# AMATH 840: <br> Advanced Numerical Methods for Computational and Data Science 

Giang Tran
Department of Applied Mathematics, University of Waterloo
Winter 2024

# Part 1: Sparse Optimization and Compressive Sensing <br> 1.4: Recovery Guarantees for Sparse Optimization <br> Problems 

Winter 2024

### 1.4.1: Recovery Guarantees for $\ell_{0}-$ Algorithms

Problem: Given $A \in \mathbb{C}^{m \times n}$ and $\mathbf{y} \in \mathbb{C}^{m}$. Find

$$
\mathbf{w} \in \mathbb{C}^{n} \quad \text { such that } \mathbf{y}=A \mathbf{w} \text { and }\|w\|_{0} \leq s .
$$

We will go over recovery guarantees for OMP, IHT, HTP:

- Exact Recovery Condition for OMP
- Conditions based on Coherence of the Measurement Matrix.

We use the same numbers of Theorems, Lemmas, Propositions from "A Mathematical Introduction to Compressive Sensing", by S. Foucart and H. Rauhut.

## Recall: Orthogonal Matching Pursuit

## Orthogonal Matching Pursuit

Input: Measurement matrix $A \in \mathbb{C}^{m \times n}$ with $\ell_{2}$-normalized columns, measurement vector $\mathbf{y} \in \mathbb{C}^{m}$, sparsity level $s$ or tolerance $\varepsilon$.

Initialization: $\mathcal{S}^{0}=\emptyset, \mathbf{w}^{0}=0$.
Iteration: Repeat until Stopping Criterion is met.

$$
\begin{aligned}
j_{k+1} & :=\underset{j \in[n]}{\arg \max }\left\{\left|\left(A^{*}\left(\mathbf{y}-A \mathbf{w}^{k}\right)\right)_{j}\right|\right\} \\
\mathcal{S}^{k+1} & :=\mathcal{S}^{k} \cup\left\{j_{k+1}\right\} \\
\text { Find } \mathbf{w}^{k+1} & \text { s.t } A_{\mathcal{S}^{k+1}}^{*} \mathbf{y}=A_{\mathcal{S}^{k+1}}^{*} A_{\mathcal{S}^{k+1}} \mathbf{w}_{\mathcal{S}^{k+1}}^{k+1}
\end{aligned}
$$

Output: The sparse vector $\mathbf{w}^{\#}$.

```
import numpy as np
from sklearn.linear_model import OrthogonalMatchingPursuit as omp
```


## Orthogonal Matching Pursuit: Exact Recovery Condition

Proposition 3.5. (Exact Recovery Condition). Given $A \in$ $\mathbb{C}^{m \times n}$ with $\ell_{2}$-normalized columns. The following statements are equivalent:

1. Every nonzero vector $\mathbf{w} \in \mathbb{C}^{n}$ supported on a set $\mathcal{S}$ of size $s$ is recovered from $\mathbf{y}=A \mathbf{w}$ after at most $s$ iterations of OMP
2. $A_{\mathcal{S}}$ is injective and

$$
\max _{j \in \mathcal{S}}\left|\left\langle\mathbf{r}, \mathbf{a}_{j}\right\rangle\right|>\max _{\ell \in \mathcal{S}^{c}}\left|\left\langle\mathbf{r}, \mathbf{a}_{\ell}\right\rangle\right|
$$

for all nonzero $\mathbf{r} \in\{A \mathbf{z}, \operatorname{supp}(\mathbf{z}) \subseteq \mathcal{S}\}$.
3. $\left\|A_{\mathcal{S}}^{\dagger} A_{\mathcal{S}}\right\|_{1 \rightarrow 1}<1$, where $A_{\mathcal{S}}^{\dagger}=\left(A_{\mathcal{S}}^{*} A_{\mathcal{S}}\right)^{-1} A_{\mathcal{S}}^{*}$.

Recall: For any $p, q \geq 1$, define

$$
\|A\|_{p \rightarrow q}=\sup _{x \neq 0} \frac{\|A x\|_{q}}{\|x\|_{p}} .
$$

## Coherence

Definition 4.1. Let $A \in \mathbb{C}^{m \times n}$ be a matrix with $\ell_{2}$-normalized columns.
The $\ell_{1}$-coherence function $\mu_{1}$ of $A$ is defined for $s \in[n-1]$ by

$$
\mu_{1}(s):=\max _{k \in[n]} \max \left\{\sum_{j \in S}\left|\left\langle a_{k}, a_{j}\right\rangle\right|, S \subseteq[n],|S|=s, k \notin S\right\} .
$$

Definition 4.2. Let $A \in \mathbb{C}^{m \times n}$ be a matrix with $\ell_{2}$-normalized columns $a_{1}, \ldots, a_{n}$. The coherence $\mu=\mu(A)$ of the matrix $A$ is defined as

$$
\mu:=\max _{1 \leq k \neq j \leq n}\left|\left\langle a_{k}, a_{j}\right\rangle\right| .
$$

Lemma: For $1 \leq s \leq n-1, \mu \leq \mu_{1}(s) \leq s \mu$ and $\mu \leq 1$.

## Gershgorin's Disk Theorem

Recall the Gershgorin's disk theorem, which states the locations of the eigenvalues of a square matrix.

Gershgorin's Theorem. Let $\lambda$ be an eigenvalue of a square matrix
$A \in \mathbb{C}^{n \times n}$. Then there exists $j \in[n]$ such that

$$
\left|\lambda-A_{j j}\right| \leq \sum_{\ell \in[n], \ell \neq j}\left|A_{j, l}\right| .
$$

## Coherence (cont'd)

Theorem 5.3. Let $A \in \mathbb{C}^{m \times n}$ be a matrix with $\ell_{2}$-normalized columns and let $s \in[n]$. For all $s$-sparse vector $x \in \mathbb{C}^{n}$, we have

$$
\left(1-\mu_{1}(s-1)\right)\|x\|_{2}^{2} \leq\|A x\|_{2}^{2} \leq\left(1+\mu_{1}(s-1)\right)\|x\|_{2}^{2} .
$$

Equivalently, for each set $S \subseteq[n]$ with card $S \leq s$, the eigenvalues of $A_{S}^{*} A_{S}$ lie in the interval $\left[1-\mu_{1}(s-1), 1+\mu_{1}(s-1)\right]$.

In particular, if $\mu_{1}(s-1)<1$, then $A_{S}^{*} A_{S}$ is invertible.

Proof Sketch.

- Since

$$
\|A x\|_{2}^{2}=\langle A x, A x\rangle=\left\langle A_{s} x_{S}, A_{s} x_{S}\right\rangle=x_{S}^{*} A_{S}^{*} A_{s} x_{S},
$$

we have
$\max _{\|x\|_{2}=1, \operatorname{supp} x \subseteq S} \mid A x \|_{2}^{2}=\lambda_{\max }\left(A_{S}^{*} A_{S}\right) \quad$ and $\min _{\|x\|_{2}=1, \operatorname{supp} x \subseteq S} \mid A x \|_{2}^{2}=\lambda_{\min }\left(A_{S}^{*} A_{S}\right)$.

