AMATH 840: Advanced Numerical Methods for Computational and Data Sciences

Giang Tran

Department of Applied Mathematics, University of Waterloo

Jan 05, 2021

Lecture 01

- Course Introduction
- ▶ Basic Steps of a Learning Process
- Least Squares Solution of an Underdetermined Linear System.
 Pros and Cons.

Course Outline

Goal: Study some computational and mathematical perspectives of machine learning and data science.

- Sparse Optimization and Compressed Sensing: Underdetermined systems, reconstruction guarantees, sparse approximation, sparse optimization solvers, with applications to image processing, model selection, and parameter estimation.
- 2. Supervised Learning: Kernel methods, reproducing kernel Hilbert Spaces, learning from data, overfitting, hyperparameter selection.
- Neural Networks: Mathematical formulations of popular NN architectures, universal approximation, adjoint methods & automatic differentiation, implicit and explicit regularizations, stochastic gradient method and its accelerations, overparametrization, the importance of effective initialization.
- Randomized Linear Algebra: Johnson-Lindenstrauss lemma, matrix approximation by sampling, randomized QR and SVD, random projections, with applications to model reduction and large-scale problems.

Course Logistics

- ► Student Assessments: 50% Assignments + 50% Final project.
- Assignments: Theoretical + Computational questions.
- Final Project:
 - ► Each team = Individual or a group of two students.
 - ► Each team gives a presentation of 25 minutes.
 - ► Each team submits the slides and a short report (10-25 pages).

Course Logistics

Course Websites:

- ► LEARN: To check course outline, course notes, recorded videos, assignments, supplementary materials, and important announcements.
- Crowdmark: To submit and see marked assignments. For each assignment, you will receive an invitation from Crowdmark to submit your assignment.
- Discussion Forum: To pose questions about lectures, assignments, textbooks, ..., please sign up for the course discussion board at Piazza, via the following link: piazza.com/uwaterloo.ca/winter2022/amath840.

More details can be found in the course outline on Learn or on online.uwaterloo.ca.

Basic Steps of a Learning Process

- 1. Collect and preprocess data: data cleaning, data augmentation, normalized/standardized data.
 - ▶ Data resources: public datasets (UCI dataset, Kaggle,...), data from experiments, simulated data.
- 2. From raw or preprocessed data, generate
 - Training data = a collection of samples that will be used to learn the model. For example, in a regression problem, given:

```
(\underline{x_i},y_i)_{i=1}^m: where m:=\#training samples \underline{x_i}:= \mathsf{sample's features/input data} \in \mathbb{R}^n y_i:= \mathsf{sample's label/output data} \in \mathbb{R}.
```

▶ Validation (test) data = a collection of samples that will be used to validate(test) the learned model.

Basic Steps of a Learning Process (cont'd)

- 3. Choose
 - ▶ A learning model: $\hat{y}_i = f(x_i) \approx y_i$, $\forall i \in [m]$. For example,
 - Linear model:

$$f(x) = f(x; w) = x_1 w_1 + ... + x_n w_n = x^T w.$$

► Generalized linear model: learn a nonlinear function f,

$$f(x) = \varphi_1(x)w_1 + \ldots + \varphi_p(x)w_p,$$

where $\varphi_k(x)$ are prescribed nonlinear functions.

Neural network model:

$$f(x) = W_2 \sigma(W_1 x + b_1) + b_2.$$

► A loss function + (optional) a regularization: How well a model fits the data. For example,

$$\mathcal{L} = \frac{1}{2m} \sum_{i=1}^{m} |y_i - \hat{y}_i|^2.$$

- 4. Learn the model (model parameters) to minimize the loss on training data.
- 5. Compute the generalization error, i.e., error of the trained model on new data.

Linear Models: $Aw = \hat{y}$

▶ From $y_i \approx \hat{y}_i = \underline{x_i}^T w$ for all i = 1, ..., m, we can rewrite as

$$\mathbf{y} \approx \hat{\mathbf{y}} = A\mathbf{w},$$

where $\mathbf{y} = [y_1, \dots, y_m]^T \in \mathbb{R}^m, \hat{y} = [\hat{y}_1, \dots, \hat{y}_m]^T \in \mathbb{R}^m$, and

$$A = \begin{bmatrix} \frac{x_1}{x_2} \\ \vdots \\ \vdots \\ T \end{bmatrix} \in \mathbb{R}^{m \times n}.$$

Linear Models: Aw = y

▶ A classical problem in linear algebra: m measurements, n unknowns. Given $y \in \mathbb{C}^m$ and $A \in \mathbb{C}^{m \times n}$,

Find
$$w \in \mathbb{C}^n : Aw = y$$
.

