AMATH 840: Advanced Numerical Methods for Computational and Data Sciences

Giang Tran
Department of Applied Mathematics, University of Waterloo

Jan 2021

Lecture 06:

ℓ_{1}-Minimization and Compressive Sensing (cont'd)

- Last time:
- Different ℓ_{1}-Minimization Problems and Popular ℓ_{1}-Minimization Algorithms.
- Examples of Sparse Optimization Problems: How to Construct Measurement Matrix A.
- Today: Exact Recovery of Sparse Vectors via Basis Pursuit.
- Null Space
- Robustness

ℓ_{1}-Minimization Problems

- Models:
- Basis pursuit:

$$
\begin{equation*}
\min _{z \in \mathbb{C}^{n}}\|z\|_{1} \quad \text { s.t. } \quad A z=y \tag{BP}
\end{equation*}
$$

- Basis pursuit denoising:

$$
\min _{z \in \mathbb{C}^{n}}\|z\|_{1} \quad \text { s.t. } \quad\|A z-y\|_{2} \leq \sigma, \quad\left(B P_{\sigma}\right)
$$

or

$$
\min _{z \in \mathbb{C}^{n}} \frac{1}{2}\|A z-y\|_{2}^{2}+\lambda\|z\|_{1}
$$

- Lasso:

$$
\min _{z \in \mathbb{C}^{n}} \frac{1}{2}\|A z-y\|_{2}^{2} \quad \text { s.t. } \quad\|z\|_{1} \leq \tau
$$

- With suitable σ, λ, τ, the solutions of $B P_{\sigma}, Q P_{\lambda}, L S_{\tau}$ coincide.
- BP vs $Q P_{\lambda}: \lim _{\lambda \rightarrow 0^{+}} z_{Q P_{\lambda}}=z_{b p}$, provided that the (BP) has a unique solution $z_{b p}$.
- Algorithms: SPGL1, SpaRSA, Primal-Dual,FISTA, Nesterov's 2nd method, Augmented Lagrangian/Split-Bregman, coordinate descent,...

ℓ_{1}-Minimization and Regression Problem

- Input: $\left\{x_{k}, y_{k}\right\}_{k=1}^{m} \subset \mathbb{R}^{d} \times \mathbb{R}$. Learn $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ s.t.
$f\left(x_{k}\right) \approx y_{k}, \forall k=1, \ldots, m$.
- Step 1: Split data in training and testing data.
- Step 2: Choose a model:
- Linear model: Assume $f(x)=x^{\top} w+w_{0}$, where $x, w \in \mathbb{R}^{d}, w_{0} \in \mathbb{R}$.
- Nonlinear models: Assume f can be approximated by multivariate polynomials or orthogonal bases, $\overrightarrow{X C}=\left(x_{1}, x_{2}, \ldots, x_{d}\right)$

$$
\begin{aligned}
f(x)= & w_{0}+w_{1} x_{1}+w_{2} x_{2}+\ldots+w_{d} x_{d}+w_{d+1} x_{1}^{2}+w_{d+2} x_{1} x_{2}+ \\
& \ldots+w_{2 d} x_{1} x_{d}+w_{2 d+1} x_{2}^{2}+\ldots+w_{r} x_{d}^{p} . \quad \text { p: hyperparameter }
\end{aligned}
$$

or the random feature approach - choose n randomized vectors $\omega_{k} \in \mathbb{R}^{d}$ and fix those weights:
$n \gg 1$

$$
f(x)=\sum_{k=1}^{n} w_{k} \sigma\left(\left\langle x, \omega_{k}\right\rangle\right) .
$$

ℓ_{1}-Minimization and Regression Problem

- Step 3: Formulate the optimization problem with mean-squared error loss - Impose sparsity constraint. $\quad m=$ \# training data
linear

$$
\begin{aligned}
& \text { Matrix malt. } \\
& \text { Matrix malt. } \\
& \approx y_{k} \\
& \left(\begin{array}{c}
-x_{(1)}^{\top}- \\
-x_{(2)}^{\top} \\
\vdots \\
-x_{(m)}^{\top}
\end{array}\right) \vec{\omega}=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n s}
\end{array}\right)_{l}^{l_{0}} l_{1}
\end{aligned}
$$

