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1.4.1: Recovery Guarantees for `0− Algorithms

Problem: Given A ∈ Cm×n and y ∈ Cm. Find

w ∈ Cn such that y = Aw and ‖w‖0 ≤ s.

We will go over recovery guarantees for OMP, IHT, HTP:

• Exact Recovery Condition for OMP

• Conditions based on Coherence of the Measurement Matrix.

We use the same numbers of Theorems, Lemmas, Propositions from “A

Mathematical Introduction to Compressive Sensing”, by S. Foucart and

H. Rauhut.
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Recall: Orthogonal Matching Pursuit

Orthogonal Matching Pursuit

Input: Measurement matrix A ∈ Cm×n with `2-normalized columns,

measurement vector y ∈ Cm, sparsity level s or tolerance ε.

Initialization: S0 = ∅,w0 = 0.

Iteration: Repeat until Stopping Criterion is met.

jk+1 := arg max
j∈[n]

{|(A∗(y − Awk))j |}

Sk+1 := Sk ∪ {jk+1}

Find wk+1 s.t A∗Sk+1 y = A∗Sk+1ASk+1 wk+1
Sk+1

Output: The sparse vector w#.

import numpy as np

from sklearn.linear_model import OrthogonalMatchingPursuit as omp
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Orthogonal Matching Pursuit: Exact Recovery Condition

Proposition 3.5. (Exact Recovery Condition). Given A ∈
Cm×n with `2-normalized columns. The following statements are

equivalent:

1. Every nonzero vector w ∈ Cn supported on a set S of size s

is recovered from y = Aw after at most s iterations of OMP

2. AS is injective and

max
j∈S
|〈r, aj〉| > max

`∈Sc
|〈r, a`〉|

for all nonzero r ∈ {Az, supp(z) ⊆ S}.
3. ‖A†SASc‖1→1 < 1, where A†S = (A∗SAS)−1A∗S .

Recall: For any p, q ≥ 1, define

‖A‖p→q = sup
x 6=0

‖Ax‖q
‖x‖p

.
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Coherence

Definition 4.1. Let A ∈ Cm×n be a matrix with `2-normalized columns.

The `1-coherence function µ1 of A is defined for s ∈ [n − 1] by

µ1(s) := max
k∈[n]

max
{∑

j∈S

|〈ak , aj〉|,S ⊆ [n], |S | = s, k 6∈ S
}
.

Definition 4.2. Let A ∈ Cm×n be a matrix with `2-normalized columns

a1, . . . , an. The coherence µ = µ(A) of the matrix A is defined as

µ := max
1≤k 6=j≤n

|〈ak , aj〉|.

Lemma: For 1 ≤ s ≤ n − 1, µ ≤ µ1(s) ≤ sµ and µ ≤ 1.
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Gershgorin’s Disk Theorem

Recall the Gershgorin’s disk theorem, which states the locations of the

eigenvalues of a square matrix.

Gershgorin’s Theorem. Let λ be an eigenvalue of a square matrix

A ∈ Cn×n. Then there exists j ∈ [n] such that

|λ− Ajj | ≤
∑

`∈[n], 6̀=j

|Aj,l |.
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Coherence (cont’d)

Theorem 5.3. Let A ∈ Cm×n be a matrix with `2-normalized

columns and let s ∈ [n]. For all s-sparse vector x ∈ Cn, we have

(1− µ1(s − 1))‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + µ1(s − 1))‖x‖2
2.

Equivalently, for each set S ⊆ [n] with cardS ≤ s, the eigenvalues

of A∗SAS lie in the interval [1− µ1(s − 1), 1 + µ1(s − 1)].

In particular, if µ1(s − 1) < 1, then A∗SAS is invertible.
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Proof

Proof Sketch.

