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Denoising Diffusion Probabilistic Models (DDPMs)

Figure 1: Example of Forward and Reverse Processes.

• All integer Equation numbers (Eq. 1,...) are the same numbers as in DDPM1.

• The content is based on the previous notes of my PhD student Esha Saha and

on discussion with my collaborators Hai Ha Pham (Vietnam National University

- Ho Chi Minh City, Vietnam) and Sang Ngoc Pham (EM Normandie Business

School, France)
1Reference: “Denoising Diffusion Probabilistic Models”, by Ho et al, NeurIPS 2020, https://

proceedings.neurips.cc/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
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Forward Process

Definition 1: Let x0 ∈ Rd from an unknown distribution with

p.d.f. q(x0). Given a variance schedule 0 < β1, ..., βK < 1, the

forward process is fixed to a Markov chain that gradually adds

Gaussian noise to the data:

qk|k−1(xk |xk−1) := N (xk ;
√

1− βkxk−1, βk I). (Eq. 2)

That is,

xk :=
√

1− βkxk−1+
√
βk e, where e ∼ N (0, I) and k = 1, . . . ,K .

(Eq. 2.1)
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Forward Process (cont’d)

Lemma 1: With the assumptions in Definition 1, we have

qk|0(xk |x0) = N (xk ;
√
αk x0, (1− αk)I), (Eq. 4)

where αk = 1− βk and αk =
k∏

i=1

αi for k = 1, . . . ,K . That is,

xk =
√
αk x0 +

√
1− αk ẽk , (Eq. 4.1)

where ẽk ∼ N (0, I). Note that for any τ ≥ 1, ẽk and ẽk+τ are not

independent.

In particular, if 0 < β1 < ... < βK < 1 or 0 < γ ≤ β1, . . . , βK < 1, we

have

xK
d−→ N (0, I). (Eq. 4.2)

Comment: Based on (Eq. 4.2), in the reverse process, we start with

xK ∼ N (0, 1).
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Forward Process (cont’d)

Proof of Lemma 1. Using the reparameterization trick and the fact that the

summation of two Gaussian random variables is Gaussian, we can obtain xk

from x0:

xk =
√
αk xk−1 +

√
1− αk ek−1

=
√
αk

(√
αk−1xk−2 +

√
1− αk−1ek−2

)
+
√

1− αkek−1

=
√
αkαk−1 xk−2 +

√
1− αkαk−1 ẽ2

...

=
√
αk x0 +

√
1− αk ẽk ,

where ẽi ∼ N (0, I) for i = 2, . . . , k. Therefore, the conditional distribution

qk|0(xk |x0) is

qk|0(xk |x0) = N (xk ;
√
αk x0, (1− αk)I),

Note that {ek}k are i.i.d. standard normal and independent of xk while {ẽk}
depend on each other.
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Forward Process (cont’d)

Proof of Lemma 1 (cont’d).

• At k = K , we have

xK =
√
αK x0 +

√
1− αK e,

where e ∼ N (0, I).

• If 0 < β1 < ... < βK < 1 or 0 < γ ≤ β1, . . . , βK < 1, lim
K→∞

αK = 0.

Therefore, q(xK )
d−→ N (0, I) (converge in distribution), i.e., as the

number of timesteps becomes very large, the distribution q(xK ) will

approach the Gaussian distribution with mean 0 and covariance I.
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Forward Process (cont’d)

Lemma 2: Let x1, · · · , xK be the vectors obtained from x0 by applying

the forward process given in Definition 1. Then,

q(x1:K | x0) =
K∏

k=1

q(xk | xk−1). (Eq. 2.2)

where q(x1:K |x0) := q(x1, . . . , xK | x0) is the conditional joint distribu-

tion of (x1, . . . , xK ) given x0.
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Forward Process (cont’d)

Proof of Lemma 2. Since the sequence {xk}k is a Markov chain, x2 is

independent of x0 when x1 is given. Thus, q(x2|x1) = q(x2|x1, x0).

