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Lecture 01

I Course Introduction

I Basic Steps of a Learning Process

I Least Squares Solution of an Underdetermined Linear System.
Pros and Cons.



Course Outline
Goal: Study some computational and mathematical perspectives of
machine learning and data science.

1. Sparse Optimization and Compressed Sensing: Underdetermined
systems, reconstruction guarantees, sparse approximation, sparse
optimization solvers, with applications to image processing, model
selection, and parameter estimation.

2. Supervised Learning: Kernel methods, reproducing kernel Hilbert
Spaces, learning from data, overfitting, hyperparameter selection.

3. Neural Networks: Mathematical formulations of popular NN
architectures, universal approximation, adjoint methods &
automatic differentiation, implicit and explicit regularizations,
stochastic gradient method and its accelerations,
overparametrization, the importance of effective initialization.

4. Randomized Linear Algebra: Johnson-Lindenstrauss lemma, matrix
approximation by sampling, randomized QR and SVD, random
projections, with applications to model reduction and large-scale
problems.



Course Logistics

I Student Assessments: 50% Assignments + 50% Final project.

I Assignments: Theoretical + Computational questions.

I Final Project:
I Each team = Individual or a group of two students.

I Each team gives a presentation of 25 minutes.

I Each team submits the slides and a short report (10-25 pages).



Course Logistics

Course Websites:

I LEARN: To check course outline, course notes, recorded
videos, assignments, supplementary materials, and important
announcements.

I Crowdmark: To submit and see marked assignments. For each
assignment, you will receive an invitation from Crowdmark to
submit your assignment.

I Discussion Forum: To pose questions about lectures,
assignments, textbooks, ..., please sign up for the course
discussion board at Piazza, via the following link:
piazza.com/uwaterloo.ca/winter2022/amath840.

More details can be found in the course outline on Learn or on
online.uwaterloo.ca.

piazza.com/uwaterloo.ca/winter2022/amath840
online.uwaterloo.ca


Basic Steps of a Learning Process

1. Collect and preprocess data: data cleaning, data augmentation,
normalized/standardized data.

I Data resources: public datasets (UCI dataset, Kaggle,...), data
from experiments, simulated data.

2. From raw or preprocessed data, generate

I Training data = a collection of samples that will be used to
learn the model. For example, in a regression problem, given:

(xi , yi )
m
i=1 : where m := #training samples

xi := sample’s features/input data ∈ Rn

yi := sample’s label/output data ∈ R.

I Validation (test) data = a collection of samples that will be
used to validate(test) the learned model.



Basic Steps of a Learning Process (cont’d)

3. Choose
I A learning model: ŷi = f (xi ) ≈ yi , ∀i ∈ [m]. For example,

I Linear model:

f (x) = f (x ;w) = x1w1 + . . .+ xnwn = xTw .

I Generalized linear model: learn a nonlinear function f ,

f (x) = ϕ1(x)w1 + . . .+ ϕp(x)wp,

where ϕk(x) are prescribed nonlinear functions.
I Neural network model:

f (x) = W2σ(W1x + b1) + b2.

I A loss function + (optional) a regularization: How well a
model fits the data. For example,

L =
1

2m

m∑
i=1

|yi − ŷi |2.

4. Learn the model (model parameters) to minimize the loss on
training data.

5. Compute the generalization error, i.e., error of the trained model on
new data.



Linear Models: Aw = ŷ

I From yi ≈ ŷi = xi
Tw for all i = 1, . . . ,m, we can rewrite as

y ≈ ŷ = Aw ,

where y = [y1, . . . , ym]T ∈ Rm, ŷ = [ŷ1, . . . , ŷm]T ∈ Rm, and

A =


x1

T

x2
T

...
xm

T

 ∈ Rm×n.



Linear Models: Aw = y

I A classical problem in linear algebra: m measurements, n
unknowns. Given y ∈ Cm and A ∈ Cm×n,

Find w ∈ Cn : Aw = y .

I Case 1: # measurements ≥ # unknowns. The system is
overdetermined or determined ⇒ The problem is easily solved.

I Case 2: # measurements < # unknowns. The system is
underdetermined. Assume that A is full rank. The solution
w ∈ an (n −m) dimensional subspace.

I Without additional information, it is impossible to recover w
from y .

I Under certain assumptions, it is possible to reconstruct w from
y . Moreover, efficient reconstruction algorithms do exist.



Underdetermined system Aw = y : Least Squares Solution

I If we assume w has the smallest Euclidean norm:

min
w∈Cn

1

2
‖w‖22 s.t. Aw = y ,

then wls = A∗(AA∗)−1y .
I 1st Approach: Use the Lagrange multiplier. (Prove in class).
I 2nd Approach: Use the Fundamental Theorem of Linear

Algebra and Best Approximation Theorem.

I Matlab code: w = A\y .
I Python code:

import numpy as np

# Load A and y .... #

w_ls = np.linalg.lstsq(A, y, rcond=None)[0]



Underdetermined system Aw = y : Least Squares Solution

I Pros: A closed-form solution, wls = A∗(AA∗)−1y .

