AMATH 840:
 Advanced Numerical Methods for Computational and Data Science

Giang Tran
Department of Applied Mathematics, University of Waterloo
Winter 2024

Part 2: Neural Networks
2.3: A Detailed Mathematical Explanation of Denoising Diffusion Probabilistic Models (DDPM)

Winter 2024

Outline

Forward Process

Reverse Process

Denoising Diffusion Probabilistic Models (DDPMs)

Figure 1: Example of Forward and Reverse Processes.

- All integer Equation numbers (Eq. 1,...) are the same numbers as in DDPM ${ }^{1}$.
- The content is based on the previous notes of my PhD student Esha Saha and on discussion with my collaborators Hai Ha Pham (Vietnam National University - Ho Chi Minh City, Vietnam) and Sang Ngoc Pham (EM Normandie Business School, France)

[^0]
Forward Process

Definition 1: Let $\mathrm{x}_{0} \in \mathbb{R}^{d}$ from an unknown distribution with p.d.f. $q\left(\mathbf{x}_{0}\right)$. Given a variance schedule $0<\beta_{1}, \ldots, \beta_{K}<1$, the forward process is fixed to a Markov chain that gradually adds Gaussian noise to the data:

$$
\begin{equation*}
q_{k \mid k-1}\left(\mathbf{x}_{k} \mid \mathbf{x}_{k-1}\right):=\mathcal{N}\left(\mathbf{x}_{k} ; \sqrt{1-\beta_{k}} \mathbf{x}_{k-1}, \beta_{k} \mathbf{I}\right) . \tag{Eq.2}
\end{equation*}
$$

That is,
$\mathbf{x}_{k}:=\sqrt{1-\beta_{k}} \mathbf{x}_{k-1}+\sqrt{\beta_{k}} \mathbf{e}, \quad$ where $\mathbf{e} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ and $k=1, \ldots, K$.
(Eq. 2.1)

Forward Process (cont'd)

Lemma 1: With the assumptions in Definition 1, we have

$$
\begin{equation*}
q_{k \mid 0}\left(\mathbf{x}_{k} \mid \mathbf{x}_{0}\right)=\mathcal{N}\left(\mathbf{x}_{k} ; \sqrt{\bar{\alpha}_{k}} \mathbf{x}_{0},\left(1-\bar{\alpha}_{k}\right) \mathbf{I}\right) \tag{Eq.4}
\end{equation*}
$$

where $\alpha_{k}=1-\beta_{k}$ and $\bar{\alpha}_{k}=\prod_{i=1}^{k} \alpha_{i}$ for $k=1, \ldots, K$. That is,

$$
\begin{equation*}
\mathbf{x}_{k}=\sqrt{\bar{\alpha}_{k}} \mathbf{x}_{0}+\sqrt{1-\bar{\alpha}_{k}} \widetilde{\mathbf{e}}_{k} \tag{Eq.4.1}
\end{equation*}
$$

where $\widetilde{\mathbf{e}}_{k} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$. Note that for any $\tau \geq 1, \widetilde{\mathbf{e}}_{k}$ and $\widetilde{\mathbf{e}}_{k+\tau}$ are not independent.

In particular, if $0<\beta_{1}<\ldots<\beta_{K}<1$ or $0<\gamma \leq \beta_{1}, \ldots, \beta_{K}<1$, we have

$$
\begin{equation*}
\mathbf{x}_{K} \xrightarrow{d} \mathcal{N}(\mathbf{0}, \mathbf{I}) . \tag{Eq.4.2}
\end{equation*}
$$

Comment: Based on (Eq. 4.2), in the reverse process, we start with $\mathbf{x}_{K} \sim \mathcal{N}(0,1)$.

Forward Process (cont'd)

Proof of Lemma 1. Using the reparameterization trick and the fact that the summation of two Gaussian random variables is Gaussian, we can obtain \mathbf{x}_{k} from x_{0} :

$$
\begin{aligned}
\mathbf{x}_{k} & =\sqrt{\alpha_{k}} \mathbf{x}_{k-1}+\sqrt{1-\alpha_{k}} \mathbf{e}_{k-1} \\
& =\sqrt{\alpha_{k}}\left(\sqrt{\alpha_{k-1}} \mathbf{x}_{k-2}+\sqrt{1-\alpha_{k-1}} \mathbf{e}_{k-2}\right)+\sqrt{1-\alpha_{k}} \mathbf{e}_{k-1} \\
& =\sqrt{\alpha_{k} \alpha_{k-1}} \mathbf{x}_{k-2}+\sqrt{1-\alpha_{k} \alpha_{k-1}} \widetilde{\mathbf{e}}_{2} \\
& \vdots \\
& =\sqrt{\bar{\alpha}_{k}} \mathbf{x}_{0}+\sqrt{1-\bar{\alpha}_{k}} \widetilde{\mathbf{e}}_{k},
\end{aligned}
$$

where $\widetilde{\mathbf{e}}_{i} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ for $i=2, \ldots, k$. Therefore, the conditional distribution $q_{k \mid 0}\left(x_{k} \mid x_{0}\right)$ is

$$
\boldsymbol{q}_{k \mid 0}\left(\mathbf{x}_{k} \mid \mathbf{x}_{0}\right)=\mathcal{N}\left(\mathbf{x}_{k} ; \sqrt{\bar{\alpha}_{k}} \mathbf{x}_{0},\left(1-\bar{\alpha}_{k}\right) \mathbf{I}\right)
$$

Note that $\left\{\mathbf{e}_{k}\right\}_{k}$ are i.i.d. standard normal and independent of \mathbf{x}_{k} while $\left\{\widetilde{\mathbf{e}}_{k}\right\}$ depend on each other.

Forward Process (cont'd)

Proof of Lemma 1 (cont'd).