- The diagonal entries of $\left(A_{S}^{*} A_{S}\right)$ are 1 , since the columns of $A$ are unit vectors.
- Using Gershgorin's disk theorem, the eigenvalues of $\left(A_{S}^{*} A_{S}\right)$ are contained in the union of disks centered at 1 with radii

$$
r_{j}=\sum_{\ell \in S, \ell \neq j}\left|\left(A_{S}^{*} A_{S}\right)_{j, \ell}\right|=\sum_{\ell \in S, \ell \neq j} \mid\left\langle a_{\ell}, a_{j}\right\rangle \leq \mu_{1}(s-1), \quad j \in S .
$$

## Bounds on Coherence

Theorem. Let $A \in \mathbb{C}^{m \times n}$ be a matrix with $\ell_{2}$-normalized columns. Then

$$
\mu \geq \sqrt{\frac{n-m}{m(n-1)}}, \quad \text { (Theorem 5.7) }
$$

and
$\mu_{1}(s) \geq s \sqrt{\frac{n-m}{m(n-1)}}, \quad$ whenever $\quad s<\sqrt{n-1} . \quad$ (Theorem 5.8)

## Analysis of OMP

Using Proposition 3.5 and the definition of coherences, we obtain the following result:

Theorem 5.14. Let $A \in \mathbb{C}^{m \times n}$ be a matrix with $\ell_{2}$-normalized columns. If

$$
\mu_{1}(s)+\mu_{1}(s-1)<1, \quad\left(\text { in particular, if } \mu(A)<\frac{1}{2 s-1}\right)
$$

then every $s$-sparse vector $w \in \mathbb{C}^{n}$ is exactly recovered from the measurement vector $y=A w$ after at most $s$ iterations of OMP.

## Analysis of OMP

Question: Fix $s<n$. What is the computational complexity to verify a given matrix $A \in \mathbb{C}^{m \times n}$ with $\ell_{2}$-normalized columns satisfies the coherence condition $\mu_{1}(s)+\mu_{1}(s-1)<1$ ?

## Analysis of IHT

Initialization: $s$-sparse vector $w^{0}$, typically $w^{0}=0$.
Iterations: Repeat until a stopping criterion is met:

$$
w^{k+1}=H_{s}\left(w^{k}+A^{*}\left(y-A w^{k}\right)\right)
$$

Theorem. Let $A \in \mathbb{C}^{m \times n}$ be a matrix with $\ell_{2}$-normalized columns. If $\mu_{1}(2 s)<1 / 2$, (in particular, if $\mu<(1 / 4 s)$ ), then every $s$ sparse vector $w \in \mathbb{C}^{n}$ is recovered from $y=A w$ via iterative hard thresholding.

1
${ }^{1}$ Iterative hard thresholding for compressed sensing, by T. Blumensath and M.E. Davies.

## Analysis of HTP

Initialization: $s$-sparse vector $w^{0}$, typically $w^{0}=0$.
Iteration: Repeat until a stopping criterion is met.

$$
\begin{aligned}
S^{k+1} & =L_{s}\left(w^{k}+A^{*}\left(y-A w^{k}\right)\right) \\
w^{k+1} & =\underset{z \in \mathbb{C}^{n}}{\operatorname{argmin}}\left\{\|y-A z\|_{2}, \quad \operatorname{supp}(z) \subseteq S^{k+1}\right\}
\end{aligned}
$$

Theorem 5.17. Let $A \in \mathbb{C}^{m \times n}$ be a matrix with $\ell_{2}$-normalized columns. If

$$
2 \mu_{1}(s)+\mu_{1}(s-1)<1,
$$

then every $s$-sparse vector $w \in \mathbb{C}^{n}$ is exactly recovered from $\mathbf{y}=$ $A \mathbf{w}$ after at most $s$ iterations of hard thresholding pursuit.

[^0]
## Analysis of Basis Pursuit

Theorem 5.15. Let $A \in \mathbb{C}^{m \times n}$ be a matrix with $\ell_{2}$-normalized columns. If

$$
\mu_{1}(s)+\mu_{1}(s-1)<1,
$$

then every $s$-sparse vector $w \in \mathbb{C}^{n}$ is exactly recovered from the measurement vector $\mathbf{y}=A \mathbf{w}$ via basis pursuit:

$$
\min _{\mathbf{x} \in \mathbb{C}^{n}}\|\mathbf{x}\|_{1} \quad \text { subject to } \quad \mathbf{y}=A \mathbf{x}
$$

3
${ }^{3}$ Hard thresholding pursuit: an algorithm for compressive sensing, by S. Foucart.

## Summary

- Given $A \in \mathbb{C}^{m \times n}$ with unit columns and $y \in \mathbb{C}^{m}$, find a $s$-sparse vector $w \in \mathbb{C}^{n}$ s.t. $y=A w$.
- $\mu_{1}(s):=\max _{k \in[n]} \max \left\{\sum_{j \in S}\left|\left\langle a_{k}, a_{j}\right\rangle\right|, S \subset[n],|S|=s, k \notin S\right\}$.
- $\mu(A):=\max _{1 \leq k \neq j \leq n}\left|\left\langle a_{k}, a_{j}\right\rangle\right|$.
- If Coherence condition, then every $s$-sparse vector $w \in \mathbb{C}^{n}$ is exactly recovered from $y=A w$ after at most $s$ iterations of the method.
- For OMP: $\mu_{1}(s)+\mu_{1}(s-1)<1$ or $\mu(A)<\frac{1}{2 s-1}$.
- For IHT: $\mu_{1}(2 s)<1$ or $\mu(A)<\frac{1}{4 s}$.
- For HTP: $2 \mu_{1}(s)+\mu_{1}(s-1)<1$ or $\mu(A)<\frac{1}{3 s-1}$.


## Summary (cont'd)

## Theorem (Union of Bases)

Suppose that a dictionary is a union of $q+1$ orthonormal bases, i.e.,

$$
A=\left(\begin{array}{llll}
B_{0} & B_{1} & \cdots & B_{q}
\end{array}\right),
$$

where $B_{i}, i=0,1, \ldots, q$, are orthonormal bases of $\mathbb{R}^{n}$. If a vector

$$
\mathbf{w}=\left[\begin{array}{llll}
\mathbf{w}^{0} & \mathbf{w}^{1} & \cdots & \mathbf{w}^{q}
\end{array}\right]^{T} \in \mathbb{R}^{(q+1) n}
$$

satisfies

$$
0<\left\|\mathbf{w}^{0}\right\|_{0} \leq\left\|\mathbf{w}^{1}\right\|_{0} \leq \cdots \leq\left\|\mathbf{w}^{q}\right\|_{0}
$$

and

$$
\begin{equation*}
\sum_{l=1}^{q} \frac{\mu\left\|\mathbf{w}^{\prime}\right\|_{0}}{1+\mu\left\|\mathbf{w}^{\prime}\right\|_{0}}<\frac{1}{2\left(1+\mu\left\|\mathbf{w}^{0}\right\|_{0}\right)} \tag{1}
\end{equation*}
$$

then both $O M P$ and $B P$ can recover from $A$ and $\mathbf{y}=A \mathbf{w}$.