For K = 2, on the right-hand side, we have

q(x1|x0)q(x2|x1) = q(x1|x0)q(x2|x1, x0)

=
q(x1, x0)

q(x0)
q(x2|x1, x0)

=
q(x0, x1, x2)

q(x0)

= q(x1, x2|x0).
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Forward Process (cont’d)

Proof of Lemma 2 (cont’d). For K = n + 1, we have

n+1∏
t=1

q(xt |xt−1) =
n∏

t=1

q(xt |xt−1)q(xn+1|xn)

= q(x1, ..., xn|x0) q(xn+1|xn, ..., x0)

=
q(x0, ..., xn)

q(x0)
q(xn+1|xn, ..., x0)

=
q(x0, ..., xn, xn+1)

q(x0)

= q(x1, ...xn+1|x0),

where the second equality is obtained by using the induction hypothesis and the

fact that xn+1 is independent of x0, x1, · · · , xn−1 when xn is given. The

remaining equalities are obtained by using Bayes’ rule.
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Reverse Process

• The goal of the reverse process is to generate data from the input

distribution by sampling from q(xK ) = N (xK ; 0, I) and gradually

denoising for which one needs to know the reverse distribution

q(xk−1|xk).

• In general, computation of q(xk−1|xk) is intractable without the

knowledge of x0.

• However, we can compute q(xk−1 | xk , x0).
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Reverse Process (cont’d)

Lemma 3: With the assumptions of the forward process, the reverse

Markov chain conditioned on x0, q(xk−1 | xk , x0) (for k ≥ 2), follows a

Gaussian distribution:

q(xk−1 | xk , x0) =
q(xk |xk−1)q(xk−1|x0)

q(xk |x0)
(Eq. 6.1)

= N (xk−1; µ̃k(xk , x0), β̃k I), (Eq. 6)

where

µ̃k(xk , x0) :=

√
αk(1− αk−1)

1− αk
xk+

√
αk−1βk

1− αk
x0 and β̃k =

1− αk−1

1− αk
βk .

(Eq. 7)

The detailed proof is given in the next few slides.

Question: Can we explain intuitively why q(xk−1 | xk , x0) is Gaussian?
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Reverse Process (cont’d)

Proof of Lemma 3. We can write the p.d.f. of the reverse Markov chain

conditioned on x0 in terms of the p.d.fs of the forward process:

q(xk−1|xk , x0) =
qXk−1,Xk ,X0 (xk−1, xk , x0)

qXk ,X0 (xk , x0)
(Conditional p.d.f)

=
q(xk |xk−1, x0)qXk−1,X0 (xk−1, x0)

q(xk |x0)qX0 (x0)
(Conditional p.d.f)

=
q(xk |xk−1)q(xk−1|x0)qX0 (x0)

q(xk |x0)qX0 (x0)
(Markov property and Conditional p.d.f.)

=
q(xk |xk−1)q(xk−1|x0)

q(xk |x0)
(Eq. 7.1.)
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Reverse Process (cont’d)

(cont’d).Substituting (Eq. 2.1) and (Eq. 4.1) to (Eq. 7.1.) yields

q(xk−1|xk , x0) =
1√

(2πβk )d
exp

(
−

1

2

(xk −
√
αkxk−1)T (xk −

√
αkxk−1)

βk

)
·

1√
(2π(1− αk−1))d

exp

(
−

1

2

(xk−1 −
√
αk−1x0)T (xk−1 −

√
αk−1x0)

1− αk−1

)
·

(√
(2π(1− αk ))d

)
exp

(
1

2

(xk −
√
αkx0)T (xk −

√
αkx0)

1− αk

)
=

√
(1− αk )d√

(2πβk (1− αk−1))d
exp

{
−

1

2

1− αk

βk (1− αk−1)
xTk−1xk−1+

(√
αk

βk
xTk +

√
αk−1

1− αk−1
xT0

)
xk−1 + terms(xk , x0)

}
Simplifying the calculations, we have

q(xk−1|xk , x0) =

√
(1− αk )d√

(2πβk (1− αk−1))d
exp

(
−

1

2

(xk−1 − µ̃k )T (xk−1 − µ̃k )

β̃k

)
,

(Eq. 7.2)

where µ̃k and β̃k are given in (Eq. 7).
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Reverse Process (cont’d)

• Our goal is to learn the reverse distribution from the obtained conditional

reverse distribution.