- At $k=K$, we have

$$
\mathbf{x}_{K}=\sqrt{\bar{\alpha}_{K}} \mathbf{x}_{0}+\sqrt{1-\bar{\alpha}_{K}} \mathbf{e}
$$

where $\mathbf{e} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$.

- If $0<\beta_{1}<\ldots<\beta_{K}<1$ or $0<\gamma \leq \beta_{1}, \ldots, \beta_{K}<1, \lim _{K \rightarrow \infty} \bar{\alpha}_{K}=0$. Therefore, $q\left(\mathbf{x}_{K}\right) \xrightarrow{d} \mathcal{N}(\mathbf{0}, \mathbf{I})$ (converge in distribution), i.e., as the number of timesteps becomes very large, the distribution $q\left(\mathbf{x}_{K}\right)$ will approach the Gaussian distribution with mean $\mathbf{0}$ and covariance \mathbf{I}.

Forward Process (cont'd)

Lemma 2: Let $\mathbf{x}_{1}, \cdots, \mathbf{x}_{K}$ be the vectors obtained from \mathbf{x}_{0} by applying the forward process given in Definition 1. Then,

$$
\begin{equation*}
q\left(\mathbf{x}_{1: K} \mid \mathbf{x}_{0}\right)=\prod_{k=1}^{K} q\left(\mathbf{x}_{k} \mid \mathbf{x}_{k-1}\right) \tag{Eq.2.2}
\end{equation*}
$$

where $q\left(\mathbf{x}_{1: K} \mid \mathbf{x}_{0}\right):=q\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{K} \mid \mathbf{x}_{0}\right)$ is the conditional joint distribution of $\left(\mathbf{x}_{1}, \ldots, x_{K}\right)$ given \mathbf{x}_{0}.

Forward Process (cont'd)

Proof of Lemma 2. Since the sequence $\left\{\mathbf{x}_{k}\right\}_{k}$ is a Markov chain, \mathbf{x}_{2} is independent of \mathbf{x}_{0} when \mathbf{x}_{1} is given. Thus, $q\left(\mathbf{x}_{2} \mid \mathbf{x}_{1}\right)=q\left(\mathbf{x}_{2} \mid \mathbf{x}_{1}, \mathbf{x}_{0}\right)$.

For $K=2$, on the right-hand side, we have

$$
\begin{aligned}
q\left(\mathbf{x}_{1} \mid \mathbf{x}_{0}\right) q\left(\mathbf{x}_{2} \mid \mathbf{x}_{1}\right) & =q\left(\mathbf{x}_{1} \mid \mathbf{x}_{0}\right) q\left(\mathbf{x}_{2} \mid \mathbf{x}_{1}, \mathbf{x}_{0}\right) \\
& =\frac{q\left(\mathbf{x}_{1}, \mathbf{x}_{0}\right)}{q\left(\mathbf{x}_{0}\right)} q\left(\mathbf{x}_{2} \mid \mathbf{x}_{1}, \mathbf{x}_{0}\right) \\
& =\frac{q\left(\mathbf{x}_{0}, \mathbf{x}_{1}, \mathbf{x}_{2}\right)}{q\left(\mathbf{x}_{0}\right)} \\
& =q\left(\mathbf{x}_{1}, \mathbf{x}_{2} \mid \mathbf{x}_{0}\right)
\end{aligned}
$$

Forward Process (cont'd)

Proof of Lemma 2 (cont'd). For $K=n+1$, we have

$$
\begin{aligned}
\prod_{t=1}^{n+1} q\left(\mathbf{x}_{t} \mid \mathbf{x}_{t-1}\right) & =\prod_{t=1}^{n} q\left(\mathbf{x}_{t} \mid \mathbf{x}_{t-1}\right) q\left(\mathbf{x}_{n+1} \mid \mathbf{x}_{n}\right) \\
& =q\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \mid \mathbf{x}_{0}\right) q\left(\mathbf{x}_{n+1} \mid \mathbf{x}_{n}, \ldots, \mathbf{x}_{0}\right) \\
& =\frac{q\left(\mathbf{x}_{0}, \ldots, \mathbf{x}_{n}\right)}{q\left(\mathbf{x}_{0}\right)} q\left(\mathbf{x}_{n+1} \mid \mathbf{x}_{n}, \ldots, \mathbf{x}_{0}\right) \\
& =\frac{q\left(\mathbf{x}_{0}, \ldots, \mathbf{x}_{n}, \mathbf{x}_{n+1}\right)}{q\left(\mathbf{x}_{0}\right)} \\
& =q\left(\mathbf{x}_{1}, \ldots \mathbf{x}_{n+1} \mid \mathbf{x}_{0}\right)
\end{aligned}
$$

where the second equality is obtained by using the induction hypothesis and the fact that \mathbf{x}_{n+1} is independent of $\mathbf{x}_{0}, \mathbf{x}_{1}, \cdots, \mathbf{x}_{n-1}$ when \mathbf{x}_{n} is given. The remaining equalities are obtained by using Bayes' rule.

Outline

Forward Process

Reverse Process

Reverse Process

- The goal of the reverse process is to generate data from the input distribution by sampling from $q\left(\mathbf{x}_{K}\right)=\mathcal{N}\left(\mathbf{x}_{K} ; 0, \mathbf{I}\right)$ and gradually denoising for which one needs to know the reverse distribution $q\left(\mathbf{x}_{k-1} \mid \mathbf{x}_{k}\right)$.
- In general, computation of $q\left(\mathbf{x}_{k-1} \mid \mathbf{x}_{k}\right)$ is intractable without the knowledge of \mathbf{x}_{0}.
- However, we can compute $q\left(\mathbf{x}_{k-1} \mid \mathbf{x}_{k}, \mathbf{x}_{0}\right)$.

