AMATH 840: Advanced Numerical Methods for Computational and Data Sciences

Giang Tran

Department of Applied Mathematics, University of Waterloo

Jan 19, 2021

Recall: Greedy Algorithms for Compressive Sensing

Given A ∈ C^{m×n} with unit columns and y ∈ C^m, find a s-sparse vector w ∈ Cⁿ s.t. y = Aw.

$$\mu_1(s) := \max_{k \in [n]} \max\left\{ \sum_{j \in S} |\langle a_k, a_j \rangle|, S \subset [n], |S| = s, k \notin S \right\}.$$
$$\mu(A) := \max_{1 \le k \ne j \le n} |\langle a_k, a_j \rangle|.$$

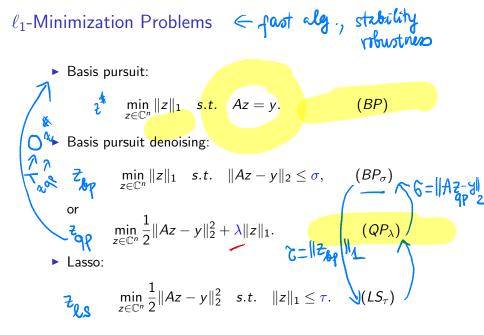
- If Coherence condition, then every s-sparse vector w ∈ Cⁿ is exactly recovered from y = Aw after at most s iterations of the method.
 - For OMP: $\mu_1(s) + \mu_1(s-1) < 1$ or $\mu(A) < \frac{1}{2s-1}$.

• For IHT:
$$\mu_1(2s) < 1$$
 or $\mu(A) < \frac{1}{2s}$.

• For HTP: $2\mu_1(s) + \mu_1(s-1) < 1$ or $\mu(A) < \frac{1}{3s-1}$.

Lecture 05: ℓ_1 -Minimization and Compressive Sensing

- Different ℓ_1 -Minimization Problems and Their Relations
- Popular ℓ_1 -Minimization Algorithms and Available Codes
- Examples of Sparse Optimization Problems
- Exact Recovery of Sparse Vectors via Basis Pursuit: Null Space Property



ℓ_1 -Minimization Problems (cont'd)

Theorem 5.1 (Relations between BP_{σ} , QP_{λ} , and LS_{τ}).

- 1. If z_{qp} is a minimizer of (QP_{λ}) with $\lambda > 0$, then there exists $\sigma = \sigma_{z_{qp}} \ge 0$ such that z_{qp} is a minimizer of (BP_{σ}) .
- 2. If z_{bp} is a unique minimizer of BP_{σ} with $\sigma \ge 0$, then there exists $\tau = \tau_{z_{bp}} \ge 0$ such that z_{bp} is a unique minimizer of (LS_{τ}) .
- 3. If z_{ls} is a minimizer of (LS_{τ}) with $\tau > 0$, then there exists $\lambda = \lambda_{z_{ls}} \ge 0$ such that z_{ls} is a minimizer of QP_{λ} .

Proof Sketch.

- $(QP_{\lambda} \Rightarrow BP_{\sigma})$. Set $\sigma := ||Az_{qp} y||_2$.
- $(BP_{\sigma} \Rightarrow LS_{\tau})$. Set $\tau := ||z_{bp}||_1$.
- (LS_τ ⇒ QP_λ). See Theorem B.28 from "A Mathematical Introduction to Compressive Sensing", by S. Foucart and H. Rauhut.

ℓ_1 -Minimization Problems (cont'd)

With suitable values of σ, λ, τ , the solutions of $BP_{\sigma}, QP_{\lambda}, LS_{\tau}$ coincide.

- If A is orthogonal, a suggestion is $\lambda = \sigma \sqrt{2 \log(n)}$. ¹
- \blacktriangleright In general, the relations among σ,λ,τ cannot be known a priori. 2
- If λ is large enough, the solution of QP_{λ} problem is $z_{\lambda} = 0$.

Theorem 5. (BP vs QP_{λ}). Assume that Aw = y has a solution. For each $\lambda > 0$, let z_{λ} be a minimizer of (QP_{λ}) . If the (BP) problem has a unique solution $z^{\#}$, then

$$\lim_{\lambda\to 0^+} z_{\lambda} = z^{\#}.$$

¹Atomic Decomposition by Basis Pursuit, by Chen, Donoho, and Saunders, SIAM Review, 2001.

²Probing the Pareto frontier for basis pursuit solutions, by E. van den Berg and M. P. Friedlander, SIAM J. on Scientific Computing, 2008.

