AMATH 840: Advanced Numerical Methods for Computational and Data Sciences

Giang Tran

Department of Applied Mathematics, University of Waterloo

Jan 14, 2021

Lecture 06:

 ℓ_1 -Minimization and Compressive Sensing (cont'd)

I ast time:

- Different ℓ_1 -Minimization Problems and Popular ℓ_1 -Minimization Algorithms.
- Examples of Sparse Optimization Problems: How to Construct Measurement Matrix A.
- Today: Exact Recovery of Sparse Vectors via Basis Pursuit.

Null Space Property J. Chapter 4
Stability "A Moth Introduction to Compressive Sensing" by S. Forcart & H. Rauluit

ℓ_1 -Minimization Problems

Models:

Basis pursuit:

$$\min_{z\in\mathbb{C}^n} \|z\|_1 \quad s.t. \quad Az=y. \tag{BP}$$

Basis pursuit denoising:

$$\begin{split} \min_{z \in \mathbb{C}^n} \|z\|_1 \quad s.t. \quad \|Az - y\|_2 \le \sigma, \qquad (BP_{\sigma}) \\ \min_{z \in \mathbb{C}^n} \frac{1}{2} \|Az - y\|_2^2 + \lambda \|z\|_1. \qquad (QP_{\lambda}) \end{split}$$

Lasso:

or

$$\min_{z \in \mathbb{C}^n} \frac{1}{2} \|Az - y\|_2^2 \quad s.t. \quad \|z\|_1 \le \tau. \qquad (LS_{\tau})$$

• With suitable σ, λ, τ , the solutions of $BP_{\sigma}, QP_{\lambda}, LS_{\tau}$ coincide.

- ▶ BP vs QP_{λ} : $\lim_{\lambda \to 0^+} z_{QP_{\lambda}} = z_{bp}$, provided that the (BP) has a unique solution z_{bp} .
- Algorithms: SPGL1, SpaRSA, Primal-Dual, FISTA, Nesterov's 2nd method, Augmented Lagrangian/Split-Bregman, coordinate descent,...

ℓ_1 -Minimization and Regression Problem

▶ Input: $\{x_k, y_k\}_{k=1}^m \subset \mathbb{R}^d \times \mathbb{R}$. Learn $f : \mathbb{R}^d \to \mathbb{R}$ s.t. $f(x_k) \approx y_k, \ \forall k = 1, \ldots, m.$

Step 1: Split data in training and testing data.

Step 2: Choose a model:

- Linear model: Assume $f(x) = x^T w + w_0$, where $x, w \in \mathbb{R}^d, w_0 \in \mathbb{R}.$
- Nonlinear models: Assume f can be approximated by multivariate polynomials or orthogonal bases, $\frac{1}{2} = (x_1, x_2, \dots, x_n)$ linearited $f(x) = w_0 + w_1 x_1 + w_2 x_2 + \ldots + w_d x_d + w_{d+1} x_1^2 + w_{d+2} x_1 x_2 + \ldots$

 $\dots + w_{2d}x_1x_d + w_{2d+1}x_2^2 + \dots + w_rx_r^p$. P: hyperparameter

or the random feature approach - choose *n* randomized vectors MJ71 $\omega_k \in \mathbb{R}^d$ and fix those weights: _ d

$$f(x) = \sum_{k=1}^{n} w_k \sigma(\langle x, \omega_k \rangle). \quad \text{Random V}_{\text{pix}} u_{\text{pix}}$$

$\ell_1\text{-}\mathsf{Minimization}$ and Regression Problem

Final Step: Compute test errors and suitable plots.

Basis Pursuit: Reconstruction Guarantees Aw = A Z $\min_{z \in \mathbb{C}^n} ||z||_1 \quad \text{s.t.} \quad y = Az.$ (BP) **Question:** Study conditions on A that ensure exact reconstruction of every sparse vector $w \in \mathbb{C}^n$ as a solution of (*BP*) with the vector $y \in \mathbb{C}^m$ obtained as y = Aw. Ground-truth sparal

Null Space Property

Provide a necessary and sufficient condition for exact recovery of sparse vectors via basis pursuit.