Reverse Process (cont'd)

Lemma 3: With the assumptions of the forward process, the reverse Markov chain conditioned on $\mathbf{x}_{0}, q\left(\mathbf{x}_{k-1} \mid \mathbf{x}_{k}, \mathbf{x}_{0}\right)$ (for $k \geq 2$), follows a Gaussian distribution:

$$
\begin{align*}
q\left(\mathbf{x}_{k-1} \mid \mathbf{x}_{k}, \mathbf{x}_{0}\right) & =\frac{q\left(\mathbf{x}_{k} \mid \mathbf{x}_{k-1}\right) q\left(\mathbf{x}_{k-1} \mid \mathbf{x}_{0}\right)}{q\left(\mathbf{x}_{k} \mid \mathbf{x}_{0}\right)} \tag{Eq.6.1}\\
& =\mathcal{N}\left(\mathbf{x}_{k-1} ; \widetilde{\mu}_{k}\left(\mathbf{x}_{k}, \mathbf{x}_{0}\right), \widetilde{\beta}_{k} \mathbf{I}\right) \tag{Eq.6}
\end{align*}
$$

where
$\tilde{\mu}_{k}\left(\mathbf{x}_{k}, \mathbf{x}_{0}\right):=\frac{\sqrt{\alpha_{k}}\left(1-\bar{\alpha}_{k-1}\right)}{1-\bar{\alpha}_{k}} \mathbf{x}_{k}+\frac{\sqrt{\bar{\alpha}_{k-1}} \beta_{k}}{1-\bar{\alpha}_{k}} \mathbf{x}_{0} \quad$ and $\quad \tilde{\beta}_{k}=\frac{1-\bar{\alpha}_{k-1}}{1-\bar{\alpha}_{k}} \beta_{k}$.
(Eq. 7)

The detailed proof is given in the next few slides.
Question: Can we explain intuitively why $q\left(\mathbf{x}_{k-1} \mid \mathbf{x}_{k}, \mathbf{x}_{0}\right)$ is Gaussian?

Reverse Process (cont'd)

Proof of Lemma 3. We can write the p.d.f. of the reverse Markov chain conditioned on x_{0} in terms of the p.d.fs of the forward process:

$$
\begin{aligned}
q\left(\mathbf{x}_{k-1} \mid \mathbf{x}_{k}, \mathbf{x}_{0}\right) & =\frac{q_{x_{k-1}, x_{k}, x_{0}\left(\mathbf{x}_{k-1}, \mathbf{x}_{k}, \mathbf{x}_{0}\right)}^{q x_{k}, x_{0}\left(\mathbf{x}_{k}, \mathbf{x}_{0}\right)} \text { (Conditional p.d.f) }}{} \\
& =\frac{q\left(\mathbf{x}_{k} \mid \mathbf{x}_{k-1}, \mathbf{x}_{0}\right) q_{x_{k-1}, x_{0}}\left(\mathbf{x}_{k-1}, \mathbf{x}_{0}\right)}{q\left(\mathbf{x}_{k} \mid \mathbf{x}_{0}\right) q_{x_{0}}\left(\mathbf{x}_{0}\right)} \text { (Conditional p.d.f) } \\
& =\frac{q\left(\mathbf{x}_{k} \mid \mathbf{x}_{k-1}\right) q\left(\mathbf{x}_{k-1} \mid \mathbf{x}_{0}\right) q_{x_{0}}\left(\mathbf{x}_{0}\right)}{q\left(\mathbf{x}_{k} \mid \mathbf{x}_{0}\right) q_{x_{0}}\left(\mathbf{x}_{0}\right)} \text { (Markov property and Conditional p.d.f.) } \\
& =\frac{q\left(\mathbf{x}_{k} \mid \mathbf{x}_{k-1}\right) q\left(\mathbf{x}_{k-1} \mid \mathbf{x}_{0}\right)}{q\left(\mathbf{x}_{k} \mid \mathbf{x}_{0}\right)}
\end{aligned}
$$

(Eq. 7.1.)

Reverse Process (cont'd)

(cont'd).Substituting (Eq. 2.1) and (Eq. 4.1) to (Eq. 7.1.) yields

$$
\left.\begin{array}{r}
q\left(\mathbf{x}_{k-1} \mid \mathbf{x}_{k}, \mathbf{x}_{0}\right)=\frac{1}{\sqrt{\left(2 \pi \beta_{k}\right)^{d}}} \exp \left(-\frac{1}{2} \frac{\left(\mathbf{x}_{k}-\sqrt{\alpha_{k}} \mathbf{x}_{k-1}\right)^{T}\left(\mathbf{x}_{k}-\sqrt{\alpha_{k}} \mathbf{x}_{k-1}\right)}{\beta_{k}}\right) \\
\frac{1}{\sqrt{\left(2 \pi\left(1-\bar{\alpha}_{k-1}\right)\right)^{d}}} \exp \left(-\frac{1}{2} \frac{\left(\mathbf{x}_{k-1}-\sqrt{\left.\overline{\bar{\alpha}_{k-1}} x_{0}\right)^{T}\left(\mathbf{x}_{k-1}-\sqrt{\overline{\alpha_{k-1}}} \mathbf{x}_{0}\right)}\right.}{1-\bar{\alpha}_{k-1}}\right) \\
\left(\sqrt{\left(2 \pi\left(1-\bar{\alpha}_{k}\right)\right)^{d}}\right)
\end{array}\right) \exp \left(\frac{1}{2} \frac{\left(\mathbf{x}_{k}-\sqrt{\bar{\alpha}_{k}} \mathbf{x}_{0}\right)^{T}\left(\mathbf{x}_{k}-\sqrt{\bar{\alpha}_{k}} \mathbf{x}_{0}\right)}{1-\bar{\alpha}_{k}}\right) .
$$