45
${ }^{4}$ Sparse representation in pairs of bases, by Gribonval and Nielsen;
${ }^{5}$ Greed is good: Algorithmic results for sparse approximation, by Tropp.

## Summary (cont'd)

With the same settings as in Theorem of union of bases, we have

- If $s<\left(\sqrt{2}-1+\frac{1}{2 q}\right) \frac{1}{\mu(A)}$, the condition (1) is satisfied. ${ }^{6}$
- In particular, for $q=1$, if $s<\left(\sqrt{2}-\frac{1}{2}\right) \frac{1}{\mu(A)}$, the condition (1) is satisfied and sharp. ${ }^{7}$
- For $q \geq 2$, if $s<\left(\frac{1}{2}+\frac{1}{4 q-2}\right) \frac{1}{\mu(A)}$, the condition (1) is satisfied. ${ }^{8}$

[^1]
## References

- A mathematical Introduction to Compressive Sensing, by S. Foucart and H. Rauhut. Chapter 3 and Chapter 5.
- Greed is Good: Algorithmic Results for Sparse Approximation, by J. Tropp.
- Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit, by J. Tropp and A. Gilbert. $m=\mathcal{O}(s \ln n)$.
- Iterative hard thresholding for compressed sensing, by T . Blumensath and M.E. Davies. Error estimation.
- Hard thresholding pursuit: an algorithm for compressive sensing, by S. Foucart.


### 1.4.2: Recovery Guarantees for $\ell_{1}$-Optimization Problems

- Models:
- Basis pursuit:

$$
\begin{equation*}
\min _{\mathbf{z} \in \mathbb{C}^{n}}\|\mathbf{z}\|_{1} \quad \text { s.t. } \quad A \mathbf{z}=\mathbf{y} \tag{BP}
\end{equation*}
$$

- Basis pursuit denoising:

$$
\min _{\mathbf{z} \in \mathbb{C}^{n}}\|\mathbf{z}\|_{1} \quad \text { s.t. } \quad\|A \mathbf{z}-\mathbf{y}\|_{2} \leq \eta, \quad\left(B P_{\eta}\right)
$$

or

$$
\min _{\mathbf{z} \in \mathbb{C}^{n}} \frac{1}{2}\|A \mathbf{z}-\mathbf{y}\|_{2}^{2}+\lambda\|\mathbf{z}\|_{1}
$$

- Lasso:

$$
\min _{\mathbf{z} \in \mathbb{C}^{n}} \frac{1}{2}\|A \mathbf{z}-\mathbf{y}\|_{2}^{2} \quad \text { s.t. } \quad\|\mathbf{z}\|_{1} \leq \tau
$$

- With suitable $\eta, \lambda, \tau$, the solutions of $B P_{\eta}, Q P_{\lambda}, L S_{\tau}$ coincide.
- $B P$ vs $Q P_{\lambda}: \lim _{\lambda \rightarrow 0^{+}} z_{Q P_{\lambda}}=z_{b p}$, provided that the (BP) has a unique solution $z_{b p}$.
- Algorithms: SPGL1, SpaRSA, Primal-Dual, FISTA, Nesterov's 2nd method, Augmented Lagrangian/Split-Bregman, coordinate descent,...


## Basis Pursuit: Reconstruction Guarantees

$$
\min _{\mathbf{z} \in \mathbb{C}^{n}}\|\mathbf{z}\|_{1} \quad \text { s.t. } \quad \mathbf{y}=A \mathbf{z}
$$

Question: Study conditions on $A$ that ensure exact reconstruction of every sparse vector $\mathbf{w} \in \mathbb{C}^{n}$ as a solution of $(B P)$ with the vector $y \in \mathbb{C}^{m}$ obtained as $\mathbf{y}=A \mathbf{w}$.

Answer: We will study the following verification criteria:

- Coherence Condition
- Null Space Property (NSP)
- Stable Null Space Property
- Robust Null Space Property
- Restricted Isometry Properties


## Null Space Property

- Provide a necessary and sufficient condition for exact recovery of sparse vectors via basis pursuit.

Definition 4.1. A matrix $A \in \mathbb{K}^{m \times n}$ is said to satisfy

- The null space property (NSP) relative to a set $\mathcal{S} \subset[n]$ if

$$
\left\|\mathbf{v}_{\mathcal{S}}\right\|_{1}<\left\|\mathbf{v}_{\mathcal{S}^{c}}\right\|_{1} \quad \forall \mathbf{v} \in \operatorname{ker} A \backslash\{0\}
$$

- The null space property of order $s$ if

$$
\left\|\mathbf{v}_{\mathcal{S}}\right\|_{1}<\left\|\mathbf{v}_{\mathcal{S}^{c}}\right\|_{1}, \quad \forall \mathbf{v} \in \operatorname{ker} A \backslash\{0\}, \forall \mathcal{S} \subset[n] \text { with }|\mathcal{S}| \leq s
$$

Here $\mathbb{K}=\mathbb{R}$ or $\mathbb{C}$.

## Null Space Property - Equivalent Conditions

## Lemma (Lemma 1)

Let $A \in \mathbb{K}^{m \times n}$. The following statements are equivalent:

- The matrix A satisfies the NSP of order s.
- $\left\|\mathbf{v}_{S}\right\|_{1}<\left\|\mathbf{v}_{S^{c}}\right\|_{1} \quad$ for all $\mathbf{v} \in \operatorname{ker} A \backslash\{0\}, \forall S \subset[n]$ with $|S| \leq s$.
- $2\left\|\mathbf{v}_{S}\right\|_{1}<\|\mathbf{v}\|_{1} \quad$ for all $\mathbf{v} \in \operatorname{ker} A \backslash\{0\}, \forall S \subset[n]$ with $|S| \leq s$.
- $2\left\|\mathbf{v}_{S}\right\|_{1}<\|\mathbf{v}\|_{1} \quad$ for all $\mathbf{v} \in \operatorname{ker} A \backslash\{0\}$ and

$$
S=\{\text { indices of } s \text { largest absolute entries of } \mathbf{v}\}
$$

- $\|\mathbf{v}\|_{1}<2\left\|\mathbf{v}_{S^{c}}\right\|_{1} \quad$ for all $\mathbf{v} \in \operatorname{ker} A \backslash\{0\}, \forall S \subset[n]$ with $|S| \leq s$.
- $\|\mathbf{v}\|_{1}<2 \sigma_{s}(\mathbf{v})_{1}, \quad$ for all $\mathbf{v} \in \operatorname{ker} A \backslash\{0\}$.