- Case 1: # measurements ≥ # unknowns. The system is overdetermined or determined ⇒ The problem is easily solved.
- ▶ Case 2: # measurements < # unknowns. The system is underdetermined. Assume that A is full rank. The solution $w \in \text{an } (n-m)$ dimensional subspace.
 - Without additional information, it is impossible to recover w from y.
 - ▶ Under certain assumptions, it is possible to reconstruct *w* from *y*. Moreover, efficient reconstruction algorithms do exist.

Underdetermined system Aw = y: Least Squares Solution

▶ If we assume w has the smallest Euclidean norm:

$$\min_{w \in \mathbb{C}^n} \frac{1}{2} ||w||_2^2 \quad s.t. \quad Aw = y,$$

then $w_{ls} = A^* (AA^*)^{-1} y$.

- ▶ 1st Approach: Use the Lagrange multiplier. (Prove in class).
- ▶ 2nd Approach: Use the Fundamental Theorem of Linear Algebra and Best Approximation Theorem.
- ▶ Matlab code: $w = A \setminus y$.
- Python code:

```
import numpy as np
# Load A and y .... #
w_ls = np.linalg.lstsq(A, y, rcond=None)[0]
```

Underdetermined system Aw = y: Least Squares Solution

▶ Pros: A closed-form solution, $w_{ls} = A^*(AA^*)^{-1}y$.

► Cons:

- 1. Least squares solutions likely overfit the data (See the codes).
- 2. Least squares solutions are not robust to noisy measurements.
- 3. In many applications, the solution with smallest Euclidean norm is not the expected solution. For example, reconstruct a one-dimensional discrete signal $f:\{1,\ldots,n\}\to\mathbb{C}$ from a partial collection of its Fourier coefficients $\{\hat{f}(\xi_1),\ldots,\hat{f}(\xi_m)\}$. Note that m< n.

Lecture 02

- Sparse Solutions of an Underdetermined Linear System
- ▶ Introduction to Compressive Sensing: Main Questions
- lacktriangle Why ℓ_1 for Sparsity? Illustration and Mathematical Proof.
- Compressive Sensing: Minimum Number of Measurements

Underdetermined system Aw = y: Sparse Solution

- ▶ Another assumption: w is a sparse vector, i.e., most components of w are 0. Note that we don't know the locations of the nonzero entries.
- Does the sparsity assumption valid?
 - Related to simplicity, bet-on-sparsity principle, sparsity-of-effects principle, Pareto principle.
 - "Use a procedure that does well in sparse problems, since no procedure does well in dense problems." (The Elements of Statistical Learning, by Hastie, Tibshirani, and Friedman).
 - A system is usually dominated by main effects and low-order interactions.
 - ▶ Pareto principle: 80/20 rule or the law of the vital few.
 - Many real-world signals and images are compressible, i.e., well-approximated by sparse signals after an appropriate change of basis: MP3 signals, JPEG images,... (See the codes).

Example: Sampling Theory

Reconstruct

$$f(t) = \sum_{k=-M}^{M} w_k e^{2\pi i k t}, \quad t \in [0,1].$$

from m samples $f(t_1), \ldots, f(t_m)$, where $\{t_1, \ldots, t_m\} \subset [0, 1]$.

Formulation:

$$y = Aw$$
,

where $A \in \mathbb{C}^{m \times n}$, n = 2M + 1, and

$$A_{l,k} = e^{2\pi i k t_l}, \quad l = 1, \dots, m; \quad k = -M, \dots, M.$$

▶ It is possible to recover f from a few samples, under certain conditions → Compressive sensing beats Shannon sampling theorem.

Example: Sparse Approximation

- ▶ Suppose a vector $y \in \mathbb{C}^m$ is well-approximated by a few term from prescribed elements $a_1, \ldots, a_p \in \mathbb{C}^m$.
- ► Formulation:

$$y=c_1\underline{a_1}+\cdots+c_pa_p,$$

s.t.
$$c = (c_1, \dots, c_p)^T \in \mathbb{C}^p$$
 is sparse.