- Step 4: Solve the optimization problem using spgl1, omp, LASSO...
- Output: The learned weights w and the learned function f. scilctlear
- Final Step: Compute test errors and suitable plots.

$$
\begin{aligned}
& \text { MSE }=\frac{1}{\mid \text { tout } \mid}\left\|f^{\#}\left(x_{\text {test }}\right)-y_{\text {test }}\right\|_{2}^{2} \\
& \text { Relativetet error }=\frac{\left\|f^{\#}\left(x_{\text {test }}\right)-y_{\text {test }}\right\|_{2}^{2}}{\left\|y_{\text {text }}\right\|_{2}^{2}}
\end{aligned}
$$

Simulated Data \rightarrow Real Date know twee sen W plot true coy vs, learned coy.

Basis Pursuit: Reconstruction Guarantees

$$
\begin{align*}
\qquad & A W=A z \\
\min _{z \in \mathbb{C}^{n}}\|z\|_{1} & \text { s.t. } y \overparen{T}=A z . \tag{BP}
\end{align*}
$$

Question: Study conditions on A that ensure exact reconstruction of every sparse vector $w \in \mathbb{C}^{n}$ as a solution of $(B P)$ with the vector $y \in \mathbb{C}^{m}$ obtained as $y=A w$.
Ground-truth

Null Space Property

- Provide a necessary and sufficient condition for exact recovery of sparse vectors via basis pursuit.

Definition 6.1. A matrix $A \in \mathbb{K}^{m \times n}$ is said to satisfy

- The null space property (NSP) relative to a set $S \subset[n]$ if

$$
\left\|v_{S}\right\|_{1}<\left\|v_{S^{c}}\right\|_{1} \quad \forall v \in \operatorname{ker} A \backslash\{0\} .
$$

- The null space property of order s if

$$
\left\|v_{S}\right\|_{1}<\left\|v_{S^{c}}\right\|_{1}, \quad \forall v \in \operatorname{ker} A \backslash\{0\}, \forall S \subset[n] \text { with }|S| \leq s
$$

Here $\mathbb{K}=\mathbb{R}$ or \mathbb{C}.

Null Space Property - Equivalent Conditions

"Given" $w \in \mathbb{C}^{n}$ sparse, solve:

$$
\min _{z \in \mathbb{C}^{n}}\|z\|_{1} \quad \text { s.t. } \quad A w=A z
$$

Theorem 6.1. The following statements are equivalent:

- The matrix A satisfies the NSP of order s.
- $\left\|v_{S}\right\|_{1}<\left\|v_{S^{c}}\right\|_{1} \quad$ for all $v \in \operatorname{ker} A \backslash\{0\}, \forall S \subset[n]$ with $|S| \leq s$.
- $2\left\|v_{S}\right\|_{1}<\|v\|_{1} \quad$ for all $v \in \operatorname{ker} A \backslash\{0\}, \forall S \subset[n]$ with $|S| \leq s$.
- $2\left\|v_{s}\right\|_{1}<\|v\|_{1} \quad$ for all $v \in \operatorname{ker} A \backslash\{0\}$ and

$$
S=\{\text { indices of } s \text { largest ab. entries of } v\} .
$$

- $\|v\|_{1}<2\left\|v_{s^{c}}\right\|_{1} \quad$ for all $v \in \operatorname{ker} A \backslash\{0\}, \forall S \subset[n]$ with $|S| \leq s$.
- $\|v\|_{1}<2 \sigma_{s}(v)_{1}, \quad$ for all $v \in \operatorname{ker} A \backslash\{0\}$.

Recall: The ℓ_{p} error of best s-term approximation to a vector x is given by $\sigma_{s}(x)_{p}:=\inf \left\{\|x-z\|_{p}: \quad z \in \mathbb{C}^{n}\right.$ is s-sparse $\}$.

Null Space Property - Exact Recovery Theorem Chapter 4

Theorem 6.2. Given $A \in \mathbb{K}^{m \times n}$, every s-sparse vector $w \in$ \mathbb{K}^{n} is the unique solution of

$$
\min _{z \in \mathbb{K}^{n}}\|z\|_{1} \quad \text { s.t. } \quad A w=A z
$$

if and only if A satisfies the null space property of order s.