Simplifying the calculations, we have

$$
\begin{equation*}
q\left(\mathbf{x}_{k-1} \mid \mathbf{x}_{k}, \mathbf{x}_{0}\right)=\frac{\sqrt{\left(1-\bar{\alpha}_{k}\right)^{d}}}{\sqrt{\left(2 \pi \beta_{k}\left(1-\bar{\alpha}_{k-1}\right)\right)^{d}}} \exp \left(-\frac{1}{2} \frac{\left(\mathbf{x}_{k-1}-\widetilde{\mu}_{k}\right)^{T}\left(\mathbf{x}_{k-1}-\widetilde{\mu}_{k}\right)}{\widetilde{\beta}_{k}}\right) \tag{Eq.7.2}
\end{equation*}
$$

where $\widetilde{\mu}_{k}$ and $\widetilde{\beta}_{k}$ are given in (Eq. 7).

Reverse Process (cont'd)

- Our goal is to learn the reverse distribution from the obtained conditional reverse distribution.
- Let $p_{\theta}\left(\mathbf{x}_{k-1} \mid \mathbf{x}_{k}\right)$ be the learned reverse distribution. From Markovian theory, we know that $p_{\theta}\left(\mathbf{x}_{k-1} \mid \mathbf{x}_{k}\right)$ is also Gaussian (prove this!). The proof is based on two facts:
- The reverse chain of a Markov chain is also a Markov chain.
- Under the settings of the forward chain $\left\{X_{k}\right\}_{k=0}^{K}$ in DDPM, the reverse chain $\left\{\bar{X}_{k}:=X_{K-k}\right\}_{k=0}^{K}$ is also a Markov chain. Moreover, the transition probability density of the reverse chain

$$
\bar{q}_{k, k-1}\left(\mathbf{y}_{k} \mid \mathbf{y}_{k-1}\right)=\frac{\pi_{G}\left(\mathbf{y}_{k-1} ; 0, \mathbf{I}\right) \pi_{G}\left(\mathbf{y}_{k-1} ; \sqrt{1-\beta_{K-k+1}} \mathbf{y}_{k}, \beta_{K-k+1} \mathbf{I}\right)}{\pi_{G}\left(\mathbf{y}_{k} ; 0, \mathbf{I}\right)}
$$

is also Gaussian. Here we denote $\pi_{G}\left(\mathbf{y}_{k-1} ; 0, \mathbf{I}\right)$ the p.d.f of the Gaussian distribution $\mathcal{N}\left(\mathbf{y}_{k-1} ; \mathbf{0}, \mathbf{I}\right)$.

Reverse Process (cont'd)

Definition 2: Under the settings of the forward process, the reverse process $p_{\theta}\left(\mathrm{x}_{0: K}\right)$ is defined as a Markov chain with learned Gaussian transitions starting at

$$
p\left(\mathbf{x}_{K}\right)=\mathcal{N}\left(\mathbf{x}_{K} ; \mathbf{0}, \mathbf{I}\right)
$$

and

$$
\begin{equation*}
p_{\theta}\left(\mathbf{x}_{0: K}\right):=p\left(\mathbf{x}_{K}\right) \prod_{k=1}^{K} p_{\theta}\left(\mathbf{x}_{k-1} \mid \mathbf{x}_{k}\right) \tag{Eq.1}
\end{equation*}
$$

where

$$
\begin{equation*}
p_{\theta}\left(\mathbf{x}_{k-1} \mid \mathbf{x}_{k}\right)=\mathcal{N}\left(\mathbf{x}_{k-1} ; \mu_{\theta}\left(\mathbf{x}_{k}, k\right), \Sigma_{\theta}\left(\mathbf{x}_{k}, k\right)\right) \tag{Eq.1'}
\end{equation*}
$$

The probability the generative model assigns to the data is:

$$
\begin{equation*}
p_{\theta}\left(\mathrm{x}_{0}\right):=\int p_{\theta}\left(\mathrm{x}_{0: K}\right) d \mathrm{x}_{1: K} \tag{Eq.1.1}
\end{equation*}
$$

where we denote $d \mathbf{x}_{1} d \mathbf{x}_{2} \ldots d \mathbf{x}_{K}$ as $d \mathbf{x}_{1: K}$.

[^1]
Reverse Process (cont'd)

Note that the integral for $p_{\theta}\left(\mathbf{x}_{0}\right)$ is intractable. Nevertheless, we can evaluate $p_{\theta}\left(\mathbf{x}_{0}\right)$ via the relative probability of the forward and reverse trajectories as follows:

$$
\begin{align*}
p_{\theta}\left(\mathbf{x}_{0}\right) & =\int d \mathbf{x}_{1: K} p_{\theta}\left(\mathbf{x}_{0: K}\right) \frac{q\left(\mathbf{x}_{1: K} \mid \mathbf{x}_{0}\right)}{q\left(\mathbf{x}_{1: K} \mid \mathbf{x}_{0}\right)} \\
& =\int d \mathbf{x}_{1: K} q\left(\mathbf{x}_{1: K} \mid \mathbf{x}_{0}\right) \frac{p_{\theta}\left(\mathbf{x}_{0: K}\right)}{q\left(\mathbf{x}_{1: K} \mid \mathbf{x}_{0}\right)} \\
& \left(\text { (Eq. 1)\&(Eq. 2.2) } \int d \mathbf{x}_{1: K} q\left(\mathbf{x}_{1: K} \mid \mathbf{x}_{0}\right) \frac{p\left(\mathbf{x}_{K}\right) \prod_{k=1}^{K} p_{\theta}\left(\mathbf{x}_{k-1} \mid \mathbf{x}_{k}\right)}{\prod_{k=1}^{K} q\left(\mathbf{x}_{k} \mid \mathbf{x}_{k-1}\right)}\right. \\
& \left(\text { (Eq. 6.1) } \int d \mathbf{x}_{1: K}^{=} q\left(\mathbf{x}_{1: K} \mid \mathbf{x}_{0}\right) p\left(\mathbf{x}_{K}\right) \frac{p_{\theta}\left(\mathbf{x}_{0} \mid \mathbf{x}_{1}\right)}{q\left(\mathbf{x}_{1} \mid \mathbf{x}_{0}\right)} \prod_{k=2}^{K} \frac{p_{\theta}\left(\mathbf{x}_{k-1} \mid \mathbf{x}_{k}\right) q\left(\mathbf{x}_{k-1} \mid \mathbf{x}_{0}\right)}{q\left(\mathbf{x}_{k-1} \mid \mathbf{x}_{k}, \mathbf{x}_{0}\right) q\left(\mathbf{x}_{k} \mid \mathbf{x}_{0}\right)}\right. \\
& =\int d \mathbf{x}_{1: K} q\left(\mathbf{x}_{1: K} \mid \mathbf{x}_{0}\right) \frac{p\left(\mathbf{x}_{K}\right) p_{\theta}\left(\mathbf{x}_{0} \mid \mathbf{x}_{1}\right)}{q\left(\mathbf{x}_{K} \mid \mathbf{x}_{0}\right)} \prod_{k=2}^{K} \frac{p_{\theta}\left(\mathbf{x}_{k-1} \mid \mathbf{x}_{k}\right)}{q\left(\mathbf{x}_{k-1} \mid \mathbf{x}_{k}, \mathbf{x}_{0}\right)} \quad \text { (Eq. 1.2) } \tag{Eq.1.2}
\end{align*}
$$

DDPM - Recap

- Forward Process: Let $\mathbf{x}_{0} \in \mathbb{R}^{d}$ and a variance schedule $\beta_{i} \in(0,1)$, for $i=1, \ldots K$. Construct:

$$
\mathbf{x}_{k}=\sqrt{1-\beta_{k}} \mathbf{x}_{k-1}+\sqrt{\beta_{k}} \mathbf{e}, \quad k=1, \ldots, K
$$

where $\mathbf{e} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$.

- Reverse Process: Generally intractable and learned using a parameterized model,

$$
p_{\theta}\left(\mathbf{x}_{0}\right)=\int d \mathbf{x}_{1: K} q\left(\mathbf{x}_{1: K} \mid \mathbf{x}_{0}\right) p\left(\mathbf{x}_{K}\right) \prod_{k=1}^{K} \frac{p_{\theta}\left(\mathbf{x}_{k-1} \mid \mathbf{x}_{k}\right)}{q\left(\mathbf{x}_{k} \mid \mathbf{x}_{k-1}\right)}
$$

Here

$$
p_{\theta}\left(\mathbf{x}_{k-1} \mid \mathbf{x}_{k}\right)=\mathcal{N}\left(\mathbf{x}_{k-1} ; \mu_{\theta}\left(\mathbf{x}_{k}, k\right), \Sigma_{\theta}\left(\mathbf{x}_{k}, k\right)\right)
$$

where μ_{θ} and Σ_{θ} are the learnt mean vector and covariance matrix, respectively.

- Goal: Compare $q\left(\mathbf{x}_{0}\right)$ and $p\left(\mathbf{x}_{0}\right)=p_{\theta}\left(\mathbf{x}_{0}\right)$.

Comparison of Two Distributions

We recall some useful notions to compare two distributions.

Definitions:

3. The cross-entropy of a distribution p relative to another distribution q over a given set is

$$
H(q, p)=\mathbb{E}_{q}[-\log p]
$$

where $\mathbb{E}_{q}[\cdot]$ denotes the expectation with respect to the distribution q.
4. Let p and q be two probability distributions. Then the KL divergence denoted by $D_{K L}(q \| p)$ is defined as

$$
D_{K L}(q \| p)=\mathbb{E}_{q}\left[\log \left(\frac{q}{p}\right)\right]
$$

Roughly speaking, KL divergence $D_{K L}(q \| p)$ is a measure of the information lost when q is approximated by p.

Comparison of Two Distributions

Remark: Note that for two probability distributions p and q, we have

$$
H(q, p)=H(q, q)+D_{K L}(q \| p)
$$

So if q is the true distribution and p is an approximated one, then $H(q, q)$ is a constant (not learned) and the cross entropy $H(q, p)$ differs from the KL divergence $D_{K L}(q \| p)$ by a constant.

KL Divergence of Two Gaussians

Lemma 4: Let $p \sim \mathcal{N}\left(\mu_{p}, \Sigma_{p}\right)$ and $q \sim \mathcal{N}\left(\mu_{q}, \Sigma_{q}\right)$ be two Gaussian distributions on \mathbb{R}^{d}. Then

$$
D_{K L}(q \| p)=\frac{1}{2}\left[\log \frac{\left|\Sigma_{p}\right|}{\left|\Sigma_{q}\right|}-d+\left(\mu_{q}-\mu_{p}\right)^{T} \Sigma_{p}^{-1}\left(\mu_{q}-\mu_{p}\right)+\operatorname{tr}\left(\Sigma_{p}^{-1} \Sigma_{q}\right)\right]
$$

KL Divergence of Two Gaussians (cont'd)

Proof of Lemma 4. Re call that

$$
p(\mathbf{x})=\frac{1}{\left|\Sigma_{p}\right|^{1 / 2}(2 \pi)^{d / 2}} \exp \left(-\frac{1}{2}\left(\mathbf{x}-\mu_{p}\right)^{T} \Sigma_{p}^{-1}\left(\mathbf{x}-\mu_{p}\right)\right)
$$