Recall: The $\ell_{p}$ error of best $s$-term approximation to a vector $\mathbf{x}$ is given by $\sigma_{s}(\mathbf{x})_{p}:=\inf \left\{\|\mathbf{x}-\mathbf{z}\|_{p}: \quad \mathbf{z} \in \mathbb{C}^{n}\right.$ is $s$-sparse $\}$.

## Null Space Property

## Lemma (Lemma 2)

Let $A \in \mathbb{K}^{m \times n}, \mathcal{S} \subseteq[n]$, and $s \leq n$. Consider two distinct vectors in $\mathbb{K}^{n}, \mathbf{w} \neq \mathbf{z}$, such that $A \mathbf{w}=A \mathbf{z}$.

1. Suppose $A$ satisfies the NSP relative to the set $\mathcal{S}$ and $\operatorname{supp}(\mathbf{w}) \subseteq \mathcal{S}$. Then $\operatorname{supp}(\mathbf{z}) \nsubseteq \mathcal{S}$ and $\|\mathbf{z}\|_{1}>\|\mathbf{w}\|_{1}$.
2. Suppose $A$ satisfies the NSP of order $s$ and $\mathbf{w}$ is s-sparse. Then $\mathbf{z}$ is not $s$-sparse and $\|\mathbf{z}\|_{1}>\|\mathbf{w}\|_{1}$.

Proof. 1. Let $\mathbf{v}:=\mathbf{w}-\mathbf{z} \in \operatorname{ker} A-\{0\}$.

- Since $\operatorname{supp}(\mathbf{w}) \subseteq \mathcal{S}$, we have

$$
\begin{equation*}
\mathbf{v}_{\mathcal{S}}=\mathbf{w}_{\mathcal{S}}-\mathbf{z}_{\mathcal{S}}=\mathbf{w}-\mathbf{z}_{\mathcal{S}} \quad(E q .1), \quad \mathbf{v}_{\mathcal{S}^{c}}=\mathbf{w}_{\mathcal{S}^{c}}-\mathbf{z}_{\mathcal{S}^{c}}=-\mathbf{z}_{\mathcal{S}^{c}} \tag{Eq.2}
\end{equation*}
$$

- Since $A$ satisfies the NSP relative to $\mathcal{S},\left\|\mathbf{v}_{\mathcal{S}}\right\|_{1}>\left\|\mathbf{v}_{\mathcal{S}}\right\|_{1} \geq 0$. Therefore, $\left\|\mathbf{z}_{\mathcal{S}^{c}}\right\|_{1}=\left\|\mathbf{v}_{\mathcal{S}^{c}}\right\|_{1}>0 \Rightarrow \operatorname{supp}(\mathbf{z}) \nsubseteq \mathcal{S}$.
- We also have

$$
\begin{aligned}
\|\mathbf{w}\|_{1} \leq\left\|\mathbf{w}-\mathbf{z}_{\mathcal{S}}\right\|_{1}+ & \left\|\mathbf{z}_{\mathcal{S}}\right\|_{1} \stackrel{E q .1}{=}\left\|\mathbf{v}_{\mathcal{S}}\right\|_{1}+\left\|\mathbf{z}_{\mathcal{S}}\right\|_{1} \\
& \quad \mathrm{NSP} \text { of } \mathrm{A}
\end{aligned}\left\|\mathbf{v}_{\mathcal{S}^{c}}\right\|_{1}+\left\|\mathbf{z}_{\mathcal{S}}\right\|_{1} \stackrel{E q .2}{=}\left\|-\mathbf{z}_{\mathcal{S}^{c}}\right\|_{1}+\left\|\mathbf{z}_{\mathcal{S}}\right\|_{1}=\|\mathbf{z}\|_{1},
$$

which completes the proof.

Proof. 2.

- Let $\mathcal{S}=\operatorname{supp}(\mathbf{w})$. Then $|\mathcal{S}| \leq s$. Since $A$ satisfies the NSP of order $s, A$ satisfies the NSP relative to the set $\mathcal{S}$. Applying part 1 for $(A, \mathcal{S})$, we have $\|\mathbf{z}\|_{1}>\|\mathbf{w}\|_{1}$.
- Suppose $\mathbf{z}$ is $s$-sparse. Let $\mathcal{T}=\operatorname{supp}(\mathbf{z})$. Then since $A$ satisfies the NSP of order $s, A$ satisfies the NSP relative to the set $\mathcal{T}$. Applying part 1 for $(A, \mathcal{T})$, we have $\|\mathbf{w}\|_{1}<\|\mathbf{z}\|_{1}$, a contradiction.
- Therefore, the assumption is wrong. That means $\mathbf{z}$ is not $s$-sparse.


## Null Space Property - $\ell_{0}$ and $\ell_{1}$ Models

Using Lemma 2, we obtain the following results about the solutions of $\ell_{0}$ and $\ell_{1}$ Models.

## Theorem

If $A \in \mathbb{K}^{m \times n}$ satisfies the NSP of order $s$, then for every $\mathbf{y}=A \mathbf{w}$ with $s$-sparse $\mathbf{w}$, the solution of the basis pursuit problem

$$
\min _{\mathbf{z} \in \mathbb{K}^{n}}\|\mathbf{z}\|_{1} \quad \text { s.t. } \quad \mathbf{y}=A \mathbf{z}
$$

is the solution of the $\ell_{0}$-minimization problem:

$$
\min _{\mathbf{z} \in \mathbb{K}^{n}}\|\mathbf{z}\|_{0} \quad \text { s.t. } \quad \mathbf{y}=A \mathbf{z}
$$

## Null Space Property - $\ell_{0}$ and $\ell_{1}$ Models

Proof. Let $\mathbf{y}=A \mathbf{w}$ where $\mathbf{w} \in \mathbb{K}^{n}$ is $s$-sparse.

- Suppose $\mathbf{x} \in \mathbb{K}^{n}$ is a solution of the $\ell_{0}$-minimization problem:

$$
\min _{\mathbf{z} \in \mathbb{K}^{n}}\|\mathbf{z}\|_{0} \quad \text { s.t. } \quad \mathbf{y}=A \mathbf{z}
$$

Since $A \mathbf{x}=\mathbf{y}=A \mathbf{w}$, we have $\|\mathbf{w}\|_{0} \geq\|\mathbf{x}\|_{0}$.

