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Denoising Diffusion Probabilistic Models (DDPMs)

Forward Process

Figure 1: Example of Forward and Reverse Processes.

e All integer Equation numbers (Eq. 1,...) are the same numbers as in DDPM!.

e The content is based on the previous notes of my PhD student Esha Saha and
on discussion with my collaborators Hai Ha Pham (Vietnam National University
- Ho Chi Minh City, Vietnam) and Sang Ngoc Pham (EM Normandie Business
School, France)

1Reference: “Denoising Diffusion Probabilistic Models”, by Ho et al, NeurlPS 2020, https://
proceedings.neurips.cc/paper/2020/file/4c5bcfec8584af0d967f1ab10179cadb-Paper . pdf


https://proceedings.neurips.cc/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf

Forward Process

Definition 1: Let xo € RY from an unknown distribution with
p.d.f. g(xo). Given a variance schedule 0 < f§i,..., 8k < 1, the
forward process is fixed to a Markov chain that gradually adds
Gaussian noise to the data:

Grjk—1(Xk|Xk—1) := N (xk; /1 — Bxs—1, Bil). (Eq. 2)

That is,

Xk = /1 — Bixk_1+v/Bre, wheree~N(0,1)and k=1,... K.
(Eq. 2.1)




Forward Process (cont’d)

Lemma 1: With the assumptions in Definition 1, we have

Grjo(xk[x0) = N (xi; Vo xo, (1 — ai)l), (Eq. 4)

K
where ax =1 — B and @k = [[ ai for k =1,..., K. That is,

i=1

Xk = Vak Xo + V1 — ag Ek, (Eq. 4.1)
where €, ~ N(0,1). Note that for any 7 > 1, €, and €4, are not

independent.

In particular, if 0 < 81 < ... < Bk <lor0 <y < Bi,...,08k <1, we
have

x5 N(0,1). (Eq. 4.2)

Comment: Based on (Eq. 4.2), in the reverse process, we start with

XK ~ ./\[(07 1)



Forward Process (cont’d)

Proof of Lemma 1. Using the reparameterization trick and the fact that the
summation of two Gaussian random variables is Gaussian, we can obtain xx
from xo:

Xk = v/ok Xk—1 + V1 — o ex—1
= Vak (\/ak71Xk72 + /1= Oék—lek—2) + V1 — ket
= Jakak—1 Xk—2 + /1 — akax_1 €

=Vax xo+ V1 —ax &,
where €; ~ N(0,1) for i = 2,..., k. Therefore, the conditional distribution
qrjo(Xk[xo) is
Grjo(Xk|%0) = N (xk; V@ %o, (1 — @ )l),

Note that {ex}« are i.i.d. standard normal and independent of xx while {e,}
depend on each other.



Forward Process (cont’d)

Proof of Lemma 1 (cont’d).
e At k = K, we have
xk = Vakxo +V1—axe,
where e ~ N(0,1).

° If0<ﬁ1<...<ﬁ;<<10r0<'y§ﬂl,...,ﬂ;<<1,Klim ak = 0.
— 00

Therefore, g(xk) —dh/\/'(O, 1) (converge in distribution), i.e., as the
number of timesteps becomes very large, the distribution g(xx) will
approach the Gaussian distribution with mean 0 and covariance I.



Forward Process (cont’d)

Lemma 2: Let xi1,--- ,Xxk be the vectors obtained from x¢ by applying
the forward process given in Definition 1. Then,

K
q(xuk | x0) = [ [ a(xk [ xe-1). (Eq. 2.2)

k=1
where g(x1:x|x0) := q(X1,...,Xk | Xo) is the conditional joint distribu-

tion of (xi,...,Xk) given Xo.




Forward Process (cont’d)

Proof of Lemma 2. Since the sequence {xx}« is a Markov chain, x» is
independent of xo when x; is given. Thus, g(x2|x1) = q(x2|x1, Xo).

For K = 2, on the right-hand side, we have

q(x1[x0)q(x2[x1) = q(x1x0)q(x2[x1,%0)
= %q(lem’“))
(%0, x1, %2)
q(xo)

= q(x1, %2|X0).
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Forward Process (cont’d)

Proof of Lemma 2 (cont’d). For K = n+ 1, we have

n+1 n
[T axelxe—1) = [T alxelxe—1)q(xnsafx)
t=1 t=1

= q(Xl, ooop X"|X0) q(Xn+1|Xn, o009 XO)
_ q(X07 ~"7X")
- q(XO) q(xIH»l‘X!H 0oop XO)
q(x0, -, Xn, Xn11)

q(xo)

