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Recall: Greedy Algorithms for Compressive Sensing

I Given A 2 Cm⇥n with unit columns and y 2 Cm, find a
s-sparse vector w 2 Cn s.t. y = Aw .

I µ1(s) := max
k2[n]

max
n P

j2S
|hak , aji|, S ⇢ [n], |S | = s, k 62 S

o
.

I µ(A) := max
1k 6=jn

|hak , aji|.

I If Coherence condition, then every s-sparse vector w 2 Cn is
exactly recovered from y = Aw after at most s iterations of
the method.

I For OMP: µ1(s) + µ1(s � 1) < 1 or µ(A) <
1

2s � 1
.

I For IHT: µ1(2s) < 1 or µ(A) <
1

2s
. .

I For HTP: 2µ1(s) + µ1(s � 1) < 1 or µ(A) <
1

3s � 1
. .



Lecture 05: `1-Minimization and Compressive Sensing

I Di↵erent `1-Minimization Problems and Their Relations

I Popular `1-Minimization Algorithms and Available Codes

I Examples of Sparse Optimization Problems

I Exact Recovery of Sparse Vectors via Basis Pursuit: Null
Space Property



`1-Minimization Problems

I Basis pursuit:

min
z2Cn

kzk1 s.t. Az = y . (BP)

I Basis pursuit denoising:

min
z2Cn

kzk1 s.t. kAz � yk2  �, (BP�)

or

min
z2Cn

1

2
kAz � yk22 + �kzk1. (QP�)

I Lasso:

min
z2Cn

1

2
kAz � yk22 s.t. kzk1  ⌧ . (LS⌧ )

← fast alg , stability
robustness
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`1-Minimization Problems (cont’d)

Theorem 5.1 (Relations between BP�, QP�, and LS⌧ ).

1. If zqp is a minimizer of (QP�) with � > 0, then there exists
� = �zqp

� 0 such that zqp is a minimizer of (BP�).

2. If zbp is a unique minimizer of BP� with � � 0, then there
exists ⌧ = ⌧zbp � 0 such that zbp is a unique minimizer of
(LS⌧ ).

3. If zls is a minimizer of (LS⌧ ) with ⌧ > 0, then there exists
� = �zls

� 0 such that zls is a minimizer of QP�.

Proof Sketch.

I (QP� ) BP�). Set � := kAzqp � yk2.

I (BP� ) LS⌧ ). Set ⌧ := kzbpk1.

I (LS⌧ ) QP�). See Theorem B.28 from “A Mathematical
Introduction to Compressive Sensing”, by S. Foucart and H. Rauhut.



`1-Minimization Problems (cont’d)

With suitable values of �,�, ⌧ , the solutions of BP�,QP�, LS⌧
coincide.

I If A is orthogonal, a suggestion is � = �
p
2 log(n). 1

I In general, the relations among �,�, ⌧ cannot be known a
priori. 2

I If � is large enough, the solution of QP� problem is z� = 0.

Theorem 5.1.(BP vs QP�). Assume that Aw = y has a
solution. For each � > 0, let z� be a minimizer of (QP�). If
the (BP) problem has a unique solution z#, then

lim
�!0+

z� = z#.

1
Atomic Decomposition by Basis Pursuit, by Chen, Donoho, and Saunders, SIAM Review, 2001.

2
Probing the Pareto frontier for basis pursuit solutions, by E. van den Berg and M. P. Friedlander, SIAM J. on

Scientific Computing, 2008.

:



`1-Minimization Problems (cont’d)

Proof Sketch. The detailed proof can be found in Proposition
15.1, “A Mathematical Introduction to Compressive Sensing”, by
S. Foucart and H. Rauhut.

BP : z
#
=argminf.KZ/ks.ty=AzYZQPj.zx=argmin12llAZ-y1£ -1 ✗ 112-11

,

2-



`1-Algorithms: SPGL1

I Paper: E. van den Berg and M. P. Friedlander, Probing the Pareto
frontier for basis pursuit solutions, SIAM J. on Scientific
Computing, 2008.

I Goal: Solve BP�, where � is approximately known. It is also used to
solve the BP (� = 0) and Lasso.

I Main idea: Solve a sequence of Lasso problem (LS⌧k )k using a
spectral projected-gradient algorithm, where the ⌧k are the Newton
iterates of �(⌧) := ky � Az⌧k2 = �. Here z⌧ is the optimal solution
of (LS⌧ ).

