AMATH 840: Advanced Numerical Methods for Computational and Data Sciences

Giang Tran
Department of Applied Mathematics, University of Waterloo

Jan 19, 2021

Recall: Greedy Algorithms for Compressive Sensing

- Given $A \in \mathbb{C}^{m \times n}$ with unit columns and $y \in \mathbb{C}^{m}$, find a s-sparse vector $w \in \mathbb{C}^{n}$ s.t. $y=A w$.
- $\mu_{1}(s):=\max _{k \in[n]} \max \left\{\sum_{j \in S}\left|\left\langle a_{k}, a_{j}\right\rangle\right|, S \subset[n],|S|=s, k \notin S\right\}$.
- $\mu(A):=\max _{1 \leq k \neq j \leq n}\left|\left\langle a_{k}, a_{j}\right\rangle\right|$.
- If Coherence condition, then every s-sparse vector $w \in \mathbb{C}^{n}$ is exactly recovered from $y=A w$ after at most s iterations of the method.
- For OMP: $\mu_{1}(s)+\mu_{1}(s-1)<1$ or $\mu(A)<\frac{1}{2 s-1}$.
- For IHT: $\mu_{1}(2 s)<1$ or $\mu(A)<\frac{1}{2 s}$. .
- For HTP: $2 \mu_{1}(s)+\mu_{1}(s-1)<1$ or $\mu(A)<\frac{1}{3 s-1}$.

Lecture 05: ℓ_{1}-Minimization and Compressive Sensing

- Different ℓ_{1}-Minimization Problems and Their Relations
- Popular ℓ_{1}-Minimization Algorithms and Available Codes
- Examples of Sparse Optimization Problems
- Exact Recovery of Sparse Vectors via Basis Pursuit: Null Space Property
ℓ_{1}-Minimization Problems \leftarrow fast alg., stability robustness

ℓ_{1}-Minimization Problems (cont'd)

Theorem 5.1 (Relations between $B P_{\sigma}, Q P_{\lambda}$, and $L S_{\tau}$).

1. If $z_{q p}$ is a minimizer of $\left(Q P_{\lambda}\right)$ with $\lambda>0$, then there exists $\sigma=\sigma_{z_{q p}} \geq 0$ such that $z_{q p}$ is a minimizer of $\left(B P_{\sigma}\right)$.
2. If $z_{b p}$ is a unique minimizer of $B P_{\sigma}$ with $\sigma \geq 0$, then there exists $\tau=\tau_{z_{b p}} \geq 0$ such that $z_{b p}$ is a unique minimizer of ($L S_{\tau}$).
3. If $z_{/ s}$ is a minimizer of $\left(L S_{\tau}\right)$ with $\tau>0$, then there exists $\lambda=\lambda_{z_{s}} \geq 0$ such that $z_{/ s}$ is a minimizer of $Q P_{\lambda}$.

Proof Sketch.

- $\left(Q P_{\lambda} \Rightarrow B P_{\sigma}\right)$. Set $\sigma:=\left\|A z_{q p}-y\right\|_{2}$.
- $\left(B P_{\sigma} \Rightarrow L S_{\tau}\right)$. Set $\tau:=\left\|z_{b p}\right\|_{1}$.
- $\left(L S_{\tau} \Rightarrow Q P_{\lambda}\right)$. See Theorem B. 28 from "A Mathematical Introduction to Compressive Sensing", by S. Foucart and H. Rauhut.

ℓ_{1}-Minimization Problems (cont'd)

With suitable values of σ, λ, τ, the solutions of $B P_{\sigma}, Q P_{\lambda}, L S_{\tau}$ coincide.

- If A is orthogonal, a suggestion is $\lambda=\sigma \sqrt{2 \log (n)}$.
- In general, the relations among σ, λ, τ cannot be known a priori.
- If λ is large enough, the solution of $Q P_{\lambda}$ problem is $z_{\lambda}=0$.

Theorem 5.1. (BP vs $\left.Q P_{\lambda}\right)$. Assume that $A w=y$ has a solution. For each $\lambda>0$, let z_{λ} be a minimizer of $\left(Q P_{\lambda}\right)$. If the $(B P)$ problem has a unique solution $z^{\#}$, then

$$
\lim _{\lambda \rightarrow 0^{+}} z_{\lambda}=z^{\#}
$$

[^0]ℓ_{1}-Minimization Problems (cont'd)
Proof Sketch. The detailed proof can be found in Proposition 15.1, "A Mathematical Introduction to Compressive Sensing", by S. Foucart and H. Rauhut.
\[

$$
\begin{aligned}
& B P: z^{\#}=\underset{z}{\operatorname{argmin}\left\{\|z\|_{1} \text { sit } \quad y=A z\right\}} \\
& Q P_{\lambda}: z_{\lambda}=\underset{z}{\operatorname{argmin}} \frac{1}{2}\|A z-y\|_{2}^{2}+\lambda\left\|_{z}\right\|_{1}
\end{aligned}
$$
\]