=] q(Xl7 ...Xn+1|X0)7

where the second equality is obtained by using the induction hypothesis and the
fact that x,+1 is independent of xo, X1, ,X,—1 when x, is given. The
remaining equalities are obtained by using Bayes' rule.
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Reverse Process
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Reverse Process

e The goal of the reverse process is to generate data from the input
distribution by sampling from g(xx) = N (xk;0,1) and gradually
denoising for which one needs to know the reverse distribution
q(Xk—1/xx)-

e In general, computation of g(xx_1|xx) is intractable without the
knowledge of xg.

e However, we can compute g(xx_1 | Xk, Xo)-
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Reverse Process (cont’d)

N

Lemma 3: With the assumptions of the forward process, the reverse
Markov chain conditioned on xo, q(xx—1 | X, %o) (for k > 2), follows a
Gaussian distribution:

q(xk |Xk—1)q(xk—1[%o)
Xk—1 | Xk, X0) = Eq. 6.1
q(xk—1 | Xk, o) 3 (xe o) (Eq. 6.1)
= N (xk—1; ik (Xk, X0), Bkl), (Eq. 6)
where
_ Var(l — @ oy -~ 1-@e
ik (X, X0) 1= 2 _ I)Xk+ ol iﬁk xo and By = #lﬁ-
1 — ax 1 — o 1 — o
(Eq. 7)

The detailed proof is given in the next few slides.

Question: Can we explain intuitively why g(xx—1 | Xk, Xo0) is Gaussian?
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Reverse Process (cont

Proof of Lemma 3. We can write the p.d.f. of the reverse Markov chain
conditioned on xq in terms of the p.d.fs of the forward process:
Xk— 7x 7X .
G(Xk—1|Xk,X0) = 9o Xe X0 (k1. X, X0) (Conditional p.d.f)
Gxi, X0 (Xk, X0)
Xk |Xk—1, X X0 (Xk—1, X .
= a0Kklxi1, X0) 9,y 30 (X1, X0) (Conditional p.d.f)
q(xk|x0)gx, (x0)
= q(xk‘Xk*l)q(xkﬂ'xo)qx(’(xo)(Markov property and Conditional p.d.f.)
q(x«[x0) gx, (xo)
q(xs[xk—1)g(xk—1]x0)
q(xk[x0)

(Eq. 7.1.)
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Reverse Process (cont’d)

(cont’d).Substituting (Eq. 2.1) and (Eq. 4.1) to (Eq. 7.1.) yields

_ 1 1 (xk — Jarxk—1)T (xk — /OkXk—1)
Q(kal‘xk,Xo) = Wexp < 2 i ) .
1 o 1 (xk—1 — /Qk—1%0) T (Xk—1 — \/@k—1X0) _
Cri—ar ) P\ 2 1o

( (2r(1 _ak))d> exp (1 (xk = V/aixo) " (xi = @X0)>

1—ak
(1—ak)d 1— oy

eXpy — s o —
(2mBi(1 — ak—1))? { 2 Br(1 —ak—1)
(\/7)([ + £x6’—>xk71 + terms(xk,Xo)}

T
Xp_1Xk—1+

Bk 1—ak
Simplifying the calculations, we have
1—ay) 1 (xk—1 — k)T (Xk—1 — 1
(1 —ay) ) exp (_(Xk 1= Ak) " (xk—1 — k)

(27r5k(1 —ak_l) d 2 Ek 7
(Eq. 7.2)

q(xk—1]Xk, %0) =

where i, and Ek are given in (Eq. 7).
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Reverse Process (cont’d)

e Our goal is to learn the reverse distribution from the obtained conditional
reverse distribution.

e Let py(xk—1|xx) be the learned reverse distribution. From Markovian
theory, we know that pg(xk—1|xx) is also Gaussian (prove this!). The proof
is based on two facts:

e The reverse chain of a Markov chain is also a Markov chain.
o Under the settings of the forward chain {Xk}/_o in DDPM, the

reverse chain {Yk = XK,k},'f:O is also a Markov chain. Moreover,
the transition probability density of the reverse chain

w6 (Yh—1; 0, N6 (Yr—1; /1 — Br—k+1¥k, Bx—k+1l)
76(yx; 0,1)

ak,k—l(yk | Y1) =

is also Gaussian. Here we denote ¢ (yk—1;0,1) the p.d.f of the
Gaussian distribution N (yx—_1;0,1).
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Reverse Process (cont’d)

Definition 2: Under the settings of the forward process, the reverse process
Po(Xo:k) is defined as a Markov chain with learned Gaussian transitions starting

at
p(xk) = N(xk;0,1)
and
K
po(xo:x) = p(xk H (xk—1[xk), (Eq. 1)
where
Po(Xk—1xk) = N (xk—1; o (Xk, k), Zo (%, k). (Eq. 1)

The probability the generative model assigns to the data is:
Po(xo) := /Pe(xo:K)dXLK, (Eq. 1.1)

where we denote dxidxy ... dxk as dxi.k.