• Since

‖Ax‖2
2 = 〈Ax ,Ax〉 = 〈ASxS ,ASxS〉 = x∗SA

∗
SASxS ,

we have

max
‖x‖2=1,supp x⊆S

|Ax‖2
2 = λmax(A∗SAS) and min

‖x‖2=1,supp x⊆S
|Ax‖2

2 = λmin(A∗SAS).

• The diagonal entries of (A∗SAS) are 1, since the columns of A are unit

vectors.

• Using Gershgorin’s disk theorem, the eigenvalues of (A∗SAS) are contained

in the union of disks centered at 1 with radii

rj =
∑

`∈S,` 6=j

|(A∗SAS)j,`| =
∑

`∈S,` 6=j

|〈a`, aj〉 ≤ µ1(s − 1), j ∈ S .
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Bounds on Coherence

Theorem. Let A ∈ Cm×n be a matrix with `2-normalized columns.

Then

µ ≥
√

n −m

m(n − 1)
, (Theorem 5.7)

and

µ1(s) ≥ s

√
n −m

m(n − 1)
, whenever s <

√
n − 1. (Theorem 5.8)
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Analysis of OMP

Using Proposition 3.5 and the definition of coherences, we obtain the

following result:

Theorem 5.14. Let A ∈ Cm×n be a matrix with `2-normalized

columns. If

µ1(s) + µ1(s − 1) < 1,
(

in particular, if µ(A) <
1

2s − 1

)
,

then every s-sparse vector w ∈ Cn is exactly recovered from the

measurement vector y = Aw after at most s iterations of OMP.
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Analysis of OMP

Question: Fix s < n. What is the computational complexity to verify a

given matrix A ∈ Cm×n with `2-normalized columns satisfies the

coherence condition µ1(s) + µ1(s − 1) < 1?
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Analysis of IHT

Initialization: s-sparse vector w0, typically w0 = 0.

Iterations: Repeat until a stopping criterion is met:

wk+1 = Hs(wk + A∗(y − Awk)).

Theorem. Let A ∈ Cm×n be a matrix with `2-normalized columns.

If µ1(2s) < 1/2, (in particular, if µ < (1/4s)), then every s-

sparse vector w ∈ Cn is recovered from y = Aw via iterative hard

thresholding.

1

1Iterative hard thresholding for compressed sensing, by T. Blumensath and M.E.

Davies.
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Analysis of HTP

Initialization: s-sparse vector w0, typically w0 = 0.

Iteration: Repeat until a stopping criterion is met.

Sk+1 = Ls(wk + A∗(y − Awk)),

wk+1 = argmin
z∈Cn

{‖y − Az‖2, supp(z) ⊆ Sk+1}

Theorem 5.17. Let A ∈ Cm×n be a matrix with `2-normalized

columns. If

2µ1(s) + µ1(s − 1) < 1,

then every s-sparse vector w ∈ Cn is exactly recovered from y =

Aw after at most s iterations of hard thresholding pursuit.

2

2Hard thresholding pursuit: an algorithm for compressive sensing, by S. Foucart.
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Analysis of Basis Pursuit

Theorem 5.15. Let A ∈ Cm×n be a matrix with `2-normalized

columns. If

µ1(s) + µ1(s − 1) < 1,

then every s-sparse vector w ∈ Cn is exactly recovered from the

measurement vector y = Aw via basis pursuit:

min
x∈Cn
‖x‖1 subject to y = Ax.

3

3Hard thresholding pursuit: an algorithm for compressive sensing, by S. Foucart.
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Summary

• Given A ∈ Cm×n with unit columns and y ∈ Cm, find a s-sparse

vector w ∈ Cn s.t. y = Aw .

• µ1(s) := max
k∈[n]

max
{ ∑

j∈S
|〈ak , aj〉|,S ⊂ [n], |S | = s, k 6∈ S

}
.

• µ(A) := max
1≤k 6=j≤n

|〈ak , aj〉|.

• If Coherence condition, then every s-sparse vector w ∈ Cn is exactly

recovered from y = Aw after at most s iterations of the method.