- Since $\mathbf{w}$ is $s$-sparse, $s \geq\|\mathbf{w}\|_{0}$. Therefore, $s \geq\|\mathbf{x}\|_{0}$. That is, $\mathbf{x}$ is also $s$-sparse.
- Since $A$ satisfies the NSP of order s, $A \mathbf{x}=A \mathbf{w}$, and $\mathbf{x}$ and $\mathbf{w}$ are both $s$-sparse vectors, by Lemma 2 part $2, \mathbf{x}=\mathbf{w}$.


## Null Space Property - Exact Recovery Theorem

The reverse of Lemma 2 is also true. That is, we have the following results (Theorem 4.4 and Theorem 4.5).

Theorem 4.4. Given $A \in \mathbb{K}^{m \times n}$ and $\mathcal{S} \subseteq[n]$, every vector $\mathbf{w} \in \mathbb{K}^{n}$ supported on a set $\mathcal{S}$ is the unique solution of

$$
\min _{z \in \mathbb{K}^{n}}\|\mathbf{z}\|_{1} \quad \text { s.t. } \quad \mathbf{y}=A \mathbf{z},
$$

where $\mathbf{y}=A \mathbf{w}$, if and only if $A$ satisfies the null space property relative to $\mathcal{S}$.

Interpretation: The theorem says that if $A$ satisfies the null space property relative to $\mathcal{S}$ and the output measurement $\mathbf{y}$ can be written as $\mathbf{y}=A \mathbf{w}$ for some $\mathbf{w} \in\left\{\mathbf{x} \in \mathbb{K}^{n}: \operatorname{supp}(\mathbf{x}) \subseteq \mathcal{S}\right\}$, then

$$
\|\mathbf{w}\|_{1}<\|\mathbf{z}\|_{1}, \quad \forall \mathbf{z} \in \mathbb{K}^{n}-\{\mathbf{w}\} \quad \text { s.t. } \quad \mathbf{y}=A \mathbf{z} .
$$

That is, $\mathbf{w}$ is the unique solution of

$$
\min _{\mathbf{z} \in \mathbb{K}^{n}}\|\mathbf{z}\|_{1} \quad \text { s.t. } \quad \mathbf{y}=A \mathbf{z}
$$

## Null Space Property - Exact Recovery Theorem

Proof of Theorem 4.4. For any set $X \subseteq[n]$ and any $\mathbf{v} \in \mathbb{K}^{n}$, denote $\mathbf{v}_{X}$ be a vector in $\mathbb{K}^{n}$, whose entries with the indices in $X$ are the corresponding entries from $\mathbf{v}$ and the remaining entries are zero.
$(\Leftarrow)$ Lemma 2 part 1 .
$(\Rightarrow)$ Take $\mathbf{v} \in \operatorname{ker} A \backslash\{0\}$.

- Since $\mathbf{v} \in \operatorname{ker} A$, we have $A \mathbf{v}_{\mathcal{S}}=A\left(-\mathbf{v}_{\mathcal{S}}\right)$.
- Since $\mathbf{v} \neq 0, \mathbf{v}_{\mathcal{S}} \neq\left(-\mathbf{v}_{\mathcal{S}^{c}}\right)$.
- We have $\operatorname{supp}\left(\mathbf{v}_{\mathcal{S}}\right) \subseteq \mathcal{S}$. By the assumption, $\mathbf{v}_{\mathcal{S}}$ is the unique solution of the $\ell_{1}$-optimization problem:

$$
\min _{\mathbf{z} \in \mathbb{K}^{n}}\|\mathbf{z}\|_{1} \quad \text { s.t. } \quad A \mathbf{v}_{\mathcal{S}}=A \mathbf{z}
$$

- Due to the uniqueness of the given $\ell_{1}$-optimization problem, $\left\|\mathbf{v}_{\mathcal{S}^{c}}\right\|_{1}>\left\|\mathbf{v}_{\mathcal{S}}\right\|_{1}$, which completes the proof.


## Null Space Property versus s-Sparse Solution

Letting the index set $\mathcal{S}$ vary and applying Theorem 4.4, we obtain the following result:

Theorem (Theorem 4.5.)
Given $A \in \mathbb{K}^{m \times n}$, every $s$-sparse vector $\mathbf{w} \in \mathbb{K}^{n}$ is the unique solution of

$$
\min _{\mathbf{z} \in \mathbb{K}^{n}}\|\mathbf{z}\|_{1} \quad \text { s.t. } \quad \mathbf{y}=A \mathbf{z}
$$

where $\mathbf{y}=A \mathbf{w}$, if and only if $A$ satisfies the null space property of order s.

## Null Space Property versus s-Sparse Solution

Interpretation: The theorem says that if $A$ satisfies the null space property of order $s$ and the output measurement $\mathbf{y}$ can be written as $\mathbf{y}=A \mathbf{w}$ for some $s$-sparse vector $\mathbf{w} \in \mathbb{K}^{n}$, then

$$
\|\mathbf{w}\|_{1}<\|\mathbf{z}\|_{1}, \quad \forall \mathbf{z} \in \mathbb{K}^{n}-\{\mathbf{w}\} \quad \text { s.t. } \quad \mathbf{y}=A \mathbf{z} .
$$

That is, $\mathbf{w}$ is the unique solution of

$$
\min _{z \in \mathbb{K}^{n}}\|\mathbf{z}\|_{1} \quad \text { s.t. } \quad \mathbf{y}=A \mathbf{z} .
$$

Moreover, by Lemma 2, part 2, if $A \mathbf{z}=A \mathbf{w}$ and $\mathbf{z} \neq \mathbf{w}$, then $\mathbf{z}$ is not $s$-sparse.

## Null Space Property

## Theorem

If $A \in \mathbb{K}^{m \times n}$ satisfies the NSP of order $s$, the following matrices also satisfy the NSP of order s:

$$
\begin{aligned}
& \hat{A}:=G A, \quad \text { where } G \in \mathbb{K}^{m \times m} \text { is some invertible matrix, } \\
& \tilde{A}:=\left[\begin{array}{l}
A \\
B
\end{array}\right], \quad \text { where } B \in \mathbb{K}^{m^{\prime} \times n} .
\end{aligned}
$$

## Remark:

- If $A \in \mathbb{K}^{m \times n}$ satisfies the NSP of order $s$, there exists matrix $H \in \mathbb{K}^{n \times n}$ such that $A H$ does not satisfy the NSP.
- The above theorem indicates that the sparse recovery property of basis pursuit is preserved if some measurements are rescaled, reshuffled, or added.


## Recall: Coherence Condition for Basis Pursuit

Recall: Let $A \in \mathbb{C}^{m \times n}$ be a matrix with $\ell_{2}$-normalized columns $a_{1}, \ldots, a_{n}$.

