`k when xk ≤ `k ,

xk when `k ≤ xk ≤ uk ,

uk when xk ≥ uk .

• For C = Rn
+, then PC (x) = ReLU(x) ∈ C .

• For C = {x ∈ Rn | 1T x = 1, x � 0}, then PC (x) = (x− λ1)+, where λ is the

solution of the equation

1T (x− λ1)+ =
n∑

i=1

max{0, xk − λ} = 1.

5

5http://www.seas.ucla.edu/~vandenbe/236C/lectures/proxop.pdf
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Minimizing the Sum of Two Convex Functions

• Consider the following nonsmooth convex optimization problem:

min{F (x) = f (x) + g(x) : x ∈ Rn}

where

• f : Rn → R is closed proper convex, continuously differentiable with

Lipschitz continous gradient Lf :

‖∇f (x)−∇f (y)‖2 ≤ Lf ‖x− y‖2.

• g : Rn → R ∪ {+∞} is closed proper convex, continuous function

which is possibly nonsmooth, with inexpensive proximal operator

proxg (·).

• The optimization problem is solvable, i.e., argminF 6= ∅.

• In the remaining slides, we assume the functions f and g have those

properties, unless stated otherwise.
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Minimizing the Sum of Two Convex Functions (cont’d)

• Example: The `1− regularization problem (QPλ), where

f (z) =
1

2
‖Az− y‖2, g(z) = λ‖z‖1, and Lf = λmax(ATA).
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FISTA: A fast iterative shrinkage-thresholding algorithm

• FISTA is an iterative shrinkage-thresholding algorithm (ISTA) with complexity

result of O(1/k2) (see Theorem 4.4 in 6) to solve

min{F (x) = f (x) + g(x) : x ∈ Rn}.

FISTA with constant stepsize - min
x∈Rn

(f (x) + g(x))

Input: L = Lf , a Lipschitz constant of ∇f , and final step K .

Step 0. y1 = x0 ∈ Rn, t1 = 1.

Step k. (k ≥ 1) Compute

xk = argmin
x

{
g(x) +

L

2

∥∥∥∥x−
(

yk −
1

L
∇f (yk )

)∥∥∥∥2
}

= prox(1/L)g

(
yk −

1

L
∇f (yk )

)
,

tk+1 =
1 +

√
1 + 4t2

k

2
,

yk+1 = xk +
tk − 1

tk+1
(xk − xk−1).

Output: xK

6
A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems, by Beck & Teboulle, SIAM J. Imaging Sciences, 2009. 15



FISTA (cont’d)

FISTA - Another Version - min
x∈Rn

(f (x) + g(x))

Input: L = Lf , a Lipschitz constant of ∇f , and final step K .

Step 0. Choose any x1 = x0 ∈ Rn.

Step k. (k ≥ 1) Compute

y = xk +
k − 1

k + 2
(xk − xk−1)

xk+1 = proxtk+1g

(
y − tk+1∇f (y)

)
,

where step size tk =
1

L
,∀k or is determined by line search.

Output: xK

7

7http://www.seas.ucla.edu/~vandenbe/236C/lectures/fista.pdf, by Boyd & Vandenberghe
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FISTA: Examples

Using FISTA to solve

min
x∈Rn

(
1

2
‖Ax− b‖2

2 + λ‖x‖1

)
.

In this case, f (x) = 1
2
‖Ax− b‖2

2, Lf = λmax(ATA), and g(x) = λ‖x‖1.

FISTA to Solve - min
x∈Rn

(
1
2
‖Ax− b‖2

2 + λ‖x‖1

)
Input: Final step K .

Step 0. Choose any x1 = x0 ∈ Rn.

Step k. (k ≥ 1) Compute

y = xk +
k − 1

k + 2
(xk − xk−1)

ŷ = y − 1

L
AT (Ay − b)

xk+1 = prox(1/L)g (ŷ) = sign(ŷ) max(|ŷ| − λ

L
, 0),

where L = λmax(ATA).

Output: xK
17



Nesterov’s Second Method

• Nesterov’s second method is a gradient projection method with (1/k2)

convergence rate.

Nesterov’s Second Method

Input: L = L(f), a Lipschitz constant of ∇f , and final step K .

Step 0. Choose any x0 = z0 ∈ Rn.

Step k. (k ≥ 1) Compute

y = (1− θk )xk−1 + θk zk−1

zk = prox(tk/θk )g

(
zk−1 −

tk

θk
∇f (y)

)
xk = (1− θk )xk−1 + θk zk ,

where θk = 2
k+1

and tk = 1
L

, or one of the line search methods.