• For OMP: µ1(s) + µ1(s − 1) < 1 or µ(A) <
1

2s − 1
.

• For IHT: µ1(2s) < 1 or µ(A) <
1

4s
.

• For HTP: 2µ1(s) + µ1(s − 1) < 1 or µ(A) <
1

3s − 1
.
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Summary (cont’d)

Theorem (Union of Bases)

Suppose that a dictionary is a union of q + 1 orthonormal bases, i.e.,

A = (B0 B1 · · · Bq),

where Bi , i = 0, 1, . . . , q, are orthonormal bases of Rn. If a vector

w =
[
w0 w1 · · · wq

]T
∈ R(q+1)n

satisfies

0 < ‖w0‖0 ≤ ‖w1‖0 ≤ · · · ≤ ‖wq‖0,

and
q∑

l=1

µ‖wl‖0

1 + µ‖wl‖0
<

1

2(1 + µ‖w0‖0)
(1)

then both OMP and BP can recover from A and y = Aw.

4 5
4Sparse representation in pairs of bases, by Gribonval and Nielsen;
5Greed is good: Algorithmic results for sparse approximation, by Tropp.
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Summary (cont’d)

With the same settings as in Theorem of union of bases, we have

• If s <

(√
2− 1 +

1

2q

)
1

µ(A)
, the condition (1) is satisfied. 6

• In particular, for q = 1, if s <

(√
2− 1

2

)
1

µ(A)
, the condition (1) is

satisfied and sharp. 7

• For q ≥ 2, if s <

(
1

2
+

1

4q − 2

)
1

µ(A)
, the condition (1) is

satisfied. 8

6Sparse representation in pairs of bases, by Gribonval and Nielsen.
7A generalized uncertainty principle and sparse representation in pairs of bases, by

Elad and Bruckstein
8On the stability of the basis pursuit in the presence of noise, by Donoho and Elad.
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1.4.2: Recovery Guarantees for `1-Optimization Problems

• Models:

• Basis pursuit:

min
z∈Cn
‖z‖1 s.t. Az = y. (BP)

• Basis pursuit denoising:

min
z∈Cn
‖z‖1 s.t. ‖Az− y‖2 ≤ η, (BPη)

or

min
z∈Cn

1

2
‖Az− y‖2

2 + λ‖z‖1. (QPλ)

• Lasso:

min
z∈Cn

1

2
‖Az− y‖2

2 s.t. ‖z‖1 ≤ τ . (LSτ )

• With suitable η, λ, τ , the solutions of BPη ,QPλ, LSτ coincide.

• BP vs QPλ: lim
λ→0+

zQPλ
= zbp , provided that the (BP) has a unique solution zbp .

• Algorithms: SPGL1, SpaRSA, Primal-Dual, FISTA, Nesterov’s 2nd method,

Augmented Lagrangian/Split-Bregman, coordinate descent,...
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Basis Pursuit: Reconstruction Guarantees

min
z∈Cn
‖z‖1 s.t. y = Az

Question: Study conditions on A that ensure exact reconstruction of

every sparse vector w ∈ Cn as a solution of (BP) with the vector y ∈ Cm

obtained as y = Aw.

Answer: We will study the following verification criteria:

• Coherence Condition

• Null Space Property (NSP)

• Stable Null Space Property

• Robust Null Space Property

• Restricted Isometry Properties
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Null Space Property

• Provide a necessary and sufficient condition for exact recovery of

sparse vectors via basis pursuit.

Definition 4.1. A matrix A ∈ Km×n is said to satisfy

• The null space property (NSP) relative to a set S ⊂ [n] if

‖vS‖1 < ‖vSc‖1 ∀ v ∈ kerA \ {0}.

• The null space property of order s if

‖vS‖1 < ‖vSc‖1, ∀ v ∈ kerA \ {0}, ∀S ⊂ [n] with |S| ≤ s.