I Matlab codes (from the authors): Download the zip file from

https://friedlander.io/spgl1/install

I Python codes:
I Link: https://spgl1.readthedocs.io/en/latest/index.html.
I Install the package within your current environment (Google

colab, Jupyter notebook,...):
pip install spgl1

min 112-111 S.tl/Az-yllaE6y
z



`1-Algorithms for (QP�) Problem

I Algorithms: FISTA 3, Nesterov’s 2nd method 4, SpaRSA 5,
Primal-dual algorithm6, Augmented Lagrangian /
Split-Bregman algorithm7, . . .

I Python packages: scikit-learn package.
I Link: https://scikit-learn.org/stable/modules/

linear_model.html

I Solve the (QP�) by coordinate descent method 8.

3
A Fast Iterative Shrinkage-Thresholding Algorithm, by Beck & Teboulle, SIAM J. Imaging Sciences, 2009.

4
Gradient Methods for Minimizing Composite Objective Function, by Nesterov.

5
Sparse Reconstruction by Separable Approximation, by Wright, Nowak, and Figueiredo.

6
A First-Order Primal-Dual Alg. for Convex Problems with Applications to Imaging, by Chambolle & Pock.

7
The Split Bregman Method for L1-Regularized Problems, by Goldstein and Osher.

8
Regularization Path For Generalized linear Models by Coordinate Descent, by Friedman, Hastie and

Tibshirani.

min £ HAZ-YAY -1×112-111
2-
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`1-Algorithms for (QP�) Problem (cont’d)

Remarks:

I Global rate of convergence O(1/k2) can be achieved, for example,
with FISTA and Nesterov’s 2nd method. 9

I The speed of some algorithms for `1-minimization problems does
not depend on s, such as the primal-dual algorithm ! Use
`1-minimization solvers for mildly large s.

I Debiasing technique: Suppose zsol is the num. soln. of the (QP�)
problem. Let S := supp(zfinal) and solve

min{kAz � yk22 : supp(z) ⇢ S}.

I For SpaRSA, when � is small (more non-zeros in z), solve a
sequence of (QP�k

) problems, where10

kAT yk1 > �0 > �1 > · · · > �final > 0.

9
http://www.seas.ucla.edu/~vandenbe/236C/lectures/fista.pdf

10
Sparse Optimization Methods, slides by S. Wright.
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Example 1: Solve the BP and BPDN by SPGL1

①Generate Data

A c- Rm×
"

Gaussian Random Matrix

M-200, m=
500
,
8=20 .

c-

Wo = a rftaussian
Random 8- sparse

if = AWOEIRM Ynoise= Awo + noise

solve F-
noiseleveler

11

②solve miwllwlliss.tAW-YY.nl/wlks.tllAw-y1bi-6-w#arnedT-wo.IE#:Wrecovered



Example 2: Discover Governing Equations from Limited Data Using

Monomial Approximation

Example 2: Given {x (k)}m
k=1 ⇢ R50 are the collections of some

short trajectories generated from i.i.d. random initializations of

some unknown ODE:
dx

dt
= F (x , t), x 2 R50. Find F .

I Assume F is well-approximated by a polynomial where only a
few monomial terms are important (active).

I Simulated data: Training data are obtained from solving the
Lorenz 96 system

dxk
dt

= �xk�2xk�1 + xk�1xk+1 � xk + 8, k = 1, ..., 50.

Approximate
dxk
dt

by finite di↵erence method.
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I Mathematical formulation:

= Gcs , - , %) d✗k_=Fq(xz, . . . ,xso)
dt

Given { oÉ
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Find I so that

icsctil
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Example 3: Learn Nonlinear Functions from Data Using Random

Features

Example 3: NACA Sound Dataset from UCI datasets
https://archive.ics.uci.edu/ml/datasets/airfoil+self-noise

I Data description: 1503 data. This problem has the following inputs:

1. Frequency, in Hertzs.
2. Angle of attack, in degrees.
3. Chord length, in meters.
4. Free-stream velocity, in meters per second.
5. Suction side displacement thickness, in meters.

The only output is: Scaled sound pressure level, in decibels.

I Goal: Learn the function F s.t. Output = F(Inputs).

/



I Approximation:
ñ=cxik.kz?4P8-Ti-Jyc-IRd--sMotivalion-Shallow network
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Null Space Property

I Provide a necessary and su�cient condition for exact recovery
of sparse vectors via basis pursuit.

Definition 5.1. A matrix A 2 Km⇥n is said to satisfy

I The null space property relative to a set S ⇢ [n] if

kvSk1 < kvSck1 for all v 2 kerA \ {0}.

I The null space property of order s if it satisfies the null
space property relative to any set S ⇢ [n] with |S |  s.