Applications: Compression, denoising, data separation, model discovery.

Compressive Sensing Problem

- ► Goal: Compress and Sense (acquire) data at the same time.
 - ► Acquire the compressed version of a signal directly via much fewer measured data than the signal length.
 - ▶ Reconstruct an *s*-sparse vector $w \in \mathbb{C}^n$ from an underdetermined system $y = Aw \in \mathbb{C}^m$, where $m \ll n$.
- ▶ Definition: A vector $w \in \mathbb{C}^n$ is called *s*-sparse if at most *s* of its entries are nonzero.
- ► Challenges: The locations of the non-zero entries of w is unknown → Introduce the nonlinearity.

Compressive Sensing Problem

Main questions:

- What matrices A are suitable? ← Need to design a suitable linear measurement process.
- What is the optimal value for # measurements? ← Should depends on the compressed size, not on its uncompressed size!
- 3. What are efficient (fast, stable, robust) reconstruction algorithms?
- Advantages of compressive sensing:
 - 1. Measurements are sparse in a known basis or compressible.
 - 2. Measurements are expensive or require a lot of time.

Other Problems of Compressive Sensing

1. Robustness: Output measurements are contaminated by noise.

$$y = Aw + z$$
, $||z||_2 \le \varepsilon$.

2. Stability: w is not sparse, but is well-approximated by a sparse vector (compressibility).

Notations

▶ The support of a vector $w \in \mathbb{C}^n$, supp(w), is the index set of its nonzero entries:

$$supp(w) := \{j \in [n] : w_j \neq 0\}.$$

- ▶ A vector $w \in \mathbb{C}^n$ is called *s*-sparse if at most *s* of its entries are nonzero.
- ▶ The *p*-norm of a vector $w \in \mathbb{C}^n$ for $p \ge 1$:

$$\|w\|_p := \Big(\sum_{j=1}^n |w_j|^p\Big)^{1/p}.$$

Convention: $||w||_0 := |\operatorname{supp} w|$.

▶ The ℓ_p -error of best *s*-term approximation to a vector $w \in \mathbb{C}^n$:

$$\sigma_s(w)_p := \inf\{\|w - z\|_p : z \in \mathbb{C}^n \text{ is } s\text{-sparse}\}.$$

Compressive Sensing Problem: Models

• ℓ_0 -minimization: NP-hard in general.

$$\min \|z\|_0 \quad s.t. \quad Az = y.$$

▶ ℓ_1 -minimization (convex relaxation of the ℓ_0 -minimization):

$$\min \|z\|_1$$
 s.t. $Az = y$ (Basis Pursuit).

Other models:

$$\min \|z\|_1$$
 s.t. $\|Az - y\|_2 \le \eta$ (Basis Pursuit Denoising).

or

$$\min \|Az - y\|_2^2$$
 s.t. $\|z\|_1 \le \tau$ (Lasso).

Why ℓ_1 for Sparsity?

- ▶ The ℓ_1 -norm $\|\cdot\|_1$ is a convex function \Rightarrow The ℓ_1 -minimization problem can be solved by efficient algorithms from convex optimization.
- ▶ Illustration of the ℓ_1 -minimization induces sparse solutions:

Why ℓ_1 for Sparsity?

BPDN

- ▶ The ℓ_1 -norm $\|\cdot\|_1$ is a convex function \Rightarrow The ℓ_1 -minimization problem can be solved by efficient algorithms from convex optimization.
- ▶ Illustration of the ℓ_1 -minimization induces sparse solutions:

Why ℓ_1 for Sparsity?

Theorem 1. Given $A \in \mathbb{C}^{m \times n}$ and $y \in \mathbb{C}^m$. If the basis pursuit problem:

$$\min_{w \in \mathbb{C}^n} \|w\|_1 \quad s.t. \quad y = Aw$$

has a unique solution w^* , then $|\mathrm{supp}\, w^*| \leq m$. In other words, $w^* \in \mathbb{C}^n$ is at most m-sparse.