Here K = R or C.
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Null Space Property – Equivalent Conditions

Lemma (Lemma 1)

Let A ∈ Km×n. The following statements are equivalent:

• The matrix A satisfies the NSP of order s.

• ‖vS‖1 < ‖vSc ‖1 for all v ∈ kerA \ {0}, ∀S ⊂ [n] with |S | ≤ s.

• 2‖vS‖1 < ‖v‖1 for all v ∈ kerA \ {0}, ∀S ⊂ [n] with |S | ≤ s.

• 2‖vS‖1 < ‖v‖1 for all v ∈ kerA \ {0} and

S = {indices of s largest absolute entries of v}.

• ‖v‖1 < 2‖vSc ‖1 for all v ∈ kerA \ {0}, ∀S ⊂ [n] with |S | ≤ s.

• ‖v‖1 < 2σs(v)1, for all v ∈ kerA \ {0}.

Recall: The `p error of best s-term approximation to a vector x is given by

σs(x)p := inf{‖x− z‖p : z ∈ Cn is s-sparse}.
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Null Space Property

Lemma (Lemma 2)

Let A ∈ Km×n, S ⊆ [n], and s ≤ n. Consider two distinct vectors

in Kn, w 6= z, such that Aw = Az.

1. Suppose A satisfies the NSP relative to the set S and

supp(w) ⊆ S. Then supp(z) 6⊆ S and ‖z‖1 > ‖w‖1.

2. Suppose A satisfies the NSP of order s and w is s-sparse.

Then z is not s-sparse and ‖z‖1 > ‖w‖1.
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Proof. 1. Let v := w − z ∈ kerA− {0}.

• Since supp(w) ⊆ S, we have

vS = wS − zS = w − zS (Eq.1), vSc = wSc − zSc = −zSc (Eq.2).

• Since A satisfies the NSP relative to S, ‖vSc ‖1 > ‖vS‖1 ≥ 0. Therefore,

‖zSc ‖1 = ‖vSc ‖1 > 0⇒ supp(z) 6⊆ S.

• We also have

‖w‖1 ≤ ‖w − zS‖1+‖zS‖1
Eq.1
= ‖vS‖1 + ‖zS‖1

NSP of A
< ‖vSc ‖1 + ‖zS‖1

Eq.2
= ‖ − zSc ‖1 + ‖zS‖1 = ‖z‖1,

which completes the proof.

25



Proof. 2.

• Let S = supp(w). Then |S| ≤ s. Since A satisfies the NSP of order

s, A satisfies the NSP relative to the set S. Applying part 1 for

(A,S), we have ‖z‖1 > ‖w‖1.

• Suppose z is s-sparse. Let T = supp(z). Then since A satisfies the

NSP of order s, A satisfies the NSP relative to the set T . Applying

part 1 for (A, T ), we have ‖w‖1 < ‖z‖1, a contradiction.

• Therefore, the assumption is wrong. That means z is not s-sparse.
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Null Space Property - `0 and `1 Models

Using Lemma 2, we obtain the following results about the solutions of `0

and `1 Models.

Theorem

If A ∈ Km×n satisfies the NSP of order s, then for every y = Aw

with s-sparse w, the solution of the basis pursuit problem

min
z∈Kn
‖z‖1 s.t. y = Az,

is the solution of the `0-minimization problem:

min
z∈Kn
‖z‖0 s.t. y = Az.
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Null Space Property - `0 and `1 Models

Proof. Let y = Aw where w ∈ Kn is s-sparse.

• Suppose x ∈ Kn is a solution of the `0-minimization problem:

min
z∈Kn
‖z‖0 s.t. y = Az.

Since Ax = y = Aw, we have ‖w‖0 ≥ ‖x‖0.

• Since w is s-sparse, s ≥ ‖w‖0. Therefore, s ≥ ‖x‖0. That is, x is

also s-sparse.