I Cons:

1. Least squares solutions likely overfit the data (See the codes).

2. Least squares solutions are not robust to noisy measurements.

3. In many applications, the solution with smallest Euclidean
norm is not the expected solution. For example, reconstruct a
one-dimensional discrete signal f : {1, . . . , n} → C from a
partial collection of its Fourier coefficients {f̂ (ξ1), . . . , f̂ (ξm)}.
Note that m < n.



Lecture 02

I Sparse Solutions of an Underdetermined Linear System

I Introduction to Compressive Sensing: Main Questions

I Why `1 for Sparsity? Illustration and Mathematical Proof.

I Compressive Sensing: Minimum Number of Measurements



Underdetermined system Aw = y : Sparse Solution

I Another assumption: w is a sparse vector, i.e., most
components of w are 0. Note that we don’t know the
locations of the nonzero entries.

I Does the sparsity assumption valid?
I Related to simplicity, bet-on-sparsity principle,

sparsity-of-effects principle, Pareto principle.
I “Use a procedure that does well in sparse problems, since no

procedure does well in dense problems.” (The Elements of
Statistical Learning, by Hastie, Tibshirani, and Friedman).

I A system is usually dominated by main effects and low-order
interactions.

I Pareto principle: 80/20 rule or the law of the vital few.

I Many real-world signals and images are compressible, i.e.,
well-approximated by sparse signals after an appropriate change
of basis: MP3 signals, JPEG images,... (See the codes).



Example: Sampling Theory

Reconstruct

f (t) =
M∑

k=−M
wke

2πikt , t ∈ [0, 1].

from m samples f (t1), . . . , f (tm), where {t1, . . . , tm} ⊂ [0, 1].

I Formulation:
y = Aw ,

where A ∈ Cm×n, n = 2M + 1, and

Al ,k = e2πiktl , l = 1, . . . ,m; k = −M, . . . ,M.

I It is possible to recover f from a few samples, under certain
conditions → Compressive sensing beats Shannon sampling
theorem.



Example: Sparse Approximation

I Suppose a vector y ∈ Cm is well-approximated by a few term
from prescribed elements a1, . . . , ap ∈ Cm.

I Formulation:
y = c1a1 + · · ·+ cpap,

s.t. c = (c1, . . . , cp)T ∈ Cp is sparse.

I Applications: Compression, denoising, data separation, model
discovery.



Compressive Sensing Problem

I Goal: Compress and Sense (acquire) data at the same time.
I Acquire the compressed version of a signal directly via much

fewer measured data than the signal length.
I Reconstruct an s-sparse vector w ∈ Cn from an

underdetermined system y = Aw ∈ Cm, where m� n.

I Definition: A vector w ∈ Cn is called s-sparse if at most s of
its entries are nonzero.

I Challenges: The locations of the non-zero entries of w is
unknown −→ Introduce the nonlinearity.



Compressive Sensing Problem

I Main questions:

1. What matrices A are suitable? ← Need to design a suitable
linear measurement process.

2. What is the optimal value for # measurements? ← Should
depends on the compressed size, not on its uncompressed size!

3. What are efficient (fast, stable, robust) reconstruction
algorithms?

I Advantages of compressive sensing:

1. Measurements are sparse in a known basis or compressible.

2. Measurements are expensive or require a lot of time.



Other Problems of Compressive Sensing

1. Robustness: Output measurements are contaminated by noise.

y = Aw + z , ‖z‖2 ≤ ε.

2. Stability: w is not sparse, but is well-approximated by a sparse
vector (compressibility).



Notations

I The support of a vector w ∈ Cn, supp(w), is the index set of its
nonzero entries:

supp(w) := {j ∈ [n] : wj 6= 0}.

I A vector w ∈ Cn is called s-sparse if at most s of its entries are
nonzero.

I The p-norm of a vector w ∈ Cn for p ≥ 1:

‖w‖p :=
( n∑

j=1

|wj |p
)1/p

.

Convention: ‖w‖0 := |suppw |.

I The `p−error of best s-term approximation to a vector w ∈ Cn:

σs(w)p := inf{‖w − z‖p : z ∈ Cn is s-sparse}.



Compressive Sensing Problem: Models

I `0-minimization: NP-hard in general.

min ‖z‖0 s.t. Az = y .

I `1-minimization (convex relaxation of the `0-minimization):

min ‖z‖1 s.t. Az = y (Basis Pursuit).

Other models:

min ‖z‖1 s.t. ‖Az − y‖2 ≤ η (Basis Pursuit Denoising).

or
min ‖Az − y‖22 s.t. ‖z‖1 ≤ τ (Lasso).



Why `1 for Sparsity?

I The `1-norm k · k1 is a convex function ) The
`1-minimization problem can be solved by e�cient algorithms
from convex optimization.

I Ilustration of the `1-minimization induces sparse solutions:
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Why `1 for Sparsity?

I The `1-norm k · k1 is a convex function ) The
`1-minimization problem can be solved by e�cient algorithms
from convex optimization.
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Why `1 for Sparsity?