2

2Deep unsupervised learning using nonequilibrium thermodynamics. PMLR 2015,
https://proceedings.mlr.press/v37/sohl-dicksteini5.html
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Reverse Process (cont’d)

Note that the integral for pg(xo) is intractable. Nevertheless, we can evaluate
po(xo) via the relative probability of the forward and reverse trajectories as

follows:
po(xo) = /dxl.K pe(XO-K)M
- 7 g(x1k | xo)
pe(XO:K)
= [ dxy i | xq)_PexoK)
/ 1k q(xuk | o)q(XLK )
K
p(xx) TT po(xk—1 | x«)
(Eq. 1)& Eq. 2.2) 1
/ dxi:k q(le | XO) -
1_.[ q(xk ‘ kal)
k=1

o /dle q(x1k | xo) p(xk pa o | %) Hpe R ER
q(x1 | xo) (xk—1 | Xk, %0)q(xk|x0)

(xi)Po(xo | x1) 17 Po(Xe—r | xe)
= /dXI:K qxu | xo) BP0 1 X PNt 1XK)_ (Eq. 1.2)
qxklxo) 2 q(xk—1 | Xk, %0)
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DDPM - Recap

e Forward Process: Let xo € RY and a variance schedule ; € (0, 1), for
i=1,...K. Construct:

=/1-Bixk—1 +VBre, k=1,...,K,
where e ~ N(0,1).

e Reverse Process: Generally intractable and learned using a parameterized
model,

X X
XO)—/dxlqulx\XO (xk) Hpe(k al k.

q(xk | Xk-1)

Here

Po(Xk—1|xi) = N (xk—1; 1o (%, k), Zo(xk, k)),
where pp and Xy are the learnt mean vector and covariance matrix,
respectively.

e Goal: Compare g(xo) and p(xo) = po(xo).

20



Comparison of Two Distributions

We recall some useful notions to compare two distributions.

Definitions:

3. The cross-entropy of a distribution p relative to another
distribution g over a given set is

H(q, p) = Eq[~log p],
where E,[-] denotes the expectation with respect to the
distribution q.

4. Let p and g be two probability distributions. Then the KL
divergence denoted by Dk.(q||p) is defined as

Dri(qllp) = Eq {log <%>] :

Roughly speaking, KL divergence Dk.(q||p) is a measure of the
information lost when g is approximated by p.

21



Comparison of Two Distributions

Remark: Note that for two probability distributions p and g, we have
H(q,p) = H(q, q) + Dkc(qllp)-

So if g is the true distribution and p is an approximated one, then H(q,q) is a
constant (not learned) and the cross entropy H(q, p) differs from the KL
divergence Dk.(q||p) by a constant.

22



KL Divergence of Two Gaussians

Lemma 4: Let p ~ N(up,Xp) and g ~ N (g, Xq) be two Gaussian
distributions on R?. Then

Dra(alle) = 5 108 22 = -+ (o = 1) 5 1tq = o)+ 1(E; " Eo)
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KL Divergence of Two Gaussians (cont’d)

Proof of Lemma 4. Re call that

1 1 _
p(x) = W €xXp <—§(X - #p)TZp Yx— .“p))
We have

201 (allp) = 254 1oz (2]

= log }Z } + Eq (*(X — Hq)TZ;l(X — /—Lq)> + Eq ((x — “P)sz_l(x -~ l‘p))

To simplify the second and the third terms, we use the following equality:

Lemma 5: Let X be a random vector in R with mean y and covariance matrix
Y. Let A € RI%9 be a symmetric matrix. Then

E(XTAX) = tr(AZ) + u" Ap.

Proof. We have
E(XTAX) = Etr (xTAx) —Etr (AXXT) —tr (AE(XXT))
=tr (A (cOv(x, X) +EX JEXT)) = tr(AT) + tr(AEXEXT)
+

= tr(AZ) + tr(Aup”) = tr(AZ) 4 tr(u” Ap) = tr(AX) + u” Ap.