See Theorem 4.4 in the Reference.
Θ Suppose A satisfies the NSP. $\left\|v_{s}\right\|_{1}<\left\|v_{s c}\right\|_{1} \forall \in=10$ let $w^{\in} \mathbb{C}^{n}$ ai s-sparse vector $\quad \operatorname{supp} w=-\underline{S},|\underline{S}| \leqslant s$ $z \in \mathbb{C}^{n}: \quad A z=A w$.
Claim: $\|w\|_{1}<\|z\|_{1}$
Notation $z_{\underline{S}} \in \mathbb{C}^{n}$: 0 outside the index et \underline{S} ${ }_{\underline{\underline{S}^{c}}} \in \mathbb{C}^{n} ;$ O outside \underline{S}^{e}
Let $v=z-w \neq 0 \in \mathbb{C}^{n}, v \in \operatorname{ker} A-\{0\}$

$$
\begin{gathered}
\text { Let } v=z-w^{\not 0} \in \mathbb{C} \\
v_{\underline{s}}=z_{\underline{S}}-w_{\underline{S}}=\left.z_{\underline{S}^{-w}}\right|^{v_{S}^{c}}=z_{S_{S}^{c}-w_{S}^{c}}=z_{S^{c}}
\end{gathered}
$$

$$
\begin{gathered}
\|w\|_{1} \leqslant\left\|w-z_{\underline{S}}\right\|_{1}+\left\|z_{\underline{S}}\right\|_{1}=\left\|v_{\underline{S}}\right\|_{1}+\left\|z_{\underline{S}}\right\|_{1} \\
\left\|v_{S_{c}}\right\|_{1}+\left\|z_{\underline{S}}\right\|_{1} \\
\underline{S}_{S_{S}}\left\|_{1}+\right\| z_{\underline{S}}\left\|_{1}=\right\| z \|_{1}
\end{gathered}
$$

$\Leftrightarrow \quad$ let $\underline{S} \subset[\eta], \quad|\underline{S}| \leqslant s$.
Take $v \in \operatorname{ker} A-\{0\}$. Claim $\left\|v_{\underline{S}_{1}}<\right\| v_{\underbrace{}_{-}} \|_{1}$.
Consider $\min _{z \in \mathbb{C}^{n}}\|z\|_{1}$ sit $A z=A v_{\underline{S}}$
Then $v_{\underline{S}} \in \mathbb{C}^{n}$ is a s-sparse solution of \otimes

Null Space Property - ℓ_{0} and ℓ_{1} Models

$$
l_{1} \Rightarrow l_{0}
$$

Theorem 6.3. If $A \in \mathbb{K}^{m \times n}$ satisfies the NSP of order s then for every $y=A w$ with s-sparse w, the basis pursuit problem solves the ℓ_{0}-minimization problem. That is, the solution of the basis pursuit problem is the solution of the ℓ_{0}-minimization problem.

Proof $w=\underset{A z-A w}{\operatorname{argmin}}\|z\|_{1}, w \mathbb{C}^{n} \quad w$ is s-spare.
let

$$
\begin{aligned}
& A z=A w \\
& z_{*} \in \operatorname{argmin}\|z\|_{0} \text {. } \\
& A z=A w
\end{aligned}
$$

Null Space Property

Theorem 6.4. If $A \in \mathbb{K}^{m \times n}$ satisfies the NSP of order s, the following matrices also satisfy the NSP of order s :
$\hat{A}:=G A, \quad$ where $G \in \mathbb{K}^{m \times m}$ is some invertible matrix,
$\widetilde{A}:=\left[\begin{array}{l}A \\ B\end{array}\right], \quad$ where $B \in \mathbb{K}^{m^{\prime} \times n}$.