- The $\ell_{1}$-coherence function $\mu_{1}$ of $A$ is defined for $s \in[n-1]$ by

$$
\mu_{1}(s):=\max _{k \in[n]} \max \left\{\sum_{j \in S}\left|\left\langle a_{k}, a_{j}\right\rangle\right|, S \subset[n],|S|=s, k \notin S\right\} .
$$

- The coherence $\mu=\mu(A)$ of the matrix $A$ is defined as

$$
\mu=\mu(A):=\max _{1 \leq k \neq j \leq n}\left|\left\langle a_{k}, a_{j}\right\rangle\right| .
$$

## Number of Measurements for Basis Pursuit Using Coherence Condition

Summary: Let $A \in \mathbb{C}^{m \times n}$ be a matrix with $\ell_{2}$-normalized columns.

- Coherence condition: If $\mu_{1}(s)+\mu_{1}(s-1)<1$, then every $s$-sparse vector $\mathbf{w} \in \mathbb{C}^{n}$ is exactly recovered from the measurement $\mathbf{y}=A \mathbf{w}$ via basis pursuit.
- Welch bound:

$$
\mu(A) \geq \sqrt{\frac{n-m}{m(n-1)}}
$$

- So, if $m \geq C s^{2}$ and $\mu \leq \frac{C}{\sqrt{m}}$, every $s$-sparse vector $w \in \mathbb{K}^{n}$ is is exactly recovered from the measurement $\mathbf{y}=A \mathbf{w}$ via basis pursuit.
- Remark. Using coherence condition for (BP), we cannot relax the quadratic in $m \geq C s^{2}$. For example, choose

$$
m=(2 s-1)^{2} / 2, \quad n \geq 2 m, \quad s \leq \sqrt{n-1}
$$

Then

$$
\mu_{1}(s)+\mu_{1}(s-1)>1
$$

- The $\ell_{1}$-error of best $s$-term approximation of a vector $\mathbf{x} \in \mathbb{K}^{n}$ :

$$
\sigma_{s}(\mathbf{x})_{1}=\inf \left\{\|\mathbf{x}-\mathbf{z}\|_{1}: \mathbf{z} \in \mathbb{K}^{n} \text { and } \mathbf{z} \text { is } s \text {-sparse }\right\}
$$

- A matrix $A \in \mathbb{K}^{m \times n}$ is said to satisfy the null space property of order $s$

$$
\begin{aligned}
& \Leftrightarrow\left\|v_{S}\right\|_{1}<\left\|v_{S^{c}}\right\|_{1}, \forall v \in \operatorname{ker} A \backslash\{0\}, \forall S \subset[n] \text { with }|S| \leq s . \\
& \Leftrightarrow 2\left\|v_{S}\right\|_{1}<\|v\|_{1}, \quad \forall v \in \operatorname{ker} A \backslash\{0\} \text { and } \\
& \qquad S=\{\text { indices of } s \text { largest ab.entries of } v\} . \\
& \Leftrightarrow\|v\|_{1}<2 \sigma_{s}(v)_{1}, \quad \text { for all } v \in \operatorname{ker} A \backslash\{0\} .
\end{aligned}
$$

## Null Space Property - $\ell_{0}$ and $\ell_{1}$ Models

- Theorem: If $A \in \mathbb{K}^{m \times n}$ satisfies the NSP of order $s$, then for every $\mathbf{y}=A \mathbf{w}$ with $s$-sparse $\mathbf{w}$, the solution of the basis pursuit problem

$$
\min _{\mathbf{z} \in \mathbb{K}^{n}}\|\mathbf{z}\|_{1} \quad \text { s.t. } \quad \mathbf{y}=A \mathbf{z}
$$

is the solution of the $\ell_{0}$-minimization problem:

$$
\min _{\mathbf{z} \in \mathbb{K}^{n}}\|\mathbf{z}\|_{0} \quad \text { s.t. } \quad \mathbf{y}=A \mathbf{z}
$$

- Theorems $4.4^{9}$. Given $A \in \mathbb{K}^{m \times n}$, every $s$-sparse vector $w \in \mathbb{K}^{n}$ is the unique solution of

$$
\min _{z \in \mathbb{K}^{n}}\|z\|_{1} \quad \text { s.t. } \quad A w=A z
$$

if and only if $A$ satisfies the null space property of order $s$.

- Question: What happens if the output vector $\mathbf{y}=A \mathbf{w}$, but $\mathbf{w}$ is not sparse?

[^2]
## Stable Null Space Property

## Definition (Definition 4.11.)

A matrix $A \in \mathbb{C}^{m \times n}$ is said to satisfy

- The stable null space property with constant $0<\rho<1$ relative to a set $S \subset[n]$ if

$$
\left\|v_{S}\right\|_{1} \leq \rho\left\|v_{S_{c}}\right\|_{1} \quad \forall v \in \operatorname{ker} A .
$$

- The stable null space property of order $s$ with constant $0<\rho<1$ if

$$
\left\|v_{S}\right\|_{1} \leq \rho\left\|v_{S^{c}}\right\|_{1} \quad \forall v \in \operatorname{ker} A, \forall S \subset[n] \text { with }|S| \leq s
$$

## Stable Null Space Property - Verification Theorem

Theorem (Theorem 4.14.)
The matrix $A \in \mathbb{C}^{m \times n}$ satisfies the stable null space property of order $s$ with constant $0<\rho<1$ relative to a set $S \subset[n]$ if and only if

$$
\|z-x\|_{1} \leq \frac{1+\rho}{1-\rho}\left(\|z\|_{1}-\|x\|_{1}+2\left\|x_{S^{c}}\right\|_{1}\right)
$$

for all vectors $x, z \in \mathbb{C}^{n}$ with $A z=A x$.

## Stable Sparse Recovery

## Theorem (Theorem 4.12.)

Suppose that $A \in \mathbb{C}^{m \times n}$ satisfies the stable null space property of order $s$ with constant $0<\rho<1$. Then for any $w \in \mathbb{C}^{n}$, a solution $w^{\#}$ of the basis pursuit,

$$
\min _{z}\|z\|_{1} \quad \text { s.t. } \quad A z=A w
$$

approximates the vector $w$ with $\ell_{1}$-error:

$$
\left\|w-w^{\#}\right\|_{1} \leq \frac{2(1+\rho)}{1-\rho} \sigma_{s}(w)_{1}
$$

Remark: If $A \in \mathbb{C}^{m \times n}$ satisfies the stable null space property of order $s$ with constant $0<\rho<1$, the basis pursuit may have more than one solution.
Question: What happen if the output measurement vector is noisy:
$\mathbf{y}=A \mathbf{w}+\varepsilon$ ?

