
AMATH 840:

Advanced Numerical Methods for

Computational and Data Science

Giang Tran

Department of Applied Mathematics, University of Waterloo

Winter 2024

Part 2: Neural Networks

2.1: Feed-Forward Neural Networks - Function

Representations

Winter 2024

Outline

Fully Connected Neural Networks

Convolutional Neural Networks

ResNets

3

Feed-Forward Neural Networks as Function Approximations

• A feed-forward neural network = a composition of linear and

nonlinear (activation) functions, alternatively:

f (x;θ) = WLσ
(
WL−1σ

(
. . . σ(W1x + b1) . . .

)
+ bL−1

)
+ bL, (1)

where

• L: number of layers; L− 1: number of hidden layers

• x ∈ Rn(0)

: input data

• σ(·): nonlinear activation function (applied point-wise)

• θ = {(W`, b`)}L`=1 are trainable weights and biases, with

W` ∈ Rn(`)×n(`−1)

, b` ∈ Rn(`)

, n(`) ∈ Z+, and ` ∈ [L].

• A shallow network, also called a one hidden layer neural network,

f : Rdin → Rdout can be written as:

f (x;W1,W2,b1,b2) = W2σ(W1x + b1) + b2.

4

With or Without Bias

• Definition: A fully connected operator is given by

fc : Rn → Rm, fc(x) := Wx + b,

where W ∈ Rm×n and b ∈ Rm are trainable weight and bias,

respectively.

• Remark:

Wx + b =
[
W b

]

x1

x2

...

xd
1

 = Ŵ x̂.

5

Nonlinear (Activation) Functions

Figure 1: Examples of some popular nonlinear activation functions

1
1“Multilayer feedforward networks with a nonpolynomial activation function can approximate any

function”, by Leshno et al, Neural Networks, 1993. 6

Fully Connected Neural Networks

• If the weight matrices are dense, the neural networks are called fully

connected neural networks.

• An example of a fully connected NN with two hidden layers and σ is a

nonlinear activation function:

x1

x2

x3

Input
layer

Hidden
layer 1

Hidden
layer 2

y1

y2

Output
layer

Figure 2: Input is x ∈ R3. Hidden layers are h1 = σ(W1x + b1) ∈ R4 and

h2 = σ(W2h1 + b2) ∈ R5. Output is y = W3h2 + b3 ∈ R2. Number of parameters is

(4× 3 + 4) + (5× 4 + 5) + (2× 5 + 2).

7

Outline

Fully Connected Neural Networks

Convolutional Neural Networks

ResNets

8

Convolutional Neural Networks

• A convolutional neural network = a feed-forward neural network

where the linear functions are either fully-connected or convolution

operators.

• A 2D convolution operator with stride s and padding p is a linear

operator:

conv : Rn2

→ R(n+2p−k
s +1)2

, conv(z) := z ∗K = Mz,

where the kernel K ∈ Rk×k (k � n) and M ∈ R(n+2p−k
s +1)2×n2

is a

structured sparse matrix associated with the kernel K (see the

explanation in the next two slides).

9

Example of a 2D Convolution Operator

a b c

d e f

u v w

∗
3 −1 4

1 5 9

2 6 −5

:= 3a−b+4c +d +5e +9f +2u+6v−5w .

10

Example of a 2D Convolution Operator (cont’d)

Figure 3: Here n = 7, k = 3, s = 1, p = 0, conv : R72
→ R

(
n+2P−K

S
+1

)2

= R52
.

2

2
http://perso.mines-paristech.fr/fabien.moutarde/ES_MachineLearning/TP_convNets/convnet-notebook.html

11

http://perso.mines-paristech.fr/fabien.moutarde/ES_MachineLearning/TP_convNets/convnet-notebook.html

Convolution Neural Networks (cont’d)

• Group local neurons as inputs to next layer → Reduces numbers of

weights to learn

• General framework

x→ (conv→ ReLU)N → (fc→ ReLU)K → fc→ f (x)

f (x) = fc ◦(ReLU ◦ fc)K ◦ (ReLU ◦ conv)N(x)

• Some popular CNNs: LeNet, AlexNet, VGG16, GoogLeNet, ResNets,

FractalNet, ResNext, ...