Definition 6.1. A matrix $A \in \mathbb{K}^{m \times n}$ is said to satisfy • The null space property (NSP) relative to a set $S \subset [n]$ if $\|v_S\|_1 < \|v_{S^c}\|_1 \quad \forall \ v \in \ker A \setminus \{0\}.$ • The null space property of order s if $\|v_S\|_1 < \|v_{S^c}\|_1, \quad \forall \ v \in \ker A \setminus \{0\}, \ \forall S \subset [n] \text{ with } |S| \le s.$

Here $\mathbb{K} = \mathbb{R}$ or \mathbb{C} .

Null Space Property – Equivalent Conditions

"Given" $w \in \mathbb{C}^n$ sparse, solve:

$$\min_{z\in\mathbb{C}^n}\|z\|_1\quad\text{s.t.}\quad Aw=Az.$$

Recall: The ℓ_p error of best s-term approximation to a vector x is given by $\sigma_s(x)_p := \inf\{||x - z||_p : z \in \mathbb{C}^n \text{ is } s\text{-sparse}\}.$

Null Space Property - Exact Recovery Theorem Chapter 4

> **Theorem 6.2.** Given $A \in \mathbb{K}^{m \times n}$, every *s*-sparse vector $w \in \mathbb{K}^n$ is the unique solution of $\min_{z \in \mathbb{K}^n} \|z\|_1 \quad \text{s.t.} \quad Aw = Az$ if and only if A satisfies the null space property of order *s*.

See Theorem 4.4 in the Reference.

E Suppose A satisfies the NSP. IIvsU < IIvsc Voelog let we be a s-spanse vector. Suppw=S, IS <s< th=""></s<>
$z \in \mathbb{C}^{n}$: $Az = Aw$ Claim: $\ w\ _{1} < \ z\ _{1}$
Notation $z_{S} \in \mathbb{C}^{n}$: O obtaide the index set <u>S</u> $z_{SC} \in \mathbb{C}^{n}$: O outside <u>S</u> ²
Let $v = z - w \stackrel{\circ}{=} e C'$, $v \in kerA - dy$ $v_{g} = z_{g} - w_{g} = z_{g} - w$ $v_{g} = z_{g} - w_{g} = $
$=$ $=$ $=$ $=$ z_{sc}

 $\|w\|_{1} \leq \|w - z_{\underline{S}}\|_{1} + \|z_{\underline{S}}\|_{1} = \|v_{\underline{S}}\|_{1} + \|z_{\underline{S}}\|_{1}$ $\|v_{sc}\|_{1} + \|z_{s}\|_{1}$ $\| z_{SC} \|_{1}^{+} \| (z_{S} \|_{1}^{-} = \| z \|_{1}^{-}$

(a) let
$$S \subset M$$
, $|S| \leq s$.
Take $v \in ker A - fo$. Claim $||v_S||_1 < ||v_S \circ||_1$.
Counider min $||Z||_1$ set $AZ = Av_S \iff$
 $Z \in \mathbb{C}^n$
Then $v_S \in \mathbb{C}^n$ is a s-sparse solution of \circledast

Null Space Property - ℓ_0 and ℓ_1 Models

Theorem 6.3. If $A \in \mathbb{K}^{m \times n}$ satisfies the NSP of order *s* then for every y = Aw with *s*-sparse *w*, the basis pursuit problem solves the ℓ_0 -minimization problem. That is, the solution of the basis pursuit problem is the solution of the ℓ_0 -minimization problem.

w = argmin 1/21/1 Az=Aw S-8pare Experience of BP $z_{*} \in \operatorname{argmin} \|z\|_{o}$ Az=AWot $\leq \|w\|_{\sim} \leq S$

Null Space Property

Theorem 6.4. If $A \in \mathbb{K}^{m \times n}$ satisfies the NSP of order *s*, the following matrices also satisfy the NSP of order *s*:

 $\hat{A} := GA$, where $G \in \mathbb{K}^{m imes m}$ is some invertible matrix, $\widetilde{A} := \begin{bmatrix} A \\ B \end{bmatrix}$, where $B \in \mathbb{K}^{m' imes n}$.