We have

$$
\begin{aligned}
2 D_{K L}(q \| p) & =2 \mathbb{E}_{q}\left[\log \left(\frac{q}{p}\right)\right] \\
& =\log \frac{\left|\Sigma_{p}\right|}{\left|\Sigma_{q}\right|}+\mathbb{E}_{q}\left(-\left(\mathbf{x}-\mu_{q}\right)^{T} \Sigma_{q}^{-1}\left(\mathbf{x}-\mu_{q}\right)\right)+\mathbb{E}_{q}\left(\left(\mathbf{x}-\mu_{p}\right)^{T} \Sigma_{p}^{-1}\left(\mathbf{x}-\mu_{p}\right)\right)
\end{aligned}
$$

To simplify the second and the third terms, we use the following equality:

Lemma 5: Let X be a random vector in \mathbb{R}^{d} with mean μ and covariance matrix Σ. Let $A \in \mathbb{R}^{d \times d}$ be a symmetric matrix. Then

$$
\mathbb{E}\left(X^{\top} A X\right)=\operatorname{tr}(A \Sigma)+\mu^{T} A \mu
$$

Proof. We have

$$
\begin{aligned}
\mathbb{E}\left(X^{\top} A X\right) & =\mathbb{E} \operatorname{tr}\left(X^{\top} A X\right)=\mathbb{E} \operatorname{tr}\left(A X X^{T}\right)=\operatorname{tr}\left(A \mathbb{E}\left(X X^{T}\right)\right) \\
& =\operatorname{tr}\left(A\left(\operatorname{Cov}(X, X)+\mathbb{E} X \mathbb{E} X^{T}\right)\right)=\operatorname{tr}(A \Sigma)+\operatorname{tr}\left(A \mathbb{E} X \mathbb{E} X^{T}\right) \\
& =\operatorname{tr}(A \Sigma)+\operatorname{tr}\left(A \mu \mu^{T}\right)=\operatorname{tr}(A \Sigma)+\operatorname{tr}\left(\mu^{T} A \mu\right)=\operatorname{tr}(A \Sigma)+\mu^{T} A \mu .
\end{aligned}
$$

KL Divergence of Two Gaussians (cont'd)

Proof of Lemma 4 (cont'd). The second term can be simplified as

$$
\mathbb{E}_{q}\left(\mathbf{x}-\mu_{q}\right)^{T} \Sigma_{q}^{-1}\left(\mathbf{x}-\mu_{q}\right)=\operatorname{tr}\left(\Sigma_{q}^{-1} \Sigma_{q}\right)+0^{T} \Sigma_{q}^{-1} 0=\operatorname{tr} I_{d}=d
$$

Similarly, the third term can be simplified as

$$
\mathbb{E}_{q}\left(\left(\mathbf{x}-\mu_{p}\right)^{T} \Sigma_{p}^{-1}\left(\mathbf{x}-\mu_{p}\right)\right)=\operatorname{tr}\left(\Sigma_{p}^{-1} \Sigma_{q}\right)+\left(\mu_{q}-\mu_{p}\right)^{T} \Sigma_{p}^{-1}\left(\mu_{q}-\mu_{p}\right)
$$

Cross Entropy Loss Function in Diffusion Models

Theorem. Let x_{0} be data drawn from an unknown distribution $q\left(\mathrm{x}_{0}\right)$. Suppose $\mathbf{x}_{1}, \cdots, \mathbf{x}_{K}$ be the degraded data obtained by applying the forward process given in Definition 1 and p denotes the (reverse) distribution such that $p\left(\mathbf{x}_{0}\right)$ approximates $q\left(\mathrm{x}_{0}\right)$. Then the cross entropy loss $H(q, p)$ satisfies the following inequality:

$$
\begin{array}{r}
H\left(q\left(\mathbf{x}_{0}\right), p\left(\mathbf{x}_{0}\right)\right) \leq \mathbb{E}_{q\left(\mathbf{x}_{0: K}\right)}\left[\log \frac{q\left(\mathbf{x}_{K} \mid \mathbf{x}_{0}\right)}{p\left(\mathbf{x}_{K}\right)}+\sum_{k=2}^{K} \log \frac{q\left(\mathbf{x}_{k-1} \mid \mathbf{x}_{k}, \mathbf{x}_{0}\right)}{p\left(\mathbf{x}_{k-1} \mid \mathbf{x}_{k}\right)}-\log p\left(\mathbf{x}_{0} \mid \mathbf{x}_{1}\right)\right] \\
\leq D_{K L}\left(q\left(\mathbf{x}_{K} \mid \mathbf{x}_{0}\right) \| p\left(\mathbf{x}_{K}\right)\right)+\sum_{k=2}^{K} D_{K L}\left(q\left(\mathbf{x}_{k-1} \mid \mathbf{x}_{k}, \mathbf{x}_{0}\right) \| p\left(\mathbf{x}_{k-1} \mid \mathbf{x}_{k}\right)\right) \\
+\mathbb{E}_{q\left(x_{0: K}\right)}\left(-\log p\left(\mathbf{x}_{0} \mid \mathbf{x}_{1}\right)\right) . \tag{Eq.5}
\end{array}
$$

Cross Entropy Loss Function in Diffusion Models (cont'd)