Output: xK

8 9
8http://www.seas.ucla.edu/~vandenbe/236C/lectures/fista.pdf by Boyd & Vandenberghe
9On Accelerated Proximal Gradient Methods for Convex-Concave Optimization, by Tseng, 2008.
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spgl1 and Other Available Packages

• spgl110. Matlab and Python codes can be downloaded from

https://friedlander.io/spgl1/install

• Python packages: scikit-learn package.

• Link: https:

//scikit-learn.org/stable/modules/linear_model.html

• Solve the (QPλ) by coordinate descent method 11.

10SPGL1: A solver for large-scale sparse reconstruction, by Den Berg and Friedlander, 2007.
11Regularization Path For Generalized linear Models by Coordinate Descent, by Friedman, Hastie

and Tibshirani.
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Alternating Direction Method of Multipliers (ADMM)

Here we assume that f and g are convex, closed, proper and L0 has a saddle point.

• Consider the following optimization problem:

minimize f (x) + g(z)

subject to Ax + Bz = c.

• The corresponding augmented Lagrangian is

Lρ(x, z, y) = f (x) + g(z) + yT (Ax + Bz− c) +
ρ

2
‖Ax + Bz− c‖2

2

• ADMM algorithm:

xk+1 := argmin
x

Lρ(x, zk , yk ) (x-minimization)

zk+1 := argmin
z

Lρ(xk+1, z, yk ) (z-minimization)

yk+1 := yk + ρ(Axk+1 + Bzk+1 − c) (dual update)

12 13 14
12ADMM is proposed by Gabay, Mercier, Glowinski, Marrocco in 1976.
13The Split Bregman Method for L1-Regularized Problems, by Goldstein and Osher, SIAM J.

Imaging Sciences, 2009.
14https://web.stanford.edu/class/ee364b/lectures/admm_slides.pdf
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ADMM and Related Algorithms

• Under the stated assumptions, ADMM converges in the sense that

• Iterates approach feasibility: Axk + Bzk − c→ 0

• Objective approaches optimal value: f (xk ) + g(zk )→ p∗

• Related algorithms:

• operator splitting methods

• proximal point algorithm

• Bregman iterative methods
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ADMM: Examples

Example 1: Consider ADMM for

min f (x) subject to x ∈ C.

Answer:

• The ADMM form with g(z) = IC (z), the indicator function of set C :

minimize f (x) + g(z)

subject to x− z = 0.

• ADMM algorithm (discuss in class)
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ADMM: Examples

Example 2: Consider ADMM for

min
1

2
‖Ax− b‖2

2 + λ‖x‖1.

Answer:

• The ADMM form with g(z) = λ‖z‖1:

minimize
1

2
‖Ax− b‖2

2 + λ‖z‖1

subject to x− z = 0.

• ADMM algorithm (discuss in class)
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ADMM: Examples

Example 3: Consider ADMM for

min
1

2
‖Ax− b‖2

2 + λ‖Cx− d‖1.

Answer:

• The ADMM form with g(z) = λ‖z− d‖1:

minimize
1

2
‖Ax− b‖2

2 + λ‖z− d‖1

subject to Cx− z = 0.

• ADMM algorithm (discuss in class)
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ADMM: Examples

Example 4: Given a 2D noisy image f , consider ADMM for the TV

denoising model:

min
u

µ

2
‖u − f ‖2

2 + ‖∇xu‖1 + ‖∇yu‖1.

Answer:

• The ADMM form:

min
u,dx ,dy

µ

2
‖u − f ‖2

2 + ‖dx‖1 + ‖dy‖1

subject to dx −∇xu = 0 and dy −∇yu = 0.

• ADMM algorithm (discuss in class)
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Primal-Dual Algorithm - TO BE EDITED

Given A ∈ Cm×N , the functions f : Cm → (−∞,∞] and

g : CN → (−∞,∞] are extended real-valued lower semicontinuous

convex functions. Consider:

min
x∈CN

f (Ax) + g(x)

26



`1-Algorithms for (QPλ) Problem (cont’d)

Remarks:

• Global rate of convergence O(1/k2) can be achieved, for example, with

FISTA and Nesterov’s 2nd method. 15

• The speed of some algorithms for `1-minimization problems does not

depend on the sparsity level s, such as the primal-dual algorithm → Use

`1-minimization solvers for mildly large s.

• Debiasing technique: Suppose zsol is the num. soln. of the (QPλ)

problem. Let S := supp(zfinal ) and solve

min{‖Az − y‖2
2 : supp(z) ⊂ S}.

15
http://www.seas.ucla.edu/~vandenbe/236C/lectures/fista.pdf
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