• Let pθ(xk−1|xk) be the learned reverse distribution. From Markovian

theory, we know that pθ(xk−1|xk) is also Gaussian (prove this!). The proof

is based on two facts:

• The reverse chain of a Markov chain is also a Markov chain.

• Under the settings of the forward chain {Xk}Kk=0 in DDPM, the

reverse chain {X k := XK−k}Kk=0 is also a Markov chain. Moreover,

the transition probability density of the reverse chain

qk,k−1(yk | yk−1) =
πG (yk−1; 0, I)πG (yk−1;

√
1− βK−k+1yk , βK−k+1I)

πG (yk ; 0, I)

is also Gaussian. Here we denote πG (yk−1; 0, I) the p.d.f of the

Gaussian distribution N (yk−1; 0, I).
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Reverse Process (cont’d)

Definition 2: Under the settings of the forward process, the reverse process

pθ(x0:K ) is defined as a Markov chain with learned Gaussian transitions starting

at

p(xK ) = N (xK ; 0, I)

and

pθ(x0:K ) := p(xK )
K∏

k=1

pθ(xk−1|xk ), (Eq. 1)

where

pθ(xk−1|xk ) = N (xk−1;µθ(xk , k),Σθ(xk , k)). (Eq. 1’)

The probability the generative model assigns to the data is:

pθ(x0) :=

∫
pθ(x0:K )dx1:K , (Eq. 1.1)

where we denote dx1dx2 . . . dxK as dx1:K .

2

2Deep unsupervised learning using nonequilibrium thermodynamics. PMLR 2015,

https://proceedings.mlr.press/v37/sohl-dickstein15.html
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Reverse Process (cont’d)

Note that the integral for pθ(x0) is intractable. Nevertheless, we can evaluate

pθ(x0) via the relative probability of the forward and reverse trajectories as

follows:

pθ(x0) =

∫
dx1:K pθ(x0:K )

q(x1:K | x0)

q(x1:K | x0)

=

∫
dx1:K q(x1:K | x0)

pθ(x0:K )

q(x1:K | x0)

(Eq. 1)&(Eq. 2.2)
=

∫
dx1:K q(x1:K | x0)

p(xK )
K∏

k=1

pθ(xk−1 | xk)

K∏
k=1

q(xk | xk−1)

(Eq. 6.1)
=

∫
dx1:K q(x1:K | x0) p(xK )

pθ(x0 | x1)

q(x1 | x0)

K∏
k=2

pθ(xk−1 | xk)q(xk−1|x0)

q(xk−1 | xk , x0)q(xk |x0)

=

∫
dx1:K q(x1:K | x0)

p(xK )pθ(x0 | x1)

q(xK |x0)

K∏
k=2

pθ(xk−1 | xk)

q(xk−1 | xk , x0)
(Eq. 1.2)
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DDPM - Recap

• Forward Process: Let x0 ∈ Rd and a variance schedule βi ∈ (0, 1), for

i = 1, . . .K . Construct:

xk =
√

1− βkxk−1 +
√
βk e, k = 1, . . . ,K ,

where e ∼ N (0, I).

• Reverse Process: Generally intractable and learned using a parameterized

model,

pθ(x0) =

∫
dx1:K q(x1:K | x0) p(xK )

K∏
k=1

pθ(xk−1 | xk)

q(xk | xk−1)
.

Here

pθ(xk−1|xk) = N (xk−1;µθ(xk , k),Σθ(xk , k)),

where µθ and Σθ are the learnt mean vector and covariance matrix,

respectively.

• Goal: Compare q(x0) and p(x0) = pθ(x0).
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Comparison of Two Distributions

We recall some useful notions to compare two distributions.