Remark:

- If A ∈ ℝ^{m×n} satisfies the NSP of order s, there exists matrix H ∈ ℝ^{n×n} such that AH does not satisfy the NSP.
- The above theorem indicates that the sparse recovery property of basis pursuit is preserved if some measurements are rescaled, reshuffled, or added.

Â= GA. $\widetilde{A} = \left[\frac{A}{B}\right]$

Kor A = Kor A

Ken A C Ken A.

Stable Null Space Property - Verification Theorem

Theorem 6.5. The matrix $A \in \mathbb{C}^{m \times n}$ satisfies the stable null space property of order *s* with constant $0 < \rho < 1$ relative to a set $S \subset [n]$ if and only if $\|z - x\|_1 \leq \frac{1 + \rho}{1 - \rho} (\|z\|_1 - \|x\|_1 + 2\|x_{S^c}\|_1),$ for all vectors $x, z \in \mathbb{C}^n$ with Az = Ax.

See Theorem 4.14. in the Reference.

$$\|a+b\|_{1} \leq \|a\|_{1} + \|b\|$$

Stable Sparse Recovery

Theorem 6.6. Suppose that $A \in \mathbb{C}^{m \times n}$ satisfies the stable null space property of order *s* with constant $0 < \rho < 1$. Then for any $w \in \mathbb{C}^n$, a solution $w^{\#}$ of the basis pursuit, $\min_{z} \|z\|_1 \quad s.t. \quad Az = Aw, \quad \text{role } W \quad \text{can}$ be dome $\|w - w^{\#}\|_{1} \leq \frac{2(1+\rho)}{1-\rho}\sigma_{s}(w)_{1}$ = inf $\mathbb{Z} \|W - 2\|_{1}$ approximates the vector w with ℓ_1 -error: O when wis well See Theorem 4.12 in the reference. **Remark:** If $A \in \mathbb{C}^{m \times n}$ satisfies the stable null space property of my order s with constant $0 < \rho < 1$, the basis pursuit may have more than one solution.

Robust Null Space Property Study min $\|z\|_1$ s.t $\|y - Az\| \leq 2$

Definition 6.3. A matrix $A \in \mathbb{C}^{m \times n}$ is said to satisfy

The robust null space property w.r.t. || · || with constants 0 < ρ < 1 and τ > 0 relative to a setS ⊂ [n] if

$$\|v_{\mathcal{S}}\|_{1} \leq \rho \|v_{\mathcal{S}^{c}}\|_{1} + \tau \|Av\| \quad \forall v \in \mathbb{C}^{n}.$$

► The stable null space property of order s with constant 0 < ρ < 1 if</p>

 $\|v_S\|_1 \leq \rho \|v_{S^c}\|_1 + \tau \|Av\| \quad \forall v \in \mathbb{C}^n, \ \forall S \subset [n] \text{ with } |S| \leq s.$

Robust Sparse Recovery

Theorem 6.7. Suppose a matrix $A \in \mathbb{C}^{m \times n}$ satisfies the robust null space property of order *s* with constant $0 < \rho < 1$ and $\tau > 0$. Then for any $w \in \mathbb{C}^n$, a solution $w^{\#}$ of the BPDN:

$$\min_{z} \|z\|_1 \quad s.t. \quad \|Az-y\| \leq \eta,$$

with y = Aw + e and $||e|| \le \eta$ approximates the vector w with ℓ_1 -error:

$$\|w - w^{\#}\|_{1} \leq \frac{2(1+\rho)}{1-\rho}\sigma_{s}(w)_{1} + \frac{4\tau}{1-\rho}\eta.$$