• To count # parameters and to debug, always check the dimensions

of inputs and outputs

12

Implement a Fully Connected Neural Network in Pytorch

The following codes are taken from

https://pytorch.org/tutorials/beginner/blitz/neural_networks_tutorial.html

13

https://pytorch.org/tutorials/beginner/blitz/neural_networks_tutorial.html

Implement a Fully Connected Neural Network in Pytorch

import torch

import torch.nn as nn

import torch.nn.functional as F

class Net(nn.Module):

def __init__(self):

super(Net, self).__init__()

1 input image channel, 6 output channels, 5x5 square convolution

kernel

self.conv1 = nn.Conv2d(1, 6, 5)

self.conv2 = nn.Conv2d(6, 16, 5)

an affine operation: y = Wx + b

self.fc1 = nn.Linear(16 * 5 * 5, 120) # 5*5 from image dimension

self.fc2 = nn.Linear(120, 84)

self.fc3 = nn.Linear(84, 10)

def forward(self, x):

Max pooling over a (2, 2) window

x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))

If the size is a square, you can specify with a single number

x = F.max_pool2d(F.relu(self.conv2(x)), 2)

x = torch.flatten(x, 1) # flatten all dimensions except the batch dimension

x = F.relu(self.fc1(x))

x = F.relu(self.fc2(x))

x = self.fc3(x)

return x

net = Net()

print(net)

3
3https://pytorch.org/tutorials/beginner/blitz/neural_networks_tutorial.html

14

https://pytorch.org/tutorials/beginner/blitz/neural_networks_tutorial.html

Outline

Fully Connected Neural Networks

Convolutional Neural Networks

ResNets

15

ResNets

• State-of-the-art performance for image classification, object

detection, and semantic segmentation.

• Idea: Introduce a skip connection (identity function) to learn

residuals → More stable, enable to have very deep networks

4

4
Deep Residual Learning for Image Recognition by K. He et al, Proceedings of the IEEE conference on computer vision and pattern

recognitio, 2016.

16

A Basic Block of ResNets

• Example of a simplified (no batch normalization) basic block for

ResNet with 2 convolutions of size 3× 3 and no biases:

x
conv→ReLU7−−−−−−−→ h1 = ReLU(W0∗x)

conv7−−→ z1 = W1∗h1 = W1(ReLU(W0∗x))

z1
+ id(x)7−−−−→ r1 = Wprojx + z1

ReLU7−−−→ y = ReLU(r1)

17

A Basic Block of ResNets (cont’d)

def conv3x3(in_planes: int, out_planes: int, stride: int = 1, groups: int = 1,

dilation: int = 1) -> nn.Conv2d:

"""3x3 convolution with padding"""

return nn.Conv2d(

in_planes,

out_planes,

kernel_size=3,

stride=stride,

padding=dilation,

groups=groups,

bias=False,

dilation=dilation,

)

5

5https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py

18

https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py

A Basic Block of ResNets (cont’d)

class BasicBlock(nn.Module):

expansion: int = 1

def __init__(

self,...