• Since A satisfies the NSP of order s, Ax = Aw, and x and w are

both s-sparse vectors, by Lemma 2 part 2, x = w.
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Null Space Property - Exact Recovery Theorem

The reverse of Lemma 2 is also true. That is, we have the following

results (Theorem 4.4 and Theorem 4.5).

Theorem 4.4. Given A ∈ Km×n and S ⊆ [n], every vector w ∈ Kn

supported on a set S is the unique solution of

min
z∈Kn
‖z‖1 s.t. y = Az,

where y = Aw, if and only if A satisfies the null space property relative

to S.

Interpretation: The theorem says that if A satisfies the null space property

relative to S and the output measurement y can be written as y = Aw for

some w ∈ {x ∈ Kn : supp(x) ⊆ S}, then

‖w‖1 < ‖z‖1, ∀z ∈ Kn − {w} s.t. y = Az.

That is, w is the unique solution of

min
z∈Kn
‖z‖1 s.t. y = Az.
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Null Space Property - Exact Recovery Theorem

Proof of Theorem 4.4. For any set X ⊆ [n] and any v ∈ Kn, denote vX be a

vector in Kn, whose entries with the indices in X are the corresponding entries

from v and the remaining entries are zero.

(⇐) Lemma 2 part 1.

(⇒) Take v ∈ kerA \ {0}.

• Since v ∈ kerA, we have AvS = A(−vSc ).

• Since v 6= 0, vS 6= (−vSc ).

• We have supp(vS) ⊆ S. By the assumption, vS is the unique solution of

the `1-optimization problem:

min
z∈Kn
‖z‖1 s.t. AvS = Az.

• Due to the uniqueness of the given `1-optimization problem,

‖vSc ‖1 > ‖vS‖1, which completes the proof.
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Null Space Property versus s-Sparse Solution

Letting the index set S vary and applying Theorem 4.4, we obtain the

following result:

Theorem (Theorem 4.5.)

Given A ∈ Km×n, every s-sparse vector w ∈ Kn is the unique

solution of

min
z∈Kn
‖z‖1 s.t. y = Az,

where y = Aw, if and only if A satisfies the null space property of

order s.
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Null Space Property versus s-Sparse Solution

Interpretation: The theorem says that if A satisfies the null space

property of order s and the output measurement y can be written as

y = Aw for some s-sparse vector w ∈ Kn, then

‖w‖1 < ‖z‖1, ∀z ∈ Kn − {w} s.t. y = Az.

That is, w is the unique solution of

min
z∈Kn
‖z‖1 s.t. y = Az.

Moreover, by Lemma 2, part 2, if Az = Aw and z 6= w, then z is not

s-sparse.
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Null Space Property

Theorem

If A ∈ Km×n satisfies the NSP of order s, the following matrices

also satisfy the NSP of order s:

Â := GA, where G ∈ Km×m is some invertible matrix,

Ã :=

[
A

B

]
, where B ∈ Km′×n.

Remark:

• If A ∈ Km×n satisfies the NSP of order s, there exists matrix

H ∈ Kn×n such that AH does not satisfy the NSP.

• The above theorem indicates that the sparse recovery property of

basis pursuit is preserved if some measurements are rescaled,

reshuffled, or added.
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Recall: Coherence Condition for Basis Pursuit

Recall: Let A ∈ Cm×n be a matrix with `2-normalized columns a1, . . . , an.

• The `1-coherence function µ1 of A is defined for s ∈ [n − 1] by

µ1(s) := max
k∈[n]

max
{∑

j∈S

|〈ak , aj〉|,S ⊂ [n], |S | = s, k 6∈ S
}
.

• The coherence µ = µ(A) of the matrix A is defined as

µ = µ(A) := max
1≤k 6=j≤n

|〈ak , aj〉|.
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Number of Measurements for Basis Pursuit Using Coherence

Condition

Summary: Let A ∈ Cm×n be a matrix with `2-normalized columns.