## Robust Null Space Property

## Definition (Definition 4.17.)

A matrix $A \in \mathbb{C}^{m \times n}$ is said to satisfy

- The robust null space property w.r.t. $\|\cdot\|$ with constants $0<\rho<1$ and $\tau>0$ relative to a set $S \subset[n]$ if

$$
\left\|v_{S}\right\|_{1} \leq \rho\left\|v_{S^{c}}\right\|_{1}+\tau\|A v\| \quad \forall v \in \mathbb{C}^{n}
$$

- The stable null space property of order $s$ with constant $0<\rho<1$ if

$$
\left\|v_{S}\right\|_{1} \leq \rho\left\|v_{S^{c}}\right\|_{1}+\tau\|A v\| \quad \forall v \in \mathbb{C}^{n}, \forall S \subset[n] \text { with }|S| \leq s
$$

## Robust Sparse Recovery

## Theorem (Theorem 4.19.)

Suppose a matrix $A \in \mathbb{C}^{m \times n}$ satisfies the robust null space property of order $s$ with constant $0<\rho<1$ and $\tau>0$. Then for any $w \in \mathbb{C}^{n}$, a solution $w^{\#}$ of the BPDN:

$$
\min _{z}\|z\|_{1} \quad \text { s.t. } \quad\|A z-y\| \leq \eta \text {, }
$$

with $y=A w+e$ and $\|e\| \leq \eta$ approximates the vector $w$ with $\ell_{1}$-error:

$$
\left\|w-w^{\#}\right\|_{1} \leq \frac{2(1+\rho)}{1-\rho} \sigma_{s}(w)_{1}+\frac{4 \tau}{1-\rho} \eta .
$$

## Robust Sparse Recovery

Theorem 4.19 is a special case of Theorem 4.20 below.

## Theorem (Theorem 4.20.)

The matrix $A \in \mathbb{C}^{m \times n}$ satisfies the robust null space property with constant $0<\rho<1$ and $\tau>0$ relative to $\mathcal{S}$ if and only if

$$
\|\mathbf{z}-\mathbf{x}\|_{1} \leq \frac{1+\rho}{1-\rho}\left(\|\mathbf{z}\|_{1}-\|\mathbf{x}\|_{1}+2\left\|\mathbf{x}_{\mathcal{S}^{c}}\right\|_{1}\right)+\frac{2 \tau}{1-\rho}\|A(\mathbf{z}-\mathbf{x})\|,
$$

for all vectors $\mathbf{x}, \mathbf{z} \in \mathbb{C}^{n}$.

## $\ell_{2}$-Robust Null Space Property

## Definition (Definition 4.21.)

A matrix $A \in \mathbb{C}^{m \times n}$ is said to satisfy the $\ell_{2}$-robust null space property of order $s$ w.r.t. $\|\cdot\|$ with constants $0<\rho<1$ and $\tau>0$ if

$$
\left\|v_{S}\right\|_{2} \leq \frac{\rho}{s^{1 / 2}}\left\|v_{S_{c}}\right\|_{1}+\tau\|A v\| \quad \forall v \in \mathbb{C}^{n}, \forall S \subset[n] \text { with }|S| \leq s
$$

## $\ell_{2}$-Robust Null Space Property

## Theorem (Theorem 4.22.)

Suppose the matrix $A \in \mathbb{C}^{m \times n}$ is said to satisfy the $\ell_{2}$-robust null space property of order s w.r.t. $\|\cdot\|_{2}$ with constants $0<\rho<1$ and $\tau>0$. Then for any $w \in \mathbb{C}^{n}$, a solution $w^{\#}$ of the BPDN:

$$
\min _{z}\|z\|_{1} \quad \text { s.t. } \quad\|A z-y\|_{2} \leq \eta,
$$

with $y=A w+e$ and $\|e\|_{2} \leq \eta$ approximates the vector $w$ with $\ell_{p}$-error:

$$
\left\|w-w^{\#}\right\|_{p} \leq \frac{C}{s^{1-1 / p}} \sigma_{s}(w)_{1}+D s^{1 / p-1 / 2} \eta, 1 \leq p \leq 2,
$$

for some constants $C, D$ depending only on $\rho$ and $\tau$.

## Recall: Stable and Robust Null Space Property

- Theorem 4.19. Let $A \in \mathbb{C}^{m \times n}$ and $\|\cdot\|$ be a norm on $\mathbb{C}^{m}$. Suppose there exist constants $\rho \in(0,1)$ and $\tau>0$ s.t.

$$
\begin{equation*}
\left\|v_{S}\right\|_{1} \leq \rho\left\|v_{s^{c}}\right\|_{1}+\tau\|A v\| \quad \forall v \in \mathbb{C}^{n}, \forall S \subset[n] \text { with }|S| \leq s \tag{2}
\end{equation*}
$$

Let $\mathbf{w} \in \mathbb{C}^{n}$ and $\mathbf{y}=A \mathbf{w}+\mathbf{e}$ with $\|e\| \leq \eta$. Then any solution $\mathbf{w}^{\#}$ of the $\ell_{1}$-minimization problem

$$
\min _{z \in \mathbb{C}^{n}}\|\mathbf{z}\|_{1} \quad \text { s.t. } \quad\|y-A \mathbf{z}\| \leq \eta
$$

approximates the vector $\mathbf{w}$ with $\ell_{1}$-error:

$$
\left\|w-w^{\#}\right\|_{1} \leq \frac{2(1+\rho)}{1-\rho} \sigma_{s}(w)_{1}+\frac{4 \tau}{1-\rho} \eta .
$$

- Theorem 4.12. If $\eta=0, \tau=0$, and we only require that condition (2) holds for $v \in \operatorname{ker} A$, we have the stable sparse recovery result.


## Recall: $\ell_{2}$-Robust Null Space Property

- A matrix $A \in \mathbb{C}^{m \times n}$ is said to satisfy the $\ell_{2}$-robust null space property of order sw.r.t. $\|\cdot\|$ with constants $0<\rho<1$ and $\tau>0$ if

$$
\left\|v_{S}\right\|_{2} \leq \frac{\rho}{s^{1 / 2}}\left\|v_{S^{c}}\right\|_{1}+\tau\|A v\| \quad \forall v \in \mathbb{C}^{n}, \forall S \subset[n] \text { with }|S| \leq s
$$

- Theorem 4.22. Suppose the matrix $A \in \mathbb{C}^{m \times n}$ is said to satisfy the $\ell_{2}$-robust null space property of order $s$ w.r.t. $\|\cdot\|_{2}$ with constants $0<\rho<1$ and $\tau>0$. Then for any $w \in \mathbb{C}^{n}$, a solution $w^{\#}$ of the BPDN:

$$
\min _{z}\|z\|_{1} \quad \text { s.t. } \quad\|A z-y\|_{2} \leq \eta
$$

with $y=A w+e$ and $\|e\|_{2} \leq \eta$ approximates the vector $w$ with:

$$
\begin{aligned}
\left\|w-w^{\#}\right\|_{1} & \leq C \sigma_{s}(w)_{1}+D \sqrt{s} \eta \\
\left\|w-w^{\#}\right\|_{2} & \leq \frac{C}{\sqrt{s}} \sigma_{s}(w)_{1}+D \eta
\end{aligned}
$$

for some constants $C, D$ depending only on $\rho$ and $\tau$.