ℓ₂-Robust Null Space Property

Definition 6.4. A matrix $A \in \mathbb{C}^{m \times n}$ is said to satisfy the ℓ_2 -robust null space property of order *s* w.r.t. $\|\cdot\|$ with constants $0 < \rho < 1$ and $\tau > 0$ if

RNSP : 11/1, < 8/12 20 1+6/44

$$\|v_{\mathcal{S}}\|_2 \leq \frac{\rho}{s^{1/2}} \|v_{\mathcal{S}^c}\|_1 + \tau \|Av\| \quad \forall v \in \mathbb{C}^n, \ \forall \mathcal{S} \subset [n] \text{ with } |\mathcal{S}| \leq s.$$

Theorem 6.8. Suppose the matrix $A \in \mathbb{C}^{m \times n}$ is said to satisfy the ℓ_2 -robust null space property of order s w.r.t. $\|\cdot\|_2$ with constants $0 < \rho < 1$ and $\tau > 0$. Then for any $w \in \mathbb{C}^n$, a solution $w^{\#}$ of the BPDN:

$$\min_{z} \|z\|_1 \quad s.t. \quad \|Az-y\|_2 \leq \eta,$$

with y = Aw + e and $||e||_2 \le \eta$ approximates the vector w with ℓ_p -error:

$$\|w - w^{\#}\|_{p} \leq \frac{C}{s^{1-1/p}}\sigma_{s}(w)_{1} + Ds^{1/p-1/2}\eta, 1 \leq p \leq 2,$$

for some constants C, D depending only on ρ and τ .

ℓ_2 -Robust Null Space Property

Definition 6.4. A matrix $A \in \mathbb{C}^{m \times n}$ is said to satisfy the ℓ_2 -robust null space property of order *s* w.r.t. $\|\cdot\|$ with constants $0 < \rho < 1$ and $\tau > 0$ if

$$\|v_{\mathcal{S}}\|_2 \leq \frac{\rho}{s^{1/2}} \|v_{\mathcal{S}^c}\|_1 + \tau \|Av\| \quad \forall v \in \mathbb{C}^n, \ \forall \mathcal{S} \subset [n] \text{ with } |\mathcal{S}| \leq s.$$

Theorem 6.8. Suppose the matrix $A \in \mathbb{C}^{m \times n}$ is said to satisfy the ℓ_2 -robust null space property of order s w.r.t. $\|\cdot\|_2$ with constants $0 < \rho < 1$ and $\tau > 0$. Then for any $w \in \mathbb{C}^n$, a solution $w^{\#}$ of the BPDN:

$$\min_{z} \|z\|_{1} \quad s.t. \quad \|Az - y\|_{2} \leq \eta,$$

with y = Aw + e and $||e||_2 \le \eta$ approximates the vector w with ℓ_p -error:

$$\|w - w^{\#}\|_{p} \leq \frac{C}{s^{1-1/p}}\sigma_{s}(w)_{1} + Ds^{1/p-1/2}\eta, 1 \leq p \leq 2,$$

for some constants C, D depending only on ρ and τ .

$$\|v - w^{\#}\|_{1} \leq C \, g_{s}(w)_{1} + D \sqrt{s} \, y$$

$$\|v - w^{\#}\|_{2} \leq \frac{C}{\sqrt{s}} \, g_{s}(w)_{1} + D y$$
For supervised learning, we are instructed in generalized
error;

$$\|f^{\text{learned}}_{p} - f^{\text{true}}\|_{2} \leq \frac{2}{\sqrt{s}}$$

$$\|f^{\text{learned}}_{p} - f^{\text{true}}\|_{2} \leq \frac{2}{\sqrt{s}}$$

$$\|f^{\text{learned}}_{p} - f^{\text{true}}\|_{2} \leq \frac{2}{\sqrt{s}}$$