Sketch Proof. Denote a_j the columns of A, where $1 \le j \le n$. We will prove that $\{a_j : j \in \text{supp}(w^*)\}$ is linearly independent by contradiction. Indeed, assume

$$\sum_{j\in\underline{\mathcal{S}}}c_ja_j=0,\quad \text{where}\quad c_j\in\mathbb{C},\quad \sum_{j\in\underline{\mathcal{S}}}|c_j|^2>0.$$

Denote $\underline{c} \in \mathbb{C}^n$ s.t. $\underline{c}_{\underline{S}} = [c_j : j \in \underline{S}]$ and $supp(\underline{c}) = \underline{S}$.

Consider $z = w^* + tc$, where $t \in \mathbb{C}$. Then

$$Az = Aw = y$$
 and $supp(z) = S$.

By the uniqueness assumption,

$$\|w^*\|_1 < \|z\|_1 = \sum_{k=1}^n |z_k| = \sum_{k=1}^n z_k \operatorname{sign}(z_k) = \sum_{k \in S} (w_k^* + tc_k) \operatorname{sign}(w_k^* + tc_k)$$

With t small enough, $\forall |t| < \varepsilon$, we have

$$sign(w_k^* + tc_k) = sign(w_k^*).$$

Then

$$\|w^*\|_1 < \sum_{k \in S} (w_k^* + tc_k) \operatorname{sign}(w_k^*) = \|w^*\|_1 + t \sum_{k \in S} \operatorname{sign}(w_k^*) c_k.$$

The last inequality can't be hold for all t s.t. $|t| < \varepsilon$ since $\sum_{k \in \underline{S}} \operatorname{sign}(w_k^*) c_k$ is nonzero (due to the uniqueness of w^*) and we can choose t small enough on the opposite sign of $\sum_{k \in S} \operatorname{sign}(w_k^*) c_k$.

Theorem 2. Given $A \in \mathbb{C}^{m \times n}$, the following properties are equivalent:

- 1. Every s-sparse vector $w \in \mathbb{C}^n$ is the unique s-sparse solution of Az = Aw. That is, if Az = Aw and both z and w are s-sparse, then z = w.
- 2. Every set of 2s columns of A is linearly independent.

Proof. (1) \Rightarrow (2) Suppose a_1, \ldots, a_n are the columns of A. Wlog, we will prove the first (2s) columns of A are linearly independent. Consider:

$$c_1 a_1 + c_2 a_2 + \ldots + c_{2s} a_{2s} = 0$$
, where $c_1, \ldots, c_{2s} \in \mathbb{C}$.

Then

 $(2) \Leftarrow (1)$ Exercise.

 $c_1 a_1 + \ldots + c_s a_s = -c_{s+1} a_{s+1} - \ldots - c_{2s} a_{2s}$

 $A[c_1,\ldots,c_s,0,\ldots,0]^T = A[0,\ldots,0,-c_{s+1},-c_{s+2},\ldots,-c_{2s},0,\ldots,0]^T.$

 $c_1 = \ldots = c_{2\varepsilon} = 0.$

By the assumption on (1), we have

 $[c_1, \ldots, c_s, 0, \ldots, 0]^T = [0, \ldots, 0, -c_{s+1}, -c_{s+2}, \ldots, -c_{2s}, 0, \ldots, 0]^T$

Theorem 2. Given $A \in \mathbb{C}^{m \times n}$, the following properties are equivalent:

- 1. Every s-sparse vector $w \in \mathbb{C}^n$ is the unique s-sparse solution of Az = Ax. That is, if Az = Ax and both z and x are s-sparse, then z = x.
- 2. Every set of 2s columns of A is linearly independent.

Corollary 2.1. If it is possible to reconstruct every *s*-sparse vector $w \in \mathbb{C}^n$ from the measurements $y = Ax \in \mathbb{C}^m$, then $m \ge 2s$.

Proof.

We have:

$$m \geq \operatorname{rank}(A) \geq 2s$$
.

Theorem 3. For any integer $n \geq 2s$, there exists a measurement matrix $A \in \mathbb{C}^{m \times n}$ with m = 2s rows such that every s-sparse vector $w \in \mathbb{C}^n$ can be recovered from its measurement vector $y = Aw \in \mathbb{C}^m$ as a solution of

$$\min \|z\|_0 \quad s.t. \quad Az = y.$$

Proof. Example 1: Vandermonde matrix. We will construct a matrix A of size $(2s) \times n$ such that every (2s) columns of A are linearly independent. Pick $t_1 < t_2 < \ldots < t_n$, $t_k \in \mathbb{R}$.