Definitions:

3. The cross-entropy of a distribution p relative to another

distribution q over a given set is

H(q, p) = Eq[− log p],

where Eq[·] denotes the expectation with respect to the

distribution q.

4. Let p and q be two probability distributions. Then the KL

divergence denoted by DKL(q||p) is defined as

DKL(q||p) = Eq

[
log

(
q

p

)]
.

Roughly speaking, KL divergence DKL(q||p) is a measure of the

information lost when q is approximated by p.
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Comparison of Two Distributions

Remark: Note that for two probability distributions p and q, we have

H(q, p) = H(q, q) + DKL(q||p).

So if q is the true distribution and p is an approximated one, then H(q, q) is a

constant (not learned) and the cross entropy H(q, p) differs from the KL

divergence DKL(q||p) by a constant.
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KL Divergence of Two Gaussians

Lemma 4: Let p ∼ N (µp,Σp) and q ∼ N (µq,Σq) be two Gaussian

distributions on Rd . Then

DKL(q‖p) =
1

2

[
log
|Σp|
|Σq|

− d + (µq − µp)TΣ−1
p (µq − µp) + tr(Σ−1

p Σq)

]
.
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KL Divergence of Two Gaussians (cont’d)

Proof of Lemma 4. Re call that

p(x) =
1

|Σp |1/2(2π)d/2
exp

(
−

1

2
(x− µp)T Σ−1

p (x− µp)

)
We have

2DKL(q‖p) = 2Eq

[
log

(
q

p

)]
= log

|Σp |
|Σq |

+ Eq

(
−(x− µq)T Σ−1

q (x− µq)
)

+ Eq

(
(x− µp)T Σ−1

p (x− µp)
)

To simplify the second and the third terms, we use the following equality:

Lemma 5: Let X be a random vector in Rd with mean µ and covariance matrix

Σ. Let A ∈ Rd×d be a symmetric matrix. Then

E(XTAX ) = tr(AΣ) + µTAµ.

Proof. We have

E(XTAX ) = E tr
(
XTAX

)
= E tr

(
AXXT

)
= tr

(
AE(XXT )

)
= tr

(
A
(
Cov(X ,X ) + EX EXT

))
= tr(AΣ) + tr(AEX EXT )

= tr(AΣ) + tr(AµµT ) = tr(AΣ) + tr(µTAµ) = tr(AΣ) + µTAµ.
24



KL Divergence of Two Gaussians (cont’d)

Proof of Lemma 4 (cont’d). The second term can be simplified as

Eq(x− µq)T Σ−1
q (x− µq) = tr

(
Σ−1

q Σq
)

+ 0T Σ−1
q 0 = tr Id = d

Similarly, the third term can be simplified as

Eq

(
(x− µp)T Σ−1

p (x− µp)
)

= tr(Σ−1
p Σq) + (µq − µp)T Σ−1

p (µq − µp)
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Cross Entropy Loss Function in Diffusion Models

Theorem. Let x0 be data drawn from an unknown distribution q(x0). Suppose

x1, · · · , xK be the degraded data obtained by applying the forward process given in

Definition 1 and p denotes the (reverse) distribution such that p(x0) approximates

q(x0). Then the cross entropy loss H(q, p) satisfies the following inequality:

H(q(x0), p(x0)) ≤Eq(x0:K )

[
log

q(xK |x0)

p(xK )
+

K∑
k=2

log
q(xk−1|xk , x0)

p(xk−1|xk )
− log p(x0|x1)

]

≤DKL(q(xK |x0)‖p(xK )) +
K∑

k=2

DKL(q(xk−1|xk , x0)‖p(xk−1|xk ))

+ Eq(x0:K )(− log p(x0|x1)).

(Eq. 5)
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Cross Entropy Loss Function in Diffusion Models (cont’d)

Proof. The proof is original from [Sohl-Dickstein et al., 15] and recalled in [Ho

et al., 20]. We have

H(q(x0), p(x0))
by def.

