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Lecture 06:

¢1-Minimization and Compressive Sensing (cont'd)

» Last time:

» Different ¢;-Minimization Problems and Popular
£1-Minimization Algorithms.

» Examples of Sparse Optimization Problems: How to Construct
Measurement Matrix A.

» Today: Exact Recovery of Sparse Vectors via Basis Pursuit.
» Null Space Property %Q{‘\“U‘ 4‘
> Stability ‘& Moty _Mkwdudam Ao

» Robustness
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/1-Minimization Problems

» Models:
» Basis pursuit:
n
i it Az=y. BP
3 min 2l st Az=y (8P)
? » Basis pursuit denoising:
' minlzle st [Az—yl <o, (BP)
or )
min 1Az = yl3 + Azl (QPy)
» Lasso:

1
min Az =yl se lZdli<T (LS

> With suitable o, A, 7, the solutions of BP,, QP», LS. coincide.
> BP vs QPx: XIim+ zQp, = Zpp, provided that the (BP) has a unique
—0

solution zp,.
bR

» Algorithms: SPGL1, SpaRSA, Primal-Dual , FISTA, Nesterov's 2nd
method, Augmented Lagrangian/Split-Bregman, coordinate descent,...



¢1-Minimization and Regression Problem

> Input: {x¢,yk}7, CRIxR. Learn f : R — R s.t.
f(Xk)%yk, Vk = 1,...,m.

> Step 1: Split data in training and testing data.

> Step 2: Choose a model:

» Linear model: Assume f(x) = xTw -+ wp, where
x,w € R wy € R,
» Nonlinear models: Assume f can be approximated by T

V}\ multivariate polynomials or—z)_rthogonal bases, 0—8 :(,’Q}U.. ,Ia)
M f(X) =wp + wixy + woXxo + ...+ Wyxy + Wd+1X12 + Wy oX1 X2+
/\g‘wp 2 P hyperparmmee

e WogX1Xg + Wogp1 Xy ...+ Wrxg.
or the random feature approach - choose n randomized vectors
wk € R? and fix those weights: Ry w77 1
n eﬂw
f(x) = Z Wk%(<x7 Wk))- @“(‘W( Wi
k=1
Nlivear aal



¢1-Minimization and Regression Problem

» Step 3: Formulate the optimization problem with mean-squared
error loss — Impose sparsity constraint. m= % Tm’n&né oledfe
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» Step 4: Solve thfioptimization problem using spgll, omp, LASSO...
» Qutput: The learned weights w and the learned function f.# Sikdo,

> Final Step: Compute test errors and suitable plots.









Basis Pursuit: Reconstruction Guarantees

Anv=~z
min ||z]]z sty T Az . Cg @

zeCn

Question: Study conditions on A that ensure exact reconstruction
of every sparse vector w € C" as a solution of (BP) with the
vector y € C™ obtained as y = Aw.




Null Space Property

> Provide a necessary and sufficient condition for exact recovery
of sparse vectors via basis pursuit.

Definition 6.1. A matrix A € K™*" is said to satisfy
» The null space property (NSP) relative to a set S C [n] if

llvsll1 < ||lvse|l1 ¥V v € ker A\ {0}.
» The null space property of order s if

llvsll1 < |lvse|l1, VY v & kerA\ {0}, VS C [n] with |S| <.

Here K = R or C.



Null Space Property — Equivalent Conditions

“Given” w € C" sparse, solve:

min [|z]]; st Aw = Az.
zeCn

Theorem 6.1. The following statements are equivalent:

> The matrix A satisfies the NSP of order s.

> |lvs|l1 < ||vsc]lz for all v € ker A\ {0}, VS C [n] with |S| < s.
2||lvslls < |lv]lz for all v € ker A\ {0}, VS C [n] with |S| <'s.
2||vslls < ||v]lz for all v € ker A\ {0} and

S = {indices of s largest ab. entries of v}.
[vily < 2||vse|ly for all v € ker A\ {0}, VS C [n] with |S| <'s.
V]l < 20s(v)1, forall v €kerA\ {0}.

v
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Recall: The ¢, error of best s-term approximation to a vector x is
given by os(x)p :=inf{||x — z||[p: z € C" is s-sparse}.



Null Space Property - Exact Recovery Theorem

Theorem 6.2. Given A € K™ every s-sparse vector w €
K" is the unique solution of

min ||z|s st. Aw = Az
zeKn

if and only if A satisfies the null space property of order s.

See Theorem 4.4 in the Reference.
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Null Space Property - ¢y and ¢; Models
2y =2 ko

Theorem 6.3. If A € K™*" satisfies the NSP of order s
then for every y = Aw with s-sparse w, the basis pursuit
problem solves the fp-minimization problem. That is, the
solution of the basis pursuit problem is the solution of the
£o-minimization problem.
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Null Space Property

Theorem 6.4. If A €¢ K™% satisfies the NSP of order s, the
following matrices also satisfy the NSP of order s:

A:= GA, where G € K™ is some invertible matrix,

A= [2} ., where Be K™

\.