) -> None:

super().__init__()

if norm_layer is None:

norm_layer = nn.BatchNorm2d

if groups != 1 or base_width != 64:

raise ValueError("BasicBlock only supports groups=1 and base_width=64")

if dilation > 1:

raise NotImplementedError("Dilation > 1 not supported in BasicBlock")

Both self.conv1 and self.downsample layers downsample the input when stride != 1

self.conv1 = conv3x3(inplanes, planes, stride)

self.bn1 = norm_layer(planes)

self.relu = nn.ReLU(inplace=True)

self.conv2 = conv3x3(planes, planes)

self.bn2 = norm_layer(planes)

self.downsample = downsample

self.stride = stride

6
6https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py

19

https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py

A Basic Block of ResNets (cont’d)

def forward(self, x: Tensor) -> Tensor:

identity = x

out = self.conv1(x)

out = self.bn1(out)

out = self.relu(out)

out = self.conv2(out)

out = self.bn2(out)

if self.downsample is not None:

identity = self.downsample(x)

out += identity

out = self.relu(out)

return out

7

7https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py

20

https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py

Dimension Calculation of a Basic Block of ResNets

• For example, feedforward x of size 56× 56× 3 through a ResNet basic

block with two convolutions of size 3× 3, P = 1, S = 2 and S = 1,

respectively.

x
conv,S=2−−−−−−→

ReLU
h1 = ReLU(W0 ∗ x)

conv,S=1−−−−−−→ z1 = W1 ∗ h1
+ id(x)−−−−→ r1 = id(x) + z1

ReLU−−−→ y

• Size of h1 is(
56 + 2− 3

2
+ 1

)
×

(
56 + 2− 3

2
+ 1

)
× 1 = 28× 28× 1

• Size of z1 is(
28 + 2− 3

1
+ 1

)
×

(
28 + 2− 3

1
+ 1

)
× 1 = 28× 28× 1

21

Dimension Calculation of a Basic Block of ResNets (cont’d)

x
conv,S=2−−−−−−→

ReLU
h1 = ReLU(W0 ∗ x)

conv,S=1−−−−−−→ z1 = W1 ∗ h1
+id(x)−−−−→ r1 = id(x) + z1

ReLU−−−→ y

• Note: id(x) is of size 56× 56× 1 and z1 is of size 28× 28× 1.

• Size of r1 = Wproj(x) + z1 is 28× 28× 1, where Wproj is a projection

mapping or a convolution with k = 1, s = 2, p = 0.

22

Example of a 18-layers ResNet - ResNet18

• Example of a 18-layers ResNet

Input
s=2,p=3−−−−−→

k=7
conv7×7 64

maxpool−−−−−−−−→
k=3,s=2,p=1

(Block(conv 64))→ (Block(conv 64))→

→ Block(conv 128, s = 2)→ Block(conv 128)→ Block(conv 256, s = 2)→

→ Block(conv 256)→ Block(conv 512, s = 2)→ Block(conv 512)
average−−−−→

pool−−−→ fc 1000→ softmax

• All convolutions are 3× 3, unless specified otherwise.

• 64, 128, 256, 512 are numbers of filters.

• Periodically, double number of filters and downsample spatially using

stride 2

8
8“Deep Residual Learning for Image Recognition”, https://arxiv.org/abs/1512.03385

23

https://arxiv.org/abs/1512.03385

Example of a 18-layers ResNet - ResNet18(cont’d)

def resnet18(*, weights: Optional[ResNet18_Weights] = None,

progress: bool = True, **kwargs: Any) -> ResNet:

"""ResNet-18 from ‘Deep Residual Learning for Image Recognition

<https://arxiv.org/abs/1512.03385>‘__.

...

"""

weights = ResNet18_Weights.verify(weights)

return _resnet(BasicBlock, [2, 2, 2, 2], weights, progress, **kwargs)

Remark: See also class ResNet(nn.Module) from the file resnet.py.

9

9https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py

24

https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py

ResNets Architectures

Figure 4: ResNet Architectures

Exercise: Calculate the number of trainable parameters of ResNet-18, given

the size of each input data is 224x224 (gray images).

10
10

Deep Residual Learning for Image Recognition by K. He et al, Proceedings of the IEEE conference on computer vision and pattern

recognitio, 2016. 25

	Part 2: Neural Networks
	Fully Connected Neural Networks
	Convolutional Neural Networks
	ResNets