## Training and Generalization Errors Estimation

From the error estimations on the solution, we can derive the corresponding generalization error. For example,

Suppose $A \in \mathbb{C}^{m \times n}$ satisfies the $\ell_{2}$-robust NSP of order $s$ with constants $\rho \in(0,1)$ and $\tau>0$. Given $\mathbf{y}=A \mathbf{w}+\mathbf{e}$ with $\|e\|_{2} \leq \eta$. From Theorem 6.8., any solution $\mathbf{w}^{\#}$ of the $\ell_{1}$-minimization problem

$$
\min _{z \in \mathbb{C}^{n}}\|\mathbf{z}\|_{1} \quad \text { s.t. } \quad\|y-A \mathbf{z}\|_{2} \leq \eta
$$

approximates the vector $\mathbf{w}$ with

$$
\left\|\mathbf{w}-w^{\#}\right\|_{1} \leq C \sigma_{s}(w)_{1}+D \sqrt{s} \eta
$$

for some constants $C, D>0$ depending only on $\rho$ and $\tau$, Therefore,

$$
\begin{aligned}
\left\|\mathbf{y}-A \mathbf{w}^{\#}\right\|_{2} & \leq\|\mathbf{y}-A \mathbf{w}\|_{2}+\left\|A \mathbf{w}-A \mathbf{w}^{\#}\right\|_{2}=\|\mathbf{e}\|_{2}+\|A\|_{1 \rightarrow 2}\left\|\mathbf{w}-\mathbf{w}^{\#}\right\|_{1} \\
& \leq \eta+\|A\|_{1 \rightarrow 2}\left(C \sigma_{s}(w)_{1}+D \sqrt{s} \eta\right)
\end{aligned}
$$

## Restricted Isometry Property

Definition. The $s^{t h}$ restricted isometry constant $\delta_{s}=\delta_{s}(A)$ of a matrix $A \in \mathbb{C}^{m \times n}$ is the smallest $\delta \geq 0$ such that

$$
(1-\delta)\|\mathbf{x}\|_{2}^{2} \leq\|A \mathbf{x}\|_{2}^{2} \leq(1+\delta)\|\mathbf{x}\|_{2}^{2}
$$

for all $s$-sparse vector $\mathbf{x} \in \mathbb{C}^{n}$. Equivalently,

$$
\delta_{s}=\max _{\mathcal{S} \subset[n],|\mathcal{S}| \leq s}\left\|A_{\mathcal{S}}^{*} A_{\mathcal{S}}-\operatorname{Id}\right\|_{2 \rightarrow 2}
$$

## RIP Theorems

Theorem 6.12. Suppose $A \in \mathbb{C}^{m \times n}$ satisfies the RIP condition:

$$
\delta_{2 s}<\frac{4}{\sqrt{41}}
$$

Then for any $\mathbf{w} \in \mathbb{C}^{n}$ and $\mathbf{y} \in \mathbb{C}^{m}$ with $\|\mathbf{y}-A \mathbf{w}\|_{2} \leq \eta$, any solution $\mathbf{w}^{\#}$ of the $\ell_{1}$-minimization:

$$
\min _{\mathbf{z} \in \mathbb{C}^{n}}\|\mathbf{z}\|_{1} \quad \text { s.t. } \quad\|A \mathbf{z}-\mathbf{y}\|_{2} \leq \eta
$$

approximates the vector $\mathbf{w}$ with errors ( $\mathrm{C}, \mathrm{D}$ depend only on $\delta_{2 s}$ ):

$$
\left\|\mathbf{w}-\mathbf{w}^{\#}\right\|_{1} \leq C \sigma_{s}(\mathbf{w})_{1}+D \sqrt{s} \eta, \quad\left\|\mathbf{w}-\mathbf{w}^{\#}\right\|_{2} \leq \frac{C}{\sqrt{s}} \sigma_{s}(\mathbf{w})_{1}+D \eta
$$

Proof sketch: $A$ satisfies the RIP condition for BP, then $A$ satisfies the $\ell_{2}$-robust NSP of order $s$ with constants $\rho \in(0,1)$ and $\tau>0$ depending only on $\delta_{2 s}$.

## RIP Theorems

Theorem 6.21. Suppose $A \in \mathbb{C}^{m \times n}$ satisfies the RIP condition:

$$
\delta_{6 s}<\frac{1}{\sqrt{3}} .
$$

Then for any $\mathbf{w} \in \mathbb{C}^{n}$ and $\mathbf{y} \in \mathbb{C}^{m}$ with $\mathbf{y}=A \mathbf{w}+\mathbf{e}$, the iteration $\mathbf{w}^{n}$ of the IHT and HTP for $\mathbf{y}=A \mathbf{w}+\mathbf{e}, \mathbf{w}^{0}=0$ and $s$ is replaced by $2 s$ satisfies

$$
\begin{gathered}
\left\|\mathbf{w}-\mathbf{w}^{n}\right\|_{1} \leq C \sigma_{s}(\mathbf{w})_{1}+D \sqrt{s}\|\mathbf{e}\|_{2}+2 \rho^{n} \sqrt{s}\|\mathbf{w}\|_{2} . \\
\left\|\mathbf{w}-\mathbf{w}^{n}\right\|_{2} \leq \frac{C}{\sqrt{s}} \sigma_{s}(w)_{1}+D\|\mathbf{e}\|_{2}+2 \rho^{n}\|\mathbf{w}\|_{2}
\end{gathered}
$$

## Summary: RIP Conditions

Suppose $A \in \mathbb{C}^{m \times n}$ satisfies the RIP condition:

| BP | IHT | HTP | OMP |
| :---: | :---: | :---: | :---: |
| $\delta_{2 s}<\frac{4}{\sqrt{41}}$ | $\delta_{6 s}<\frac{1}{\sqrt{3}}$ | $\delta_{6 s}<\frac{1}{\sqrt{3}}$ | $\delta_{13 s}<\frac{1}{6}$ |
| $\approx 0.6246$ | $\approx 0.5773$ | $\approx 0.5773$ | $\approx 0.1666$ |

Then we have error estimations.

## Reference

Chapters 4, 5, and 6, A Mathematical Introduction to Compressive Sensing, by S. Foucart and H. Rauhut.


[^0]:    2
    ${ }^{2}$ Hard thresholding pursuit: an algorithm for compressive sensing, by S. Foucart.

[^1]:    ${ }^{6}$ Sparse representation in pairs of bases, by Gribonval and Nielsen.
    ${ }^{7} \mathrm{~A}$ generalized uncertainty principle and sparse representation in pairs of bases, by Elad and Bruckstein
    ${ }^{8}$ On the stability of the basis pursuit in the presence of noise, by Donoho and Elad.

[^2]:    ${ }^{9}$ A Mathematical Introduction to Compressive Sensing, by S. Foucart \& H. Rauhut.