ℓ_1 -Minimization Problems (cont'd)

Proof Sketch. The detailed proof can be found in Proposition 15.1, "A Mathematical Introduction to Compressive Sensing", by S. Foucart and H. Rauhut.

$$BP: z^{\#} = argmin [||z||_{1} \text{ s.t } y = Az]$$

$$QP_{\lambda}: z_{\lambda} = argmin \frac{1}{2} ||Az - y||_{2}^{R} + \lambda ||z||_{1}$$

 ℓ_1 -Algorithms: SPGL1 win $\|z\|_1$ S.t $\|Az-y\|_2 \leq 6$

- Paper: E. van den Berg and M. P. Friedlander, Probing the Pareto frontier for basis pursuit solutions, SIAM J. on Scientific Computing, 2008.
- ► Goal: Solve BP_{σ} , where σ is approximately known. It is also used to solve the BP ($\sigma = 0$) and Lasso.
- ▶ Main idea: Solve a sequence of Lasso problem $(LS_{\tau_k})_k$ using a spectral projected-gradient algorithm, where the τ_k are the Newton iterates of $\phi(\tau) := ||y Az_\tau||_2 = \sigma$. Here z_τ is the optimal solution of (LS_τ) .
- Matlab codes (from the authors): Download the zip file from https://friedlander.io/spgl1/install
- Python codes:
 - Link: https://spgl1.readthedocs.io/en/latest/index.html.
 - Install the package within your current environment (Google colab, Jupyter notebook,...):
 pip install spgl1

ℓ_1 -Algorithms for (QP_{λ}) Problem $\min_{\lambda} \frac{1}{2} \|Az-y\|_{2}^{2} + \lambda \|z\|_{1}$

- Algorithms: FISTA³, Nesterov's 2nd method⁴, SpaRSA⁵ Primal-dual algorithm⁶, Augmented Lagrangian / Split-Bregman algorithm⁷, ...
- Python packages: scikit-learn package.
 - Link: https://scikit-learn.org/stable/modules/ linear_model.html LASS O $-QP_{\lambda}$ Solve the (QP_{λ}) by coordinate descent method ⁸.

³A Fast Iterative Shrinkage-Thresholding Algorithm, by Beck & Teboulle, SIAM J. Imaging Sciences, 2009. ⁴ Gradient Methods for Minimizing Composite Objective Function, by Nesterov.

⁵ Sparse Reconstruction by Separable Approximation, by Wright, Nowak, and Figueiredo.

⁶A First-Order Primal-Dual Alg. for Convex Problems with Applications to Imaging, by Chambolle & Pock.

The Split Bregman Method for L1-Regularized Problems, by Goldstein and Osher.

Regularization Path For Generalized linear Models by Coordinate Descent, by Friedman, Hastie and Tibshirani.

$\begin{array}{c} \ell_1 \text{-Algorithms for } (QP_{\lambda}) \text{ Problem (cont'd)} \\ \text{Remarks:} & \min \frac{1}{2} \|A_{\tau}^2 - y\|_2^2 + \lambda \|\nabla \theta\|_{\tau} \| \\ \end{pmatrix}$

- ► Global rate of convergence O(1/k²) can be achieved, for example, with FISTA and Nesterov's 2nd method. ⁹
- ► The speed of some algorithms for *l*₁-minimization problems does not depend on *s*, such as the primal-dual algorithm → Use *l*₁-minimization solvers for mildly large *s*.

► Debiasing technique: Suppose z_{sol} is the num. soln. of the (QP_{λ}) problem. Let $S := \sup_{z \in V} (z_{singl})$ and solve

$$\min\{\|Az - y\|_2^2 : \operatorname{supp}(z) \subset S\}.$$

For SpaRSA, when λ is small (more non-zeros in z), solve a sequence of (QP_{λk}) problems, where¹⁰

$$\|\boldsymbol{A}^{\mathcal{T}}\boldsymbol{y}\|_{\infty} > \lambda_0 > \lambda_1 > \cdots > \lambda_{\textit{final}} > 0.$$

⁹ http://www.seas.ucla.edu/~vandenbe/236C/lectures/fista.pdf

¹⁰Sparse Optimization Methods, slides by S. Wright.