Consider

$$A = \begin{bmatrix} 1 & 1 & \dots & 1 \\ t_1 & t_2 & \dots & t_n \\ t_1^2 & t_2^2 & \dots & t_n^2 \\ \vdots & \vdots & & \vdots \\ t_1^{2s-1} & t_2^{2s-1} & \dots & t_n^{2s-1} \end{bmatrix} \in \mathbb{C}^{2s \times n}.$$

Let $S=\{j_1,\ldots,j_s\}\subset\{1,\ldots,n\},\ j_k\neq j_l\ \forall k\neq l\ \text{and let}$ $A_S=[a_{j_1}\ a_{j_2}\ \ldots a_{j_{2s}}]$ be the submatrix of A formed from the columns $a_{j_1},a_{j_2},\ldots,a_{j_{2s}}$ of A. Then A_S is a Vandermonde matrix and

$$|\det(A_S)| = \left| \prod_{k < j} (t_j - t_k) \right| \neq 0.$$

Therefore, A_S is invertible and the columns $a_{j_1}, a_{j_2}, \ldots, a_{j_{2s}}$ are linearly independent.

Example 2: Sparse recovery from 2s Fourier measurements

Given
$$y_1, \dots, y_{m=2s}$$
 Fourier coepicions:

 $y_1 = \sum_{k=0}^{\infty} x(k) e$
 $x(y) = \sum_{k=0}^{\infty} x(k) e$

Find $x(0), x(1), \dots, x(m) = x(m$

Example 2: Sparse recovery from 2s Fourier measurements Trick p(t) = 1 Tt (1-e Tik/n +2Tit/n) where S = supp(x) don't know yet porall t∈ 8 teb, Clearly p(t) = 0x(t) = 0 for all $t \notin S$ his 女 46407 ··· ル引 p(t) x(t) = 0 $\rho.x(t) = p(t)x(t)$