Remark:

- If $A \in \mathbb{K}^{m \times n}$ satisfies the NSP of order s, there exists matrix $H \in \mathbb{K}^{n \times n}$ such that $A H$ does not satisfy the NSP.
- The above theorem indicates that the sparse recovery property of basis pursuit is preserved if some measurements are rescaled, reshuffled, or added.

$$
\begin{array}{ll}
\widehat{A}=G A . & \operatorname{ker} \hat{A}=\operatorname{ker} A \\
\tilde{A}=\left[\frac{A}{B}\right] & \operatorname{ker} \tilde{A} \subset \operatorname{ker} A .
\end{array}
$$

Stable Null Space Property

Study $\min \|z\|_{1}$ sit $A z=A W$ $z \in \mathbb{C}^{n}$ where $w \in \mathbb{C}^{\prime \prime}$ may not spears

Definition 6.2. A matrix $A \in \mathbb{C}^{m \times n}$ is said to satisfy

- The stable null space property with constant $0<\rho<1$ relative to a set $S \subset[n]$ if $\quad N S P:\left\|v_{S}\right\|_{1}<\left\|v_{S C}\right\|_{1}$

$$
\left\|v_{S}\right\|_{1} \leq \rho\left\|v_{S^{c}}\right\|_{1} \quad \forall v \in \operatorname{ker} A .
$$

- The stable null space property of order s with constant $0<\rho<1$ if
$\left\|v_{S}\right\|_{1} \leq \rho\left\|v_{S^{c}}\right\|_{1} \quad \forall v \in \operatorname{ker} A, \forall S \subset[n]$ with $|S| \leq s$.

Stable Null Space Property - Verification Theorem

Theorem 6.5. The matrix $A \in \mathbb{C}^{m \times n}$ satisfies the stable null space property of order s with constant $0<\rho<1$ relative to a set $S \subset[n]$ if and only if

$$
\|z-x\|_{1} \leq \frac{1+\rho}{1-\rho}\left(\|z\|_{1}-\|x\|_{1}+2\left\|x_{S c}\right\|_{1}\right)
$$

for all vectors $x, z \in \mathbb{C}^{n}$ with $A z=A x$.

See Theorem 4.14. in the Reference.

$$
\|a+b\|_{1} \leq\|a\|_{1}+\|k\|_{1}
$$

Stable Sparse Recovery

Theorem 6.6. Suppose that $A \in \mathbb{C}^{m \times n}$ satisfies the stable null space property of order s with constant $0<\rho<1$. Then for any $w \in \mathbb{C}^{n}$, a solution $w^{\#}$ of the basis pursuit,

$$
\min _{z}\|z\|_{1} \quad \text { s.t. } \quad A z=A w, \quad \text { note } W \text { can } \quad \text { be dense }
$$

approximates the vector w with ℓ_{1}-error:

$$
\left\|w-w^{\#}\right\|_{1} \leq \frac{2(1+\rho)}{1-\rho} \sigma_{s}(w)_{1}=\text { ir }
$$

0 when wis well
See Theorem 4.12 in the reference. Remark: If $A \in \mathbb{C}^{m \times n}$ satisfies the stable null space property of approx
order s with constant $0<\rho<1$, the basis pursuit may have more by than one solution.
bent 5 -term

Robust Null Space Property

Study $\min \|z\|_{1}$ sit $\|y-A z\| \leqslant \eta$

Definition 6.3. A matrix $A \in \mathbb{C}^{m \times n}$ is said to satisfy

- The robust null space property w.r.t. $\|\cdot\|$ with constants $0<\rho<1$ and $\tau>0$ relative to a set $S \subset[n]$ if

$$
\left\|v_{S}\right\|_{1} \leq \rho\left\|v_{S^{c}}\right\|_{1}+\tau\|A v\| \quad \forall v \in \mathbb{C}^{n}
$$

- The stable null space property of order s with constant $0<\rho<1$ if

$$
\left\|v_{S}\right\|_{1} \leq \rho\left\|v_{S^{c}}\right\|_{1}+\tau\|A v\| \quad \forall v \in \mathbb{C}^{n}, \forall S \subset[n] \text { with }|S| \leq s
$$