Example 1: Solve the BP and BPDN by SPGL1
()Generate Data

$$A \in R$$
 Gaussian Random Motrix
 $M=200, m=50D, s=20$
 $W = a$ Graussian Random $S-sparse$
 $Y = A W_0 \in R^M$ $Y_{noise} = AW_0 + noise$
 $Y = A W_0 \in R^M$ $Y_{noise} = AW_0 + noise$
 $M = 200, m = 50D, s=20$
 $Y = A W_0 \in R^M$ $Y_{noise} = AW_0 + noise$
 $M = 200, m = 50D, s=20$
 $Y = A W_0 \in R^M$ $Y_{noise} = AW_0 + noise$
 $M = 200, m = 50D, s=20$
 $Y = A W_0 \in R^M$ $Y_{noise} = AW_0 + noise$
 $M = 200, m = 50D, s=20$
 $M = 200, m = 50D, s=20$

Example 2: Discover Governing Equations from Limited Data Using Monomial Approximation $\begin{pmatrix} & & & \\ & & & & \\ & & & \\ & & &$

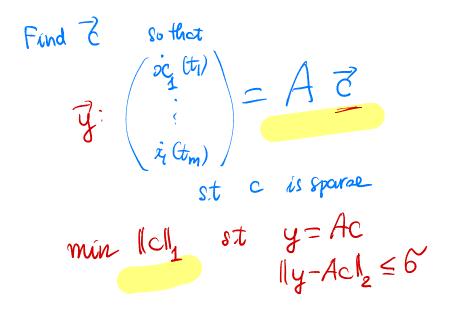
Example 2: Given $\{x^{(k)}\}_{k=1}^m \subset \mathbb{R}^{50}$ are the collections of some short trajectories generated from i.i.d. random initializations of some unknown ODE: $\frac{dx}{dt} = F(x, t), x \in \mathbb{R}^{50}$. Find F.

- Assume F is well-approximated by a polynomial where only a few monomial terms are important (active).
- Simulated data: Training data are obtained from solving the Lorenz 96 system

$$\frac{dx_k}{dt} = -x_{k-2}x_{k-1} + x_{k-1}x_{k+1} - x_k + 8, \, k = 1, ..., 50.$$

Approximate $\frac{dx_k}{dt}$ by finite difference method.

 $\underline{x} = (x_1, ..., x_{50})$ ·, ×50) dt Mathematical formulation: Given f 2, 2, 50 1 Find F1, --, F30 5=1 $\dot{x} = \sqrt{\left(x_{1}, \dots, x_{50}\right)} = \left(c_{0} + c_{1} x_{1} + \dots + c_{50} x_{50} + c_{51} x_{1}^{2} + c_{52} x_{1} x_{2}\right)$ t ... + C 200 x(t) x(t) ... x, x² x(t2) x(t2) $\dot{z}_{i}(t_{1}) =$ $\dot{z}_{i}(t_{2}) =$ mx (su)



Example 3: Learn Nonlinear Functions from Data Using Random Features

Example 3: NACA Sound Dataset from UCI datasets
https://archive.ics.uci.edu/ml/datasets/airfoil+self-noise

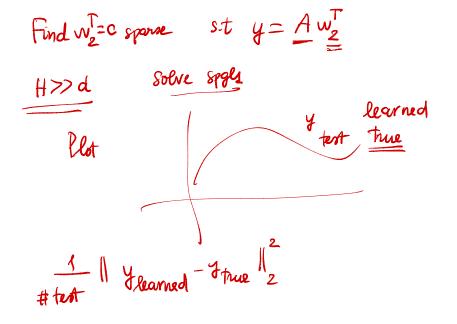
▶ Data description: 1503 data. This problem has the following inputs:

- 1. Frequency, in Hertzs.
- 2. Angle of attack, in degrees.
- 3. Chord length, in meters.
- 4. Free-stream velocity, in meters per second.
- 5. Suction side displacement thickness, in meters.

The only output is: Scaled sound pressure level, in decibels.

• Goal: Learn the function F s.t. Output = F(Inputs).

 $\overrightarrow{x} = (x_1, x_2, x_3, x_4, x_5) \stackrel{\mathsf{H}}{\longmapsto} y \in \mathbb{R}$ Approximation: d= 5 Motivation Shallow net unk ttxd dx1 ¥≈ ₩2,60 + &. W, oc +by build Randomise W, Br build A fix learn -)00 y ~ W At B W_2^{T} , $A = (\mathfrak{F}(W_4 \mathfrak{A} \mathfrak{r} \mathfrak{g}_1))'$ $\mathcal{F} \mathfrak{G} \mathfrak{d} \mathfrak{X} \mathfrak{H}$ Rohu, Sin, tanh,



Null Space Property

 Provide a necessary and sufficient condition for exact recovery of sparse vectors via basis pursuit.

Definition 5.1. A matrix $A \in K^{m \times n}$ is said to satisfy

• The null space property relative to a set $S \subset [n]$ if

 $\|v_S\|_1 < \|v_{S^c}\|_1 \quad \text{for all } v \in \ker A \setminus \{0\}.$

The null space property of order s if it satisfies the null space property relative to any set S ⊂ [n] with |S| ≤ s.