Proof. The proof is original from [Sohl-Dickstein et al., 15] and recalled in [Ho et al., 20]. We have

$$
\begin{aligned}
& H\left(q\left(\mathbf{x}_{0}\right), p\left(\mathbf{x}_{0}\right)\right) \stackrel{\text { by def. }}{=}-\mathbb{E}_{q\left(\mathbf{x}_{0}\right)}\left[\log p\left(\mathbf{x}_{0}\right)\right] \\
& \stackrel{(\text { Eq. 1.2) }}{=}-\int d \mathbf{x}_{0} q\left(\mathbf{x}_{0}\right) \log \left(\int d \mathbf{x}_{1: K} q\left(\mathbf{x}_{1: K} \mid \mathbf{x}_{0}\right) \frac{p\left(\mathbf{x}_{K}\right) p\left(\mathbf{x}_{0} \mid \mathbf{x}_{1}\right)}{q\left(\mathbf{x}_{K} \mid \mathbf{x}_{0}\right)} \prod_{k=2}^{K} \frac{p\left(\mathbf{x}_{k-1} \mid \mathbf{x}_{k}\right)}{q\left(\mathbf{x}_{k-1} \mid \mathbf{x}_{k}, \mathbf{x}_{0}\right)}\right) \\
& \stackrel{\text { Jensen's ineq. }}{\leq}-\int d x_{0: K} q\left(\mathbf{x}_{0: K}\right) \log \left(\frac{p\left(\mathbf{x}_{K}\right) p\left(\mathbf{x}_{0} \mid \mathbf{x}_{1}\right)}{q\left(\mathbf{x}_{K} \mid \mathbf{x}_{0}\right)} \prod_{k=2}^{K} \frac{p\left(\mathbf{x}_{k-1} \mid \mathbf{x}_{k}\right)}{q\left(\mathbf{x}_{k-1} \mid \mathbf{x}_{k}, \mathbf{x}_{0}\right)}\right) \\
& \leq \int d x_{0: K} q\left(\mathbf{x}_{0: K}\right)\left[\log \frac{q\left(\mathbf{x}_{K} \mid \mathbf{x}_{0}\right)}{p\left(\mathbf{x}_{K}\right)}+\sum_{k=2}^{K} \log \frac{q\left(\mathbf{x}_{k-1} \mid \mathbf{x}_{k}, \mathbf{x}_{0}\right)}{p\left(\mathbf{x}_{k-1} \mid \mathbf{x}_{k}\right)}-\log p\left(\mathbf{x}_{0} \mid \mathbf{x}_{1}\right)\right] \\
& \leq D_{K L}\left(q\left(\mathbf{x}_{K} \mid \mathbf{x}_{0}\right) \| p\left(\mathbf{x}_{K}\right)\right)+\sum_{k=2}^{K} D_{K L}\left(q\left(\mathbf{x}_{k-1} \mid \mathbf{x}_{k}, \mathbf{x}_{0}\right) \| p\left(\mathbf{x}_{k-1} \mid \mathbf{x}_{k}\right)\right)+ \\
& \quad+\mathbb{E}_{q\left(x_{0}: K\right)}\left(-\log p\left(\mathbf{x}_{0} \mid \mathbf{x}_{1}\right)\right) .
\end{aligned}
$$

Cross Entropy Loss Function in Diffusion Models (cont'd)

- From the settings of the diffusion model, the first term on the upper bound

$$
D_{K L}\left(q\left(\mathbf{x}_{K} \mid \mathbf{x}_{0}\right) \| p\left(\mathbf{x}_{K}\right)\right)
$$

is constant and hence often ignored when training a diffusion model.

- For the third term on the upper bound,

$$
\mathbb{E}_{q\left(\mathbf{x}_{0: K}\right)}\left[-\log p\left(\mathbf{x}_{0} \mid \mathbf{x}_{1}\right)\right],
$$

there are numerous ways to handle this term in practice. For example, the authors in [Ho et al, 20] choose to model this term using a separate discrete decoder.

- For the second term, we first simplify to difference in means, then rewrite in terms of the difference between noises, where the noises are defined based on \mathbf{x}_{k}.

Cross Entropy Loss Function in Diffusion Models (cont'd)

For each $k=2, \ldots, K$, since $q\left(\mathbf{x}_{k-1} \mid \mathbf{x}_{k}, \mathbf{x}_{0}\right)$ and $p\left(\mathrm{x}_{k-1} \mid \mathbf{x}_{k}\right)$ are Gaussian with the same variance (see the assumptions), using Lemma 4, we have:

$$
\begin{align*}
& D_{K L}\left(q\left(\mathbf{x}_{k-1} \mid \mathbf{x}_{k}, \mathbf{x}_{0}\right) \| p_{\theta}\left(\mathbf{x}_{k-1} \mid \mathbf{x}_{k}\right)\right) \stackrel{\text { Lem. }}{=}{ }^{4} \mathbb{E}_{q\left(\mathbf{x}_{0}, \mathbf{x}_{k}\right)} \frac{1}{2 \sigma_{k}^{2}}\left\|\tilde{\mu}_{k}\left(\mathbf{x}_{k}, \mathbf{x}_{0}\right)-\mu_{\theta}\left(\mathbf{x}_{k}, k\right)\right\|_{2}^{2}+C \tag{Eq.8}\\
& \stackrel{(\text { Eq. }}{=}{ }^{7)} \mathbb{E}_{q\left(\mathrm{x}_{0}, \mathrm{x}_{k}\right)} \frac{1}{2 \sigma_{k}^{2}}\left\|\frac{\sqrt{\alpha_{k}}\left(1-\bar{\alpha}_{k-1}\right)}{1-\bar{\alpha}_{k}} \mathbf{x}_{k}+\frac{\sqrt{\bar{\alpha}_{k-1}} \beta_{k}}{1-\bar{\alpha}_{k}} \mathrm{x}_{0}-\mu_{\theta}\left(\mathbf{x}_{k}, k\right)\right\|_{2}^{2}+C \tag{Eq.8.1}\\
& \stackrel{\text { (Eq. 4.1) }}{=} \mathbb{E}_{q\left(\mathrm{x}_{0}, \mathrm{x}_{k}\right)} \frac{1}{2 \sigma_{k}^{2}}\left\|\frac{\sqrt{\alpha_{k}}\left(1-\bar{\alpha}_{k-1}\right)}{1-\bar{\alpha}_{k}} \mathbf{x}_{k}+\frac{\sqrt{\overline{\alpha_{k-1}}} \beta_{k}}{1-\bar{\alpha}_{k}} \frac{1}{\sqrt{\bar{\alpha}_{k}}}\left(\mathbf{x}_{k}-\sqrt{1-\bar{\alpha}_{k} \widetilde{\varepsilon}_{k}}\right)-\mu_{\theta}\left(\mathbf{x}_{k}, k\right)\right\|_{2}^{2} \\
& +C \tag{Eq.8.2}\\
& =\mathbb{E}_{\mathbf{x}_{0}, \widetilde{\varepsilon}_{k}} \frac{1}{2 \sigma_{k}^{2}}\left\|\frac{1}{\sqrt{\alpha_{k}}} \mathbf{x}_{k}\left(\mathbf{x}_{0}, \widetilde{\varepsilon}_{k}\right)-\frac{\beta_{k}}{\sqrt{\alpha_{k}} \sqrt{1-\bar{\alpha}_{k}}} \widetilde{\varepsilon}_{k}-\mu_{\theta}\left(\mathbf{x}_{k}\left(\mathrm{x}_{0}, \widetilde{\varepsilon}_{k}\right), k\right)\right\|_{2}^{2}+C
\end{align*}
$$