ℓ_{1}-Algorithms: SPGL1 $\min _{z}\|z\|_{1}$ s.t $\|A z-y\|_{2} \leqslant \sigma$

- Paper: E. van den Berg and M. P. Friedlander, Probing the Pareto frontier for basis pursuit solutions, SIAM J. on Scientific Computing, 2008.
- Goal: Solve $B P_{\sigma}$, where σ is approximately known. It is also used to solve the $\mathrm{BP}(\sigma=0)$ and Lasso.
- Main idea: Solve a sequence of Lasso problem $\left(L S_{\tau_{k}}\right)_{k}$ using a spectral projected-gradient algorithm, where the τ_{k} are the Newton iterates of $\phi(\tau):=\left\|y-A z_{\tau}\right\|_{2}=\sigma$. Here z_{τ} is the optimal solution of $\left(L S_{\tau}\right)$.
- Matlab codes (from the authors): Download the zip file from https://friedlander.io/spgl1/install
- Python codes:
- Link: https://spgl1.readthedocs.io/en/latest/index.html.
- Install the package within your current environment (Google colab, Jupyter notebook,...):
pip install spgl1

ℓ_{1}-Algorithms for $\left(Q P_{\lambda}\right)$ Problem

- Algorithms: FISTA ${ }^{3}$, Nesterov's 2nd method ${ }^{4}$, SpaRSA ${ }^{5}$, Primal-dual algorithm ${ }^{6}$, Augmented Lagrangian / Split-Bregman algorithm ${ }^{7}$, ...
- Python packages: scikit-learn package.
- Link: https://scikit-learn.org/stable/modules/ linear_model.html LASSO

- Solve the $\left(Q P_{\lambda}\right)$ by coordinate descent method ${ }^{8}$.

[^1]
ℓ_{1}-Algorithms for $\left(Q P_{\lambda}\right)$ Problem (cont'd)

Remarks:

$\min \frac{1}{2}\|A z-y\|_{2}^{2}+\lambda\|z\|_{1}$

- Global rate of convergence $\mathcal{O}\left(1 / k^{2}\right)$ can be achieved, for example, with FISTA and Nesterov's 2nd method. ${ }^{9}$
- The speed of some algorithms for ℓ_{1}-minimization problems does not depend on s, such as the primal-dual algorithm \rightarrow Use ℓ_{1}-minimization solvers for mildly large s.
- Debiasing technique: Suppose $z_{\text {sol }}$ is the num. soln. of the $\left(Q P_{\lambda}\right)$ problem. Let $S:=\operatorname{supp}\left(z_{\text {fing }}!\right.$) and solve \mid entuy $\mid>10^{-10}$

$$
\begin{aligned}
& \min \left\{\|A z-y\|_{2}^{2}: \operatorname{supp}(z) \subset S\right\} . \\
& \min \left\{\left\|A_{S} z_{S}-y\right\|_{2}^{2}\right\}
\end{aligned}
$$

- For SpaRSA, when λ is small (more non-zeros in z), solve a sequence of $\left(Q P_{\lambda_{k}}\right)$ problems, where ${ }^{10}$

$$
\left\|A^{T} y\right\|_{\infty}>\lambda_{0}>\lambda_{1}>\cdots>\lambda_{\text {final }}>0 .
$$

[^2]Example 1: Solve the BP and BPDN by SPGL1
(1) Generate Data
$A \in \mathbb{R}^{m \times n}$ Gaussian Randoms Matrix

$$
m=200, n=500, s=20
$$

$w_{0}=a$ Gaussian Random s-sparse

$$
y=A W_{0} \in \mathbb{R}^{m} \quad y_{\text {noise }}=A w_{0}+\underline{\text { noise }}
$$

(2)

Solve $\sigma=$ noiseleve $\$ 1$ $\min \|w\|_{1}$ st $\|A w-y\|_{2} 6$

Example 2: Discover Governing Equations from Limited Data Using Monomial Approximation

Example 2: Given $\left\{x^{(k)}\right\}_{k=1}^{m} \subset \mathbb{R}^{50}$ are the collections of some short trajectories generated from i.i.d. random initializations of some unknown ODE: $\frac{d x}{d t}=F(x, t), x \in \mathbb{R}^{50}$. Find F.