$$x(t) = 0 \qquad \text{for each } t = \frac{1}{\sqrt{2}}$$

$$p(t) x(t) = 0 \qquad \text{for each } t = \frac{1}{\sqrt{2}}$$

$$p(t) x(t) = 0 \qquad \text{for each } t = \frac{1}{\sqrt{2}}$$

$$p(t) x(t) = 0 \qquad \text{for each } t = \frac{1}{\sqrt{2}}$$

$$p(t) x(t) = 0 \qquad \text{for each } t = \frac{1}{\sqrt{2}}$$

$$p(t) x(t) = 0 \qquad \text{for each } t = \frac{1}{\sqrt{2}}$$

$$p(t) x(t) = 0 \qquad \text{for each } t = \frac{1}{\sqrt{2}}$$

$$p(t) x(t) = 0 \qquad \text{for each } t = \frac{1}{\sqrt{2}}$$

$$p(t) x(t) = 0 \qquad \text{for each } t = \frac{1}{\sqrt{2}}$$

$$p(t) x(t) = 0 \qquad \text{for each } t = \frac{1}{\sqrt{2}}$$

$$p(t) x(t) = 0 \qquad \text{for each } t = \frac{1}{\sqrt{2}}$$

$$p(t) x(t) = 0 \qquad \text{for each } t = \frac{1}{\sqrt{2}}$$

$$p(t) x(t) = 0 \qquad \text{for each } t = \frac{1}{\sqrt{2}}$$

$$p(t) x(t) = 0 \qquad \text{for each } t = \frac{1}{\sqrt{2}}$$

$$p(t) x(t) = 0 \qquad \text{for each } t = \frac{1}{\sqrt{2}}$$

$$p(t) x(t) = 0 \qquad \text{for each } t = \frac{1}{\sqrt{2}}$$

$$p(t) x(t) = 0 \qquad \text{for each } t = \frac{1}{\sqrt{2}}$$

$$p(t) x(t) = 0 \qquad \text{for each } t = \frac{1}{\sqrt{2}}$$

$$p(t) x(t) = 0 \qquad \text{for each } t = \frac{1}{\sqrt{2}}$$

$$p(t) x(t) = 0 \qquad \text{for each } t = \frac{1}{\sqrt{2}}$$

$$p(t) x(t) = 0 \qquad \text{for each } t = \frac{1}{\sqrt{2}}$$

$$p(t) x(t) = 0 \qquad \text{for each } t = \frac{1}{\sqrt{2}}$$

$$p(t) x(t) = 0 \qquad \text{for each } t = \frac{1}{\sqrt{2}}$$

$$p(t) x(t) = 0 \qquad \text{for each } t = \frac{1}{\sqrt{2}}$$

$$p(t) x(t) = 0 \qquad \text{for each } t = \frac{1}{\sqrt{2}}$$

$$p(t) x(t) = 0 \qquad \text{for each } t = \frac{1}{\sqrt{2}}$$

$$p(t) x(t) = 0 \qquad \text{for each } t = \frac{1}{\sqrt{2}}$$

$$p(t) x(t) = 0 \qquad \text{for each } t = \frac{1}{\sqrt{2}}$$

$$p(t) x(t) = 0 \qquad \text{for each } t = \frac{1}{\sqrt{2}}$$

$$p(t) x(t) = 0 \qquad \text{for each } t = \frac{1}{\sqrt{2}}$$

$$p(t) x(t) = 0 \qquad \text{for each } t = \frac{1}{\sqrt{2}}$$

$$p(t) x(t) = 0 \qquad \text{for each } t = \frac{1}{\sqrt{2}}$$

$$p(t) x(t) = 0 \qquad \text{for each } t = \frac{1}{\sqrt{2}}$$

$$p(t) x(t) = 0 \qquad \text{for each } t = \frac{1}{\sqrt{2}}$$

$$p(t) x(t) = 0 \qquad \text{for each } t = \frac{1}{\sqrt{2}}$$

$$p(t) x(t) = 0 \qquad \text{for each } t = \frac{1}{\sqrt{2}}$$

$$p(t) x(t) = 0 \qquad \text{for each } t = \frac{1}{\sqrt{2}}$$

$$p(t) x(t) = 0 \qquad \text{for each } t = \frac{1}{\sqrt{2}}$$

$$p(t) x(t) = 0 \qquad \text{for each } t = \frac{1}{\sqrt{2}}$$

$$p(t) x(t) = 0 \qquad \text{for each } t = \frac{1}{\sqrt{2}}$$

$$p(t) x(t) = 0 \qquad \text{for each } t = \frac{1}{\sqrt{2}}$$

$$\rho(t) = \frac{1}{N} TC (1 - e^{-2Tik/n} e^{2Tit/n})$$

$$= \frac{1}{N} C_T e^{2TiJt/n}$$

$$= 0 \le J \le |S|$$

$$\rho(0) = scalar coefficient of nucl)$$

$$= NC_0 = 1$$

we only need to find $\widehat{\gamma}(l),...,\widehat{\gamma}(b)$

\$ (t) = 0 frall t> 8

To find p,

While
$$\hat{\gamma} * \hat{x} = 0$$
 explicitly

 $\int_{-1}^{1} \hat{\gamma}(k) \hat{x} (J-k) = 0$ $\forall J=0\rightarrow m-1$

Since $\hat{\gamma}(t)=0$ $\forall t>s$
 $\int_{-1}^{1} \hat{\gamma}(k) \hat{x} (J-k) = 0$ $J=0\rightarrow s-1$.

And $\hat{\gamma}(t) = 0$ $\hat{$

Key result: With high probability on the random draw of an m × N Gaussian or Bernoulli matrix A, all s-sparse vector w can be reconstructed from y = Aw using a variety of algorithms provided that

$$m \geq Cs \ln(n/s)$$
,

where C is a universal constant (does not depend on s, m, n).

▶ In practice, $m \ge 4s \ln(n/s)$ works numerically.

References

- ► A Mathematical Introduction to Compressive Sensing, by S. Foucart and H. Rauhut. Chapters 1 and 2.
- Statistical Learning with Sparsity, The Lasso and Generalizations, by T. Hastie, R. Tibshirani, and M. Wainwright. Chapter 1.
- Data-driven Sicence and Engineering, Machine Learning, Dynamical Systems, and Control, by S. L. Brunton and J. N. Kutz.
- ► Talks and lectures by T. Tao, S. Foucart, R. Willett, S. Brunton, H. Schaeffer,....