24



KL Divergence of Two Gaussians (cont’d)

Proof of Lemma 4 (cont’d). The second term can be simplified as
Eq(x — 11q) " Z5 (x — pg) = tr (E,1%q) + 07X t0=trly =d
Similarly, the third term can be simplified as

Eq ((x = 1p) 25 (x = 1p)) = (T3 Eq) + (18q — 1) E5 (12 = i)

25



oss Entropy Loss Function in Diffusion

Theorem. Let x¢o be data drawn from an unknown distribution g(xg). Suppose
X1, -+ ,Xk be the degraded data obtained by applying the forward process given in
Definition 1 and p denotes the (reverse) distribution such that p(xg) approximates
q(xg). Then the cross entropy loss H(q, p) satisfies the following inequality:

K
Xk |x Xp—1|Xk, X
H(a(x0). P0)) Bt (108 S 15 g THH) _ o o)
k=2

P(Xk—1[%k)
K
<Dr(a(xxo)llp(xi)) + Z D (q(xk—1]xk, x0) lp(Xk—11%k))
k=2
+ Eqlsxgu) (= log p(xo[x1))-
(Eq. 5)
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Cross Entropy Loss Function in Diffusion Models (cont’d)

Proof. The proof is original from [Sohl-Dickstein et al., 15] and recalled in [Ho
et al., 20]. We have

H(q(xo), p(x0)) “=" ~Eq(xo)llog p(xo)]

K

Eq. 1.2 X Xo | X X X
( q: )7/0,)(0 q(xo)|0g (/ dxl:K q(xl:K ‘ XO) p g(f£|io‘ 1 H qp( k—1 | k )

) (Xk 1 \Xk,Xo)

Jensen's ineq. P(XK)p(XO | X1) K Xk 1 | xk)
< 7/dXo;Kq(X0:K)|Og H

q(xx [xo) 5 A(xk—1 | Xk, %0)

=2 P(Xk71|Xk)

< /dxo;Kq(xo;K) [Iog % + Z log M ~log p(xo|x1)}

K

< Dra(q(xk|x0)1p(xk)) + > Dt (q(xk—1]xk, Xo) || p(xk—1xc))+
k=2

FEq(xg) (— log p(xo[x1)).
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Cross Entropy Loss Function in Diffusion Models (cont’d)

e From the settings of the diffusion model, the first term on the upper
bound

Dkr(q(xk |x0)[|p(xk))

is constant and hence often ignored when training a diffusion model.

e For the third term on the upper bound,

Eq(XO:K) [_ lOg p(Xo‘Xl)] )

there are numerous ways to handle this term in practice. For
example, the authors in [Ho et al, 20] choose to model this term
using a separate discrete decoder.

e For the second term, we first simplify to difference in means, then
rewrite in terms of the difference between noises, where the noises
are defined based on x.

28



oss Entropy Loss Function in Diffusion

For each k = 2,..., K, since q(xx_1|Xk,X0) and p(xx_1|xx) are Gaussian with the

same variance (see the assumptions), using Lemma 4, we have:

Lem. 4 1 e
D (q(xk—1%k,%0) || po (xk—1[xk)) = ]Eq(xo,xk)ﬁ |k (ke X0) — prg (i, K)II3 + C
k

(Eq. 8)
2
(Eq. 7) 1 || Vol —ak—1 v/ k-1
= Eqom) 52 (_7 )Xk+ ——x0 — po(xk, k)| +C
20 1— 1—ay z
(Eq. 8.1)
(Eq. 4.1) 1 || vak(l —ak_1) \/ak 1B 1 —
= E —1- -  k
q(xo’xk)Zcri 1—ay 1—ay @(Xk AEk) = 1o (xk )
+C (Eq. 8.2)
L et ) — P — olxutron i, | + €
x5k 53 || —— JEk) — ————¢x — po(xk (X0, k),
05k 552 \/@kOk @mk o (xk (X0, Ex .
(Eq. 10)

The term C is constant and does not depend on 6.

29
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Cross Entropy Loss Function in Diffusion Models (cont’d)

e Since x, is available as input to the model, we may choose the
parametrization

Ho(Xk, k) = \/la—k (Xk -

e We can simplify (Eq. 10) as

B 2
Eaos | 5oz i — eo(x.
0.8k {20 ak(l—a )||€k ey (X, k)|

= s [ e = olata.e) K)Pax(ro)a(e) dedi
k

ﬁk = / — 2
= EXO,E [20,2(()[,((1_(“)5 = eg( Qe X + 1l = Qg &, k)”

e9(xk,k)> . (Eq 11)

(Eq. 12)
where ey now denotes a function approximator intended to predict
the noise from xy.
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DDPM Training

Algorithm 1 Training

1: repeat
2: Xo v q(xo)
3: t ~ Uniform({1,...,T})
4: €~ N(0,I)
5: Take gradient descent step on
Vo ”e — eo(vVarxo + V1 — dte,t)||2

6: until converged
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DDPM Sampling

Algorithm 2 Sampling

. XT NN(O,I)
cfort=T,...,1do
z~N(0,I)ift > 1,elsez=0

1
2
3
4: x4 1= 5= (x 1o (xt,t)) + o0tz
5
6

VOt t V1—aq €9
: end for
: return Xo
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Scored-Based Generative Models

To be continued...
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