• Coherence condition: If µ1(s) + µ1(s − 1) < 1, then every s-sparse vector

w ∈ Cn is exactly recovered from the measurement y = Aw via basis

pursuit.

• Welch bound:

µ(A) ≥
√

n −m

m(n − 1)
.

• So, if m ≥ Cs2 and µ ≤ c√
m

, every s-sparse vector w ∈ Kn is is exactly

recovered from the measurement y = Aw via basis pursuit.

• Remark. Using coherence condition for (BP), we cannot relax the

quadratic in m ≥ Cs2. For example, choose

m = (2s − 1)2/2, n ≥ 2m, s ≤
√
n − 1.

Then

µ1(s) + µ1(s − 1) > 1.
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Recall: Null Space Property, `1 ⇒ `0

• The `1-error of best s-term approximation of a vector x ∈ Kn:

σs(x)1 = inf{‖x− z‖1 : z ∈ Kn and z is s-sparse}

• A matrix A ∈ Km×n is said to satisfy the null space property of order s

⇔ ‖vS‖1 < ‖vSc ‖1, ∀ v ∈ kerA \ {0}, ∀S ⊂ [n] with |S | ≤ s.

⇔ 2‖vS‖1 < ‖v‖1, ∀v ∈ kerA \ {0} and

S = {indices of s largest ab.entries of v}.

⇔ ‖v‖1 < 2σs(v)1, for all v ∈ kerA \ {0}.
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Null Space Property - `0 and `1 Models

• Theorem: If A ∈ Km×n satisfies the NSP of order s, then for every

y = Aw with s-sparse w, the solution of the basis pursuit problem

min
z∈Kn
‖z‖1 s.t. y = Az,

is the solution of the `0-minimization problem:

min
z∈Kn
‖z‖0 s.t. y = Az.

• Theorems 4.4 9. Given A ∈ Km×n, every s-sparse vector w ∈ Kn is the

unique solution of

min
z∈Kn
‖z‖1 s.t. Aw = Az

if and only if A satisfies the null space property of order s.

• Question: What happens if the output vector y = Aw, but w is not

sparse?

9A Mathematical Introduction to Compressive Sensing, by S. Foucart & H. Rauhut.
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Stable Null Space Property

Definition (Definition 4.11.)

A matrix A ∈ Cm×n is said to satisfy

• The stable null space property with constant 0 < ρ < 1

relative to a setS ⊂ [n] if

‖vS‖1 ≤ ρ‖vSc‖1 ∀v ∈ kerA.

• The stable null space property of order s with constant

0 < ρ < 1 if

‖vS‖1 ≤ ρ‖vSc‖1 ∀v ∈ kerA, ∀S ⊂ [n] with |S | ≤ s.
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Stable Null Space Property - Verification Theorem

Theorem (Theorem 4.14.)

The matrix A ∈ Cm×n satisfies the stable null space property of

order s with constant 0 < ρ < 1 relative to a set S ⊂ [n] if and

only if

‖z − x‖1 ≤
1 + ρ

1− ρ
(‖z‖1 − ‖x‖1 + 2‖xSc‖1) ,

for all vectors x , z ∈ Cn with Az = Ax.

39



Stable Sparse Recovery

Theorem (Theorem 4.12.)

Suppose that A ∈ Cm×n satisfies the stable null space property of order

s with constant 0 < ρ < 1. Then for any w ∈ Cn, a solution w# of the

basis pursuit,

min
z
‖z‖1 s.t. Az = Aw ,

approximates the vector w with `1-error:

‖w − w#‖1 ≤
2(1 + ρ)

1− ρ σs(w)1.

Remark: If A ∈ Cm×n satisfies the stable null space property of order s with

constant 0 < ρ < 1, the basis pursuit may have more than one solution.

Question: What happen if the output measurement vector is noisy:

y = Aw + ε?
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Robust Null Space Property

Definition (Definition 4.17.)