- Assume F is well-approximated by a polynomial where only a few monomial terms are important (active).
- Simulated data: Training data are obtained from solving the Lorenz 96 system

$$
\frac{d x_{k}}{d t}=-x_{k-2} x_{k-1}+x_{k-1} x_{k+1}-x_{k}+8, k=1, \ldots, 50
$$

Approximate $\frac{d x_{k}}{d t}$ by finite difference method.

$$
\begin{aligned}
& \underset{\text { Mathematical formulation: }}{x}=\left(x_{1}, \ldots, x_{50}\right) \quad \frac{d x_{k}}{d t}=F_{k}\left(x_{1}, \ldots, x_{50}\right) \\
& \text { Given }\left\{x^{(J)}, \dot{x}^{(j)}\right\}_{j=1}^{m} \text {. Find } F_{1}, \ldots, F_{50} \\
& \dot{x}_{1}=\bigoplus_{1}\left(x_{1}, \ldots \eta x_{50}\right)=c_{0}+c_{1} x_{1}+\ldots+c_{50} x_{50}+c_{51} x_{1}^{2}+c_{52} x_{1} x_{2} \\
& t \ldots+c_{r} x_{j 0}^{2}
\end{aligned}
$$

Find - 1 so thet

$$
\vec{y}:\left(\begin{array}{c}
\dot{x}_{1}\left(t_{1}\right) \\
\vdots \\
\dot{r}_{1}\left(t_{m}\right)
\end{array}\right)=A \vec{c}
$$

$\min \|c\|_{1}$ st $y=A c$

$$
\|y-A c\|_{2} \leq \sigma
$$

$$
\begin{aligned}
& \vec{x}=\left(x_{1}, x_{2}, x_{3}\right)^{\top}, \\
& \begin{array}{l}
\bar{x}=\left(x_{1}, x_{2}, x_{3}\right) \\
A=\left(\begin{array}{ccccccc}
1 & x_{1} & x_{2} & x_{3} & x_{1}^{2} & x_{1} x_{2} & x_{4} x_{3} \\
x_{2}^{2} & x_{2} x_{3} & x_{3}^{2} \\
\mid & \mid & \mid & 1 & \mid & 1 & \mid \\
1 & 1
\end{array}\right)
\end{array}
\end{aligned}
$$

Example 3: Learn Nonlinear Functions from Data Using Random

Features

Example 3: NACA Sound Dataset from UCI datasets
https://archive.ics.uci.edu/ml/datasets/airfoil+self-noise

- Data description: 1503 data. This problem has the following inputs:

1. Frequency, in Hertzs.
2. Angle of attack, in degrees.
3. Chord length, in meters.
4. Free-stream velocity, in meters per second.
5. Suction side displacement thickness, in meters.

The only output is: Scaled sound pressure level, in decibels.

- Goal: Learn the function F s.t. Output $=F$ (Inputs).
- Approximation:

$$
\begin{aligned}
& \vec{x}=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)^{\top} \stackrel{F}{\longmapsto} y \in \mathbb{R} \\
& \text { net work } \\
& d=5
\end{aligned}
$$

Motivation Shallow net cork

$$
y \approx \underbrace{W_{2}}_{\text {build } A^{T}} \underbrace{\left(W_{1}\left(W_{1} x+b_{2}\right)\right.}+b_{2}
$$

learn Randomize W_{1}, b_{2}
$H \rightarrow \infty$ build A

$$
y=A w_{2}^{\top}, A+w_{2}, \quad\left(\begin{array}{c}
\left.\sigma\left(w_{1} x+b_{2}\right)\right)^{\top} \in d x H
\end{array}\right.
$$

Role, $\sin , \tan h$,

Find $w_{2}^{T}=c$ sporse s.t $y=A \underline{w_{2}}$
$H \gg d$ Solve spgly

Null Space Property

- Provide a necessary and sufficient condition for exact recovery of sparse vectors via basis pursuit.

Definition 5.1. A matrix $A \in K^{m \times n}$ is said to satisfy

- The null space property relative to a set $S \subset[n]$ if

$$
\left\|v_{S}\right\|_{1}<\left\|v_{S^{c}}\right\|_{1} \quad \text { for all } v \in \operatorname{ker} A \backslash\{0\} .
$$

- The null space property of order s if it satisfies the null space property relative to any set $S \subset[n]$ with $|S| \leq s$.

[^0]: ${ }^{1}$ Atomic Decomposition by Basis Pursuit, by Chen, Donoho, and Saunders, SIAM Review, 2001.
 ${ }^{2}$ Probing the Pareto frontier for basis pursuit solutions, by E. van den Berg and M. P. Friedlander, SIAM J. on Scientific Computing, 2008.

[^1]: ${ }^{3}$ A Fast Iterative Shrinkage-Thresholding Algorithm, by Beck \& Teboulle, SIAM J. Imaging Sciences, 2009.
 ${ }^{4}$ Gradient Methods for Minimizing Composite Objective Function, by Nesterov.
 ${ }^{5}$ Sparse Reconstruction by Separable Approximation, by Wright, Nowak, and Figueiredo.
 ${ }^{6}$ A First-Order Primal-Dual Alg. for Convex Problems with Applications to Imaging, by Chambolle \& Pock.
 ${ }^{7}$ The Split Bregman Method for L1-Regularized Problems, by Goldstein and Osher.
 ${ }^{8}$ Regularization Path For Generalized linear Models by Coordinate Descent, by Friedman, Hastie and Tibshirani.

[^2]: ${ }^{\text {http: //www.seas.ucla.edu/~vandenbe/236C/lectures/fista.pdf }}$
 ${ }^{10}$ Sparse Optimization Methods, slides by S. Wright.