Theorem 1. Given A ∈ Cm×n and y ∈ Cm. If the basis pursuit
problem:

min
w∈Cn

‖w‖1 s.t. y = Aw

has a unique solution w∗, then |suppw∗| ≤ m. In other words,
w∗ ∈ Cn is at most m-sparse.

Sketch Proof. Denote aj the columns of A, where 1 ≤ j ≤ n.
We will prove that {aj : j ∈ supp(w∗)} is linearly independent by
contradiction. Indeed, assume∑

j∈S
cjaj = 0, where cj ∈ C,

∑
j∈S
|cj |2 > 0.

Denote c ∈ Cn s.t. cS = [cj : j ∈ S ] and supp(c) = S .



Consider z = w∗ + tc , where t ∈ C. Then

Az = Aw = y and supp(z) = S .

By the uniqueness assumption,

‖w∗‖1 <‖z‖1 =
n∑

k=1

|zk | =
n∑

k=1

zksign(zk) =
∑
k∈S

(w∗k + tck) sign(w∗k + tck)

With t small enough, ∀|t| < ε, we have

sign(w∗k + tck) = sign(w∗k ).

Then

‖w∗‖1 <
∑
k∈S

(w∗k + tck) sign(w∗k ) = ‖w∗‖1 + t
∑
k∈S

sign(w∗k )ck .

The last inequality can’t be hold for all t s.t. |t| < ε since
∑
k∈S

sign(w∗k )ck

is nonzero (due to the uniqueness of w∗) and we can choose t small

enough on the opposite sign of
∑
k∈S

sign(w∗k )ck .



Compressive Sensing Problem: Number of Measurements

Theorem 2. Given A ∈ Cm×n, the following properties are
equivalent:

1. Every s-sparse vector w ∈ Cn is the unique s-sparse
solution of Az = Aw . That is, if Az = Aw and both z
and w are s-sparse, then z = w .

2. Every set of 2s columns of A is linearly independent.

Proof. (1)⇒ (2) Suppose a1, . . . , an are the columns of A. Wlog,
we will prove the first (2s) columns of A are linearly independent.
Consider:

c1a1 + c2a2 + . . .+ c2sa2s = 0, where c1, . . . , c2s ∈ C.



Then
c1a1 + . . .+ csas = −cs+1as+1 − . . .− c2sa2s .

A[c1, . . . , cs , 0, . . . , 0]T = A[0, . . . , 0,−cs+1,−cs+2, . . . ,−c2s , 0, . . . , 0]T .

By the assumption on (1), we have

[c1, . . . , cs , 0, . . . , 0]T = [0, . . . , 0,−cs+1,−cs+2, . . . ,−c2s , 0, . . . , 0]T

c1 = . . . = c2s = 0.

(2)⇐ (1) Exercise.



Compressive Sensing Problem: Number of Measurements

Theorem 2. Given A ∈ Cm×n, the following properties are
equivalent:

1. Every s-sparse vector w ∈ Cn is the unique s-sparse
solution of Az = Ax . That is, if Az = Ax and both z
and x are s-sparse, then z = x .

2. Every set of 2s columns of A is linearly independent.

Corollary 2.1. If it is possible to reconstruct every s-sparse
vector w ∈ Cn from the measurements y = Ax ∈ Cm, then
m ≥ 2s.

Proof.
We have:

m ≥ rank(A) ≥ 2s.



Compressive Sensing Problem: Number of Measurements

Theorem 3. For any integer n ≥ 2s, there exists a measure-
ment matrix A ∈ Cm×n with m = 2s rows such that every
s-sparse vector w ∈ Cn can be recovered from its measure-
ment vector y = Aw ∈ Cm as a solution of

min ‖z‖0 s.t. Az = y .

Proof. Example 1: Vandermonde matrix. We will construct a
matrix A of size (2s)× n such that every (2s) columns of A are
linearly independent. Pick t1 < t2 < . . . < tn, tk ∈ R.



Compressive Sensing Problem: Number of Measurements

Consider

A =


1 1 . . . 1
t1 t2 . . . tn
t21 t22 . . . t2n
...

...
...

t2s−11 t2s−12 . . . t2s−1n

 ∈ C2s×n.

Let S = {j1, . . . , js} ⊂ {1, . . . , n}, jk 6= jl ∀k 6= l and let
AS = [aj1 aj2 . . . aj2s ] be the submatrix of A formed from the
columns aj1 , aj2 , . . . , aj2s of A. Then AS is a Vandermonde matrix
and

|det(AS)| =

∣∣∣∣∣∣
∏
k<j

(tj − tk)

∣∣∣∣∣∣ 6= 0.

Therefore, AS is invertible and the columns aj1 , aj2 , . . . , aj2s are
linearly independent.



Example 2: Sparse recovery from 2s Fourier measurements
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Example 2: Sparse recovery from 2s Fourier measurements
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Compressive Sensing Problem: Number of Measurements

I Key result: With high probability on the random draw of an
m × N Gaussian or Bernoulli matrix A, all s-sparse vector w
can be reconstructed from y = Aw using a variety of
algorithms provided that

m ≥ Cs ln(n/s),

where C is a universal constant (does not depend on s,m, n).

I In practice, m ≥ 4s ln(n/s) works numerically.
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