(Eq. 10)
The term C is constant and does not depend on θ.

Cross Entropy Loss Function in Diffusion Models (cont'd)

- Since \mathbf{x}_{k} is available as input to the model, we may choose the parametrization

$$
\begin{equation*}
\boldsymbol{\mu}_{\theta}\left(\mathbf{x}_{k}, k\right)=\frac{1}{\sqrt{\alpha_{k}}}\left(\mathbf{x}_{k}-\frac{\beta_{k}}{\sqrt{1-\bar{\alpha}_{k}}} \mathbf{e}_{\theta}\left(\mathbf{x}_{k}, k\right)\right) . \tag{Eq.11}
\end{equation*}
$$

- We can simplify (Eq. 10) as:

$$
\begin{align*}
\mathbb{E}_{\mathbf{x}_{0}, \widetilde{e}_{k}} & {\left[\frac{\beta_{k}^{2}}{2 \sigma_{k}^{2} \alpha_{k}\left(1-\bar{\alpha}_{k}\right)}\left\|\widetilde{\varepsilon}_{k}-\mathbf{e}_{\theta}\left(\mathbf{x}_{k}, k\right)\right\|^{2}\right] } \\
& =\frac{\beta_{k}^{2}}{2 \sigma_{k}^{2} \alpha_{k}\left(1-\bar{\alpha}_{k}\right)} \iint\left\|\mathbf{e}-\epsilon_{\theta}\left(\mathbf{x}_{k}\left(\mathbf{x}_{0}, \mathbf{e}\right), k\right)\right\|^{2} q_{x_{0}}\left(\mathbf{x}_{0}\right) q_{\varepsilon}(\mathbf{e}) d \mathbf{e} d \mathbf{x}_{0} \\
& =\mathbb{E}_{\mathbf{x}_{0}, \varepsilon}\left[\frac{\beta_{k}^{2}}{2 \sigma_{k}^{2} \alpha_{k}\left(1-\bar{\alpha}_{k}\right)}\left\|\varepsilon-\mathbf{e}_{\theta}\left(\sqrt{\bar{\alpha}_{k}} \mathbf{x}_{0}+\sqrt{1-\bar{\alpha}_{k}} \varepsilon, k\right)\right\|^{2}\right] . \tag{Eq.12}
\end{align*}
$$

where \mathbf{e}_{θ} now denotes a function approximator intended to predict the noise from \mathbf{x}_{k}.

DDPM Training

Algorithm 1 Training

1: repeat
2: $\quad \mathbf{x}_{0} \sim q\left(\mathbf{x}_{0}\right)$
3: $t \sim \operatorname{Uniform}(\{1, \ldots, T\})$
4: $\quad \epsilon \sim \mathcal{N}(\mathbf{O}, \mathbf{I})$
5: Take gradient descent step on

$$
\nabla_{\theta}\left\|\boldsymbol{\epsilon}-\boldsymbol{\epsilon}_{\theta}\left(\sqrt{\bar{\alpha}_{t}} \mathbf{x}_{0}+\sqrt{1-\bar{\alpha}_{t}} \boldsymbol{\epsilon}, t\right)\right\|^{2}
$$

6: until converged

DDPM Sampling

Algorithm 2 Sampling

1: $\mathbf{x}_{T} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
2: for $t=T, \ldots, 1$ do
3: $\quad \mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ if $t>1$, else $\mathbf{z}=\mathbf{0}$
4: $\quad \mathbf{x}_{t-1}=\frac{1}{\sqrt{\alpha_{t}}}\left(\mathbf{x}_{t}-\frac{1-\alpha_{t}}{\sqrt{1-\bar{\alpha}_{t}}} \boldsymbol{\epsilon}_{\theta}\left(\mathbf{x}_{t}, t\right)\right)+\sigma_{t} \mathbf{z}$
5: end for
6: return x_{0}

Scored-Based Generative Models

To be continued...

[^0]: ${ }^{1}$ Reference: "Denoising Diffusion Probabilistic Models", by Ho et al, NeurIPS 2020, https: // proceedings.neurips.cc/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf

[^1]: ${ }^{2}$ Deep unsupervised learning using nonequilibrium thermodynamics. PMLR 2015, https://proceedings.mlr.press/v37/sohl-dickstein15.html