A matrix A ∈ Cm×n is said to satisfy

• The robust null space property w.r.t. ‖ · ‖ with constants 0 < ρ < 1

and τ > 0 relative to a setS ⊂ [n] if

‖vS‖1 ≤ ρ‖vSc‖1 + τ‖Av‖ ∀v ∈ Cn.

• The stable null space property of order s with constant 0 < ρ < 1 if

‖vS‖1 ≤ ρ‖vSc‖1 + τ‖Av‖ ∀v ∈ Cn, ∀S ⊂ [n] with |S | ≤ s.
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Robust Sparse Recovery

Theorem (Theorem 4.19.)

Suppose a matrix A ∈ Cm×n satisfies the robust null space

property of order s with constant 0 < ρ < 1 and τ > 0. Then for

any w ∈ Cn, a solution w# of the BPDN:

min
z
‖z‖1 s.t. ‖Az − y‖ ≤ η,

with y = Aw + e and ‖e‖ ≤ η approximates the vector w with

`1-error:

‖w − w#‖1 ≤
2(1 + ρ)

1− ρ
σs(w)1 +

4τ

1− ρ
η.
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Robust Sparse Recovery

Theorem 4.19 is a special case of Theorem 4.20 below.

Theorem (Theorem 4.20.)

The matrix A ∈ Cm×n satisfies the robust null space property

with constant 0 < ρ < 1 and τ > 0 relative to S if and only if

‖z− x‖1 ≤
1 + ρ

1− ρ
(‖z‖1 − ‖x‖1 + 2‖xSc‖1) +

2τ

1− ρ
‖A(z− x)‖,

for all vectors x, z ∈ Cn.
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`2-Robust Null Space Property

Definition (Definition 4.21.)

A matrix A ∈ Cm×n is said to satisfy the `2-robust null space property of

order s w.r.t. ‖ · ‖ with constants 0 < ρ < 1 and τ > 0 if

‖vS‖2 ≤
ρ

s1/2
‖vSc‖1 + τ‖Av‖ ∀v ∈ Cn, ∀S ⊂ [n] with |S | ≤ s.
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`2-Robust Null Space Property

Theorem (Theorem 4.22.)

Suppose the matrix A ∈ Cm×n is said to satisfy the `2-robust null space

property of order s w.r.t. ‖ · ‖2 with constants 0 < ρ < 1 and τ > 0.

Then for any w ∈ Cn, a solution w# of the BPDN:

min
z
‖z‖1 s.t. ‖Az − y‖2 ≤ η,

with y = Aw + e and ‖e‖2 ≤ η approximates the vector w with `p-error:

‖w − w#‖p ≤
C

s1−1/p
σs(w)1 + Ds1/p−1/2η, 1 ≤ p ≤ 2,

for some constants C ,D depending only on ρ and τ .
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Recall: Stable and Robust Null Space Property

• Theorem 4.19. Let A ∈ Cm×n and ‖ · ‖ be a norm on Cm. Suppose there

exist constants ρ ∈ (0, 1) and τ > 0 s.t.

‖vS‖1 ≤ ρ‖vSc ‖1 + τ‖Av‖ ∀v ∈ Cn, ∀S ⊂ [n] with |S | ≤ s. (2)

Let w ∈ Cn and y = Aw + e with ‖e‖ ≤ η. Then any solution w# of the

`1-minimization problem

min
z∈Cn
‖z‖1 s.t. ‖y − Az‖ ≤ η

approximates the vector w with `1-error:

‖w − w#‖1 ≤
2(1 + ρ)

1− ρ σs(w)1 +
4τ

1− ρη.

• Theorem 4.12. If η = 0 , τ = 0, and we only require that condition (2)

holds for v ∈ kerA, we have the stable sparse recovery result.
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Recall: `2-Robust Null Space Property

• A matrix A ∈ Cm×n is said to satisfy the `2-robust null space property of

order s w.r.t. ‖ · ‖ with constants 0 < ρ < 1 and τ > 0 if

‖vS‖2 ≤
ρ

s1/2
‖vSc ‖1 + τ‖Av‖ ∀v ∈ Cn, ∀S ⊂ [n] with |S | ≤ s.