= −Eq(x0)[log p(x0)]

(Eq. 1.2)
= −

∫
dx0 q(x0) log

(∫
dx1:K q(x1:K | x0)

p(xK )p(x0 | x1)

q(xK |x0)

K∏
k=2

p(xk−1 | xk)

q(xk−1 | xk , x0)

)
Jensen’s ineq.

≤ −
∫

dx0:Kq(x0:K ) log

(
p(xK )p(x0 | x1)

q(xK |x0)

K∏
k=2

p(xk−1 | xk)

q(xk−1 | xk , x0)

)

≤
∫

dx0:Kq(x0:K )

[
log

q(xK |x0)

p(xK )
+

K∑
k=2

log
q(xk−1|xk , x0)

p(xk−1|xk)
− log p(x0|x1)

]

≤ DKL(q(xK |x0)‖p(xK )) +
K∑

k=2

DKL(q(xk−1|xk , x0)‖p(xk−1|xk))+

+Eq(x0:K )(− log p(x0|x1)).
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Cross Entropy Loss Function in Diffusion Models (cont’d)

• From the settings of the diffusion model, the first term on the upper

bound

DKL(q(xK |x0)‖p(xK ))

is constant and hence often ignored when training a diffusion model.

• For the third term on the upper bound,

Eq(x0:K ) [− log p(x0|x1)] ,

there are numerous ways to handle this term in practice. For

example, the authors in [Ho et al, 20] choose to model this term

using a separate discrete decoder.

• For the second term, we first simplify to difference in means, then

rewrite in terms of the difference between noises, where the noises

are defined based on xk .
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Cross Entropy Loss Function in Diffusion Models (cont’d)

For each k = 2, . . . ,K , since q(xk−1|xk , x0) and p(xk−1|xk ) are Gaussian with the

same variance (see the assumptions), using Lemma 4, we have:

DKL(q(xk−1|xk , x0)‖pθ(xk−1|xk ))
Lem. 4

= Eq(x0,xk )
1

2σ2
k

‖µ̃k (xk , x0)− µθ(xk , k)‖2
2 + C

(Eq. 8)

(Eq. 7)
= Eq(x0,xk )

1

2σ2
k

∥∥∥∥∥
√
αk (1− αk−1)

1− αk
xk +

√
αk−1βk

1− αk
x0 − µθ(xk , k)

∥∥∥∥∥
2

2

+ C

(Eq. 8.1)

(Eq. 4.1)
= Eq(x0,xk )

1

2σ2
k

∥∥∥∥∥
√
αk (1− αk−1)

1− αk
xk +

√
αk−1βk

1− αk

1
√
αk

(xk −
√

1− αk ε̃k )− µθ(xk , k)

∥∥∥∥∥
2

2

+ C (Eq. 8.2)

= Ex0,ε̃k

1

2σ2
k

∥∥∥∥ 1
√
αk

xk (x0, ε̃k )−
βk√

αk
√

1− αk
ε̃k − µθ(xk (x0, ε̃k ), k)

∥∥∥∥2

2

+ C

(Eq. 10)

The term C is constant and does not depend on θ.
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Cross Entropy Loss Function in Diffusion Models (cont’d)

• Since xk is available as input to the model, we may choose the

parametrization

µθ(xk , k) =
1
√
αk

(
xk −

βk√
1− αk

eθ(xk , k)

)
. (Eq. 11)

• We can simplify (Eq. 10) as:

Ex0 ,̃ek

[
β2
k

2σ2
kαk(1− αk)

‖ε̃k − eθ(xk , k)‖2

]
=

β2
k

2σ2
kαk(1− αk)

∫∫
‖e− εθ(xk(x0, e) , k)‖2qX0 (x0)qε(e) de dx0

= Ex0,ε

[
β2
k

2σ2
kαk(1− αk)

‖ε− eθ(
√
αk x0 +

√
1− αk ε, k)‖2

]
.

(Eq. 12)

where eθ now denotes a function approximator intended to predict

the noise from xk .
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DDPM Training
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DDPM Sampling
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Scored-Based Generative Models

To be continued...
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