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Recall

. Greedy Algorithms for Compressive Sensing

Given A € C™*" with unit columns and y € C™, find a
s-sparse vector w € C" s.t. y = Aw.

pia(s) == max max{ S Wak, a)l, S € [n],|S] = s, k ¢ 5}.
ke[n] jes

A):= max |{ak,aj)|
pA) = | max (o a)|
If Coherence condition, then every s-sparse vector w € C" is

exactly recovered from y = Aw after at most s iterations of
the method.
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For HTP: 2p1(s) + pua(s — 1) <1 or p(A) <




Lecture 05: ¢;-Minimization and Compressive Sensing

» Different /1-Minimization Problems and Their Relations
» Popular #1-Minimization Algorithms and Available Codes
» Examples of Sparse Optimization Problems

» Exact Recovery of Sparse Vectors via Basis Pursuit: Null
Space Property
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» Basis pursuit:
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(1-Minimization Problems (cont'd)

Theorem 5.1 (Relations between BP,, QP,, and LS.).

1. If zg, is a minimizer of (QPy) with A > 0, then there exists
0 = 04, > 0 such that z, is a minimizer of (BP,).

2. If zpp is a unique minimizer of BP, with ¢ > 0, then there
exists 7 = 7, > 0 such that zp, is a unique minimizer of

(LS,).

3. If zjs is a minimizer of (LS;) with 7 > 0, then there exists
A = Az, > 0 such that zs is a minimizer of QPj.

Proof Sketch.
> (QPy = BP,). Set 0 := || Azgp — yl|2.
> (BPy = LS;). Set 7:= || zup|1.

> (LS; = QP)). See Theorem B.28 from “A Mathematical
Introduction to Compressive Sensing”, by S. Foucart and H. Rauhut.



¢1-Minimization Problems (cont'd)

With suitable values of o, A, 7, the solutions of BP,, QPy, LS,
coincide.

» If Ais orthogonal, a suggestion is A = o1/2log(n). 1!

> In general, the relations among o, A\, 7 cannot be known a
priori. 2

> If X\ is large enough, the solution of QP problem is zy = 0.

Theorem S.Q(BP vs QP)). Assume that Aw = y has a
solution. For each A > 0, let z, be a minimizer of (QP)). If
the (BP) problem has a unique solution z*, then

lim z, = z7.

A—0t
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1
Atomic Decomposition by Basis Pursuit, by Chen, Donoho, and Saunders, SIAM Review, 2001.

Probing the Pareto frontier for basis pursuit solutions, by E. van den Berg and M. P. Friedlander, SIAM J. on
Scientific Computing, 2008.



¢1-Minimization Problems (cont'd)

Proof Sketch. The detailed proof can be found in Proposition
15.1, “A Mathematical Introduction to Compressive Sensing”, by
S. Foucart and H. Rauhut.
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(1-Algorithms: SPGL1 W\.sz" (2 st \lAz-ﬂ&éG//

> Paper: E. van den Berg and M. P. Friedlander, Probing the Pareto
frontier for basis pursuit solutions, SIAM J. on Scientific
Computing, 2008.

> Goal: Solve BP,, where o is approximately known. It is also used to
solve the BP (o = 0) and Lasso.

> Main idea: Solve a sequence of Lasso problem (LS, )k using a
spectral projected-gradient algorithm, where the 74 are the Newton
iterates of ¢(7) := ||y — Az.||» = 0. Here z, is the optimal solution

of (LS;).

> Matlab codes (from the authors): Download the zip file from
https://friedlander.io/spgll/install

» Python codes:

» Link: https://spgll.readthedocs.io/en/latest/index.html.
» Install the package within your current environment (Google
colab, Jupyter notebook,...):
pip install spglil



(1-Algorithms for (QPA) Problem
win 4 (Azyl + A2l
-
» Algorithms: FISTA 3, Nesterov's 2nd method #, SpaRSA 5,
Primal-dual algorithm®, Augmented Lagrangian /
Split-Bregman algorithm’

» Python packages: scikit-learn package.

» Link: https://scikit-learn. org/stable/modules/
linear_model.html LASS 0

» Solve the (QP,) by coordinate descent methoc(\

3A Fast Iterative Shrinkage-Thresholding Algorithm, by Beck & Teboulle, SIAM J. Imaging Sciences, 2009.
4Gradient’ Methods for Minimizing Composite Objective Function, by Nesterov.

55parse Reconstruction by Separable Approximation, by Wright, Nowak, and Figueiredo.

6A First-Order Primal-Dual Alg. for Convex Problems with Applications to Imaging, by Chambolle & Pock.
7The Split Bregman Method for L1-Regularized Problems, by Goldstein and Osher.

Regularization Path For Generalized linear Models by Coordinate Descent, by Friedman, Hastie and
Tibshirani.



(1-Algorithms for (QP,) Problem (cont d)
Remarks: W A \\ A% % “L

» Global rate of convergence 1/k2) can be achieved, for example,
with FISTA and Nesterov's 2nd method. °

> The speed of some algorithms for #;-minimization problems does
not depend on s, such as the primal-dual algorithm — Use
£1-minimization solvers for mildly large s.

» Debiasing technique: Suppose zg, is the num. soln. of the (QP))

problem. Let S := supp(zw and solve (WM&I 7 40‘)@

min{||Az — y||3 : supp(z) C’S_}

v
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> For SpaRSA, when ) is small (more non-zeros in z), solve a
sequence of (QP),) problems, wherel®

||AT)/||OO > Ao > A1 > o0 > A > 0.

9]:uttp://wwr.useas.ucla.edu/'vandenbe/2360/153ctures/fista.pdf
10 L . .
Sparse Optimization Methods, slides by S. Wright.



Example 1: Solve the BP and BPDN by SPGL1
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Example 2: Discover Governing Equations from Limited Data Using
. . . ©\M
Monomial Approximation (S’g . )

: 9~ :
Example 2: Given {x(K)}™ . < R are the collections of some
short trajectories generated from i.i.d. random initializations of

d
some unknown ODE: d—); = F(x,t), x € R%. Find F.

> Assume F is well-approximated by a polynomial where only a
few monomial terms are important (active).

» Simulated data: Training data are obtained from solving the
Lorenz 96 system

dx,
di = —Xj_2Xk—1+ Xk_1Xk+1 — Xk + 8,k = 1,...,50.

d
Approximate % by finite difference method.
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Mathematical formulation: dr
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Example 3: Learn Nonlinear Functions from Data Using Random

Features

Example 3: NACA Sound Dataset from UCI datasets
https://archive.ics.uci.edu/ml/datasets/airfoil+self-noise

» Data description: 1503 data. This problem has the following inputs:

bl

5.

Frequency, in Hertzs.

Angle of attack, in degrees.

Chord length, in meters.

Free-stream velocity, in meters per second.
Suction side displacement thickness, in meters.

The only output is: Scaled sound pressure level, in decibels.

> Goal: Learn the function F s.t. Output = F(Inputs).
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Null Space Property

» Provide a necessary and sufficient condition for exact recovery
of sparse vectors via basis pursuit.

Definition 5.1. A matrix A € K™*" is said to satisfy
» The null space property relative to a set S C [n] if

llvs|li < ||vsc]lz for all v € ker A\ {0}.

» The null space property of order s if it satisfies the null
space property relative to any set S C [n] with |S| <'s.