• Theorem 4.22. Suppose the matrix A ∈ Cm×n is said to satisfy the

`2-robust null space property of order s w.r.t. ‖ · ‖2 with constants

0 < ρ < 1 and τ > 0. Then for any w ∈ Cn, a solution w# of the BPDN:

min
z
‖z‖1 s.t. ‖Az − y‖2 ≤ η,

with y = Aw + e and ‖e‖2 ≤ η approximates the vector w with:

‖w − w#‖1 ≤ C σs(w)1 + D
√
s η,

‖w − w#‖2 ≤
C√
s
σs(w)1 + Dη,

for some constants C ,D depending only on ρ and τ .
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Training and Generalization Errors Estimation

From the error estimations on the solution, we can derive the corresponding

generalization error. For example,

Suppose A ∈ Cm×n satisfies the `2-robust NSP of order s with constants

ρ ∈ (0, 1) and τ > 0. Given y = Aw + e with ‖e‖2 ≤ η. From Theorem 6.8.,

any solution w# of the `1-minimization problem

min
z∈Cn
‖z‖1 s.t. ‖y − Az‖2 ≤ η

approximates the vector w with

‖w − w#‖1 ≤ Cσs(w)1 + D
√
sη,

for some constants C ,D > 0 depending only on ρ and τ , Therefore,

‖y − Aw#‖2 ≤ ‖y − Aw‖2 + ‖Aw − Aw#‖2 = ‖e‖2 + ‖A‖1→2‖w − w#‖1

≤ η + ‖A‖1→2

(
Cσs(w)1 + D

√
sη
)
.
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Restricted Isometry Property

Definition. The sth restricted isometry constant δs = δs(A) of a matrix

A ∈ Cm×n is the smallest δ ≥ 0 such that

(1− δ)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δ)‖x‖2
2

for all s-sparse vector x ∈ Cn. Equivalently,

δs = max
S⊂[n],|S|≤s

‖A∗SAS − Id‖2→2.
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RIP Theorems

Theorem 6.12. Suppose A ∈ Cm×n satisfies the RIP condition:

δ2s <
4√
41
.

Then for any w ∈ Cn and y ∈ Cm with ‖y − Aw‖2 ≤ η, any solution w# of the

`1-minimization:

min
z∈Cn
‖z‖1 s.t. ‖Az− y‖2 ≤ η,

approximates the vector w with errors (C, D depend only on δ2s):

‖w − w#‖1 ≤ Cσs(w)1 + D
√
sη, ‖w − w#‖2 ≤

C√
s
σs(w)1 + Dη.

Proof sketch: A satisfies the RIP condition for BP, then A satisfies the `2-robust NSP

of order s with constants ρ ∈ (0, 1) and τ > 0 depending only on δ2s .
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RIP Theorems

Theorem 6.21. Suppose A ∈ Cm×n satisfies the RIP condition:

δ6s <
1√
3
.

Then for any w ∈ Cn and y ∈ Cm with y = Aw + e, the iteration wn of the IHT

and HTP for y = Aw + e, w0 = 0 and s is replaced by 2s satisfies

‖w − wn‖1 ≤ Cσs(w)1 + D
√
s‖e‖2 + 2ρn

√
s‖w‖2.

‖w − wn‖2 ≤
C√
s
σs(w)1 + D‖e‖2 + 2ρn‖w‖2
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Summary: RIP Conditions

Suppose A ∈ Cm×n satisfies the RIP condition:

BP IHT HTP OMP

δ2s <
4√
41

δ6s <
1√
3

δ6s <
1√
3

δ13s <
1

6
≈ 0.6246 ≈ 0.5773 ≈ 0.5773 ≈ 0.1666

Then we have error estimations.
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