Remark:
» If Ac K™*" satisfies the NSP of order s, there exists matrix
H € K" such that AH does not satisfy the NSP.
» The above theorem indicates that the sparse recovery property
of basis pursuit is preserved if some measurements are
rescaled, reshuffled, or added.






Stable Null Space Property /g(
: - Aw
%on\;.é( win k2l st A= AL
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Definition 6.2. A matrix A € C™*" is said to satisfy
» The stable null space property with constant 0 < p < 1

lvslli < pllvsellr Vv € ker A.

> The stable null space property of order s with constant
O<p<lif

lvslli < pllvse|l1 Vv € ker A, VS C [n] with |S| < s.

5

relative to a setS C [n] if NSP - (l\?—S “i< (| &
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Stable Null Space Property - Verification Theorem

Theorem 6.5. The matrix A € C™*" satisfies the stable null
space property of order s with constant 0 < p < 1 relative to
aset S C [n] if and only if

S1-, (2l = lIxfl 4 2ffxs<]l1) ,

for all vectors x,z € C" with Az = Ax.

See Theorem 4.14. in the Reference.

Ha%w < Nl (&,



Stable Sparse Recovery

Theorem 6.6. Suppose that A € C™*" satisfies the stable
null space property of order s with constant 0 < p < 1. Then
for any w € C", a solution w# of the basis pursuit,

conn
minlzly st Az=Aw, Mokt Ww

approximates the vector w with ¢1-error: ‘ ‘\,\\\N /%\\s

2

2ok il
lw — w1 < (1+p) os(w)s. %‘.S’W e

. Y
See Theorem 4.12 in the reference. O 'V‘!/\'-"’\ W4l \‘/‘UL

Remark: If A € C™*" satisfies the stable null space property on«

order s with constant 0 < p < 1, the basis pursuit may have more ‘”3'

than one solution. \oait S’W
o4 ("7




Robust Null Space Property

Stwdy, flall, st ly-Azll < ”I/

Definition 6.3. A matrix A € C™*" is said to satisfy

» The robust null space property w.r.t. || - || with constants
0 < p<1and7 >0 relative to a setS C [n] if

lvslls < plivsellr + 7l|Av]] Vv eC"

> The stable null space property of order s with constant
O<p<lif

llvslli < pllvse|ls + 7]|Av|| Vv € C", VS C [n] with |S| <'s.




Robust Sparse Recovery

Theorem 6.7. Suppose a matrix A € C™*" satisfies the
robust null space property of order s with constant 0 < p < 1
and 7 > 0. Then for any w € C", a solution w# of the
BPDN:

min 2l st [Az—y] <.

with y = Aw + e and ||e|| < n approximates the vector w
with /1-error:

2(1+p) " 4t

Iw— wh < =




¢»-Robust Null Space Property RNSP - “\%“L $Q\N9°“1+C(M

Definition 6.4. A matrix A € C™*" is said to satisfy the ¢,-robust null
space property of order s w.r.t. || - || with constants 0 < p <1 and 7 > 0
if

HMbgﬁ%wy1+ﬂMm Yv € C", VS C [n] with |S| < s.

Theorem 6.8. Suppose the matrix A € C™*" is said to satisfy the /5-
robust null space property of order s w.r.t. ||-||> with constants 0 < p < 1
and 7 > 0. Then for any w € C", a solution w# of the BPDN:

min[|zlly s.t. [|Az = y[la <,
with y = Aw + e and ||e|» < 1 approximates the vector w with ¢,-error:
# ¢ 1/p=1/2
lw = wllp < =7, 05(w)1 + Ds n1<p<2

for some constants C, D depending only on p and 7.




¢»-Robust Null Space Property

Definition 6.4. A matrix A € C™*" is said to satisfy the ¢,-robust null
space property of order s w.r.t. || - || with constants 0 < p <1 and 7 >0
if

HMbgﬁ%wy1+ﬂMm Yv € C", VS C [n] with |S| < s.

Theorem 6.8. Suppose the matrix A € C™*" is said to satisfy the /5-
robust null space property of order s w.r.t. ||-||> with constants 0 < p < 1
and 7 > 0. Then for any w € C", a solution w# of the BPDN:

minflzly st [Az -yl <,
with y = Aw + e and ||e|» < 1 approximates the vector w with ¢,-error:

lw — w#l, < (w)1 + Ds*/P~*?p, 1< p <2,

.0
sl=1/p "%

for some constants C, D depending only on p and 7.
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