Robust Sparse Recovery

Theorem 6.7. Suppose a matrix $A \in \mathbb{C}^{m \times n}$ satisfies the robust null space property of order s with constant $0<\rho<1$ and $\tau>0$. Then for any $w \in \mathbb{C}^{n}$, a solution $w^{\#}$ of the BPDN:

$$
\min _{z}\|z\|_{1} \quad \text { s.t. } \quad\|A z-y\| \leq \eta
$$

with $y=A w+e$ and $\|e\| \leq \eta$ approximates the vector w with ℓ_{1}-error:

$$
\left\|w-w^{\#}\right\|_{1} \leq \frac{2(1+\rho)}{1-\rho} \sigma_{s}(w)_{1}+\frac{4 \tau}{1-\rho} \eta .
$$

ℓ_{2}-Robust Null Space Property

RNSP
Definition 6.4. A matrix $A \in \mathbb{C}^{m \times n}$ is said to satisfy the ℓ_{2}-robust null space property of order s w.r.t. $\|\cdot\|$ with constants $0<\overline{\rho<1 \text { and } \tau>0}$ if

$$
\left\|v_{S}\right\|_{2} \leq \frac{\rho}{s^{1 / 2}}\left\|v_{s c}\right\|_{1}+\tau\|A v\| \quad \forall v \in \mathbb{C}^{n}, \forall S \subset[n] \text { with }|S| \leq s
$$

Theorem 6.8. Suppose the matrix $A \in \mathbb{C}^{m \times n}$ is said to satisfy the ℓ_{2} robust null space property of order s w.r.t. $\|\cdot\|_{2}$ with constants $0<\rho<1$ and $\tau>0$. Then for any $w \in \mathbb{C}^{n}$, a solution $w^{\#}$ of the BPDN:

$$
\min _{z}\|z\|_{1} \quad \text { s.t. } \quad\|A z-y\|_{2} \leq \eta,
$$

with $y=A w+e$ and $\|e\|_{2} \leq \eta$ approximates the vector w with ℓ_{p}-error:

$$
\left\|w-w^{\#}\right\|_{p} \leq \frac{C}{s^{1-1 / p}} \sigma_{s}(w)_{1}+D s^{1 / p-1 / 2} \eta, 1 \leq p \leq 2
$$

for some constants C, D depending only on ρ and τ.

ℓ_{2}-Robust Null Space Property

Definition 6.4. A matrix $A \in \mathbb{C}^{m \times n}$ is said to satisfy the ℓ_{2}-robust null space property of order s w.r.t. $\|\cdot\|$ with constants $0<\rho<1$ and $\tau>0$ if

$$
\left\|v_{S}\right\|_{2} \leq \frac{\rho}{s^{1 / 2}}\left\|v_{s_{c}}\right\|_{1}+\tau\|A v\| \quad \forall v \in \mathbb{C}^{n}, \forall S \subset[n] \text { with }|S| \leq s
$$

Theorem 6.8. Suppose the matrix $A \in \mathbb{C}^{m \times n}$ is said to satisfy the ℓ_{2} robust null space property of order s w.r.t. $\|\cdot\|_{2}$ with constants $0<\rho<1$ and $\tau>0$. Then for any $w \in \mathbb{C}^{n}$, a solution $w^{\#}$ of the BPDN:

$$
\min _{z}\|z\|_{1} \quad \text { s.t. } \quad\|A z-y\|_{2} \leq \eta,
$$

with $y=A w+e$ and $\|e\|_{2} \leq \eta$ approximates the vector w with ℓ_{p}-error:

$$
\left\|w-w^{\#}\right\|_{p} \leq \frac{C}{s^{1-1 / p}} \sigma_{s}(w)_{1}+D s^{1 / p-1 / 2} \eta, 1 \leq p \leq 2,
$$

for some constants C, D depending only on ρ and τ.

$$
\begin{aligned}
& \left\|w-w^{\#}\right\|_{1} \leqslant c \rho_{s}(w)_{1}+D \sqrt{s} \eta \\
& \left\|w-w^{\#}\right\|_{2} \leqslant \frac{c}{\sqrt{s}} \rho_{s}(w)_{1}+D \eta
\end{aligned}
$$

For supervised learning, we acre interested in generalized error:

$$
\left\|f^{\text {learned }}-f^{\text {true }}\right\|_{2} \leqslant \text { ? }
$$

Can use to estimate upper breed of $\| f$ learned tray

