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Lecture 06:

`1-Minimization and Compressive Sensing (cont’d)

I Last time:

I Di↵erent `1-Minimization Problems and Popular
`1-Minimization Algorithms.

I Examples of Sparse Optimization Problems: How to Construct
Measurement Matrix A.

I Today: Exact Recovery of Sparse Vectors via Basis Pursuit.

I Null Space Property

I Stability

I Robustness g Chapter
4
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`1-Minimization Problems

I Models:

I Basis pursuit:

min
z2Cn

kzk1 s.t. Az = y . (BP)

I Basis pursuit denoising:

min
z2Cn

kzk1 s.t. kAz � yk2  �, (BP�)

or

min
z2Cn

1

2
kAz � yk22 + �kzk1. (QP�)

I Lasso:

min
z2Cn

1

2
kAz � yk22 s.t. kzk1  ⌧ . (LS⌧ )

I With suitable �,�, ⌧ , the solutions of BP�,QP�, LS⌧ coincide.

I BP vs QP�: lim
�!0+

zQP� = zbp, provided that the (BP) has a unique

solution zbp.

I Algorithms: SPGL1, SpaRSA, Primal-Dual,FISTA, Nesterov’s 2nd
method, Augmented Lagrangian/Split-Bregman, coordinate descent,...
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`1-Minimization and Regression Problem

I Input: {xk , yk}mk=1 ⇢ Rd ⇥ R. Learn f : Rd ! R s.t.
f (xk) ⇡ yk , 8k = 1, . . . ,m.

I Step 1: Split data in training and testing data.

I Step 2: Choose a model:

I Linear model: Assume f (x) = x
T
w + w0, where

x ,w 2 Rd ,w0 2 R.
I Nonlinear models: Assume f can be approximated by

multivariate polynomials or orthogonal bases,

f (x) =w0 + w1x1 + w2x2 + . . .+ wdxd + wd+1x
2
1 + wd+2x1x2+

. . .+ w2dx1xd + w2d+1x
2
2 + . . .+ wrx

p
d .

or the random feature approach - choose n randomized vectors
!k 2 Rd and fix those weights:

f (x) =
nX

k=1

wk�(hx ,!ki).

T
-

Jd = GGPG> . - ixd
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`1-Minimization and Regression Problem

I Step 3: Formulate the optimization problem with mean-squared
error loss – Impose sparsity constraint.

I Step 4: Solve the optimization problem using spgl1, omp, LASSO...

I Output: The learned weights w and the learned function f .

I Final Step: Compute test errors and suitable plots.

m= # training data
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Basis Pursuit: Reconstruction Guarantees

min
z2Cn

kzk1 s.t. y = Az

Question: Study conditions on A that ensure exact reconstruction
of every sparse vector w 2 Cn as a solution of (BP) with the
vector y 2 Cm obtained as y = Aw .

AWE A? CBP)
-
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Null Space Property

I Provide a necessary and su�cient condition for exact recovery
of sparse vectors via basis pursuit.

Definition 6.1. A matrix A 2 Km⇥n is said to satisfy

I The null space property (NSP) relative to a set S ⇢ [n] if

kvSk1 < kvSck1 8 v 2 kerA \ {0}.

I The null space property of order s if

kvSk1 < kvSck1, 8 v 2 kerA \ {0}, 8S ⇢ [n] with |S |  s.

Here K = R or C.



Null Space Property – Equivalent Conditions

“Given” w 2 Cn sparse, solve:

min
z2Cn

kzk1 s.t. Aw = Az .

Theorem 6.1. The following statements are equivalent:

I The matrix A satisfies the NSP of order s.

I kvSk1 < kvSck1 for all v 2 kerA \ {0}, 8S ⇢ [n] with |S |  s.

I 2kvSk1 < kvk1 for all v 2 kerA \ {0}, 8S ⇢ [n] with |S |  s.

I 2kvSk1 < kvk1 for all v 2 kerA \ {0} and

S = {indices of s largest ab. entries of v}.
I kvk1 < 2kvSck1 for all v 2 kerA \ {0}, 8S ⇢ [n] with |S |  s.

I kvk1 < 2�s(v)1, for all v 2 kerA \ {0}.

Recall: The `p error of best s-term approximation to a vector x is
given by �s(x)p := inf{kx � zkp : z 2 Cn is s-sparse}.
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Null Space Property - Exact Recovery Theorem

Theorem 6.2. Given A 2 Km⇥n, every s-sparse vector w 2
Kn is the unique solution of

min
z2Kn

kzk1 s.t. Aw = Az

if and only if A satisfies the null space property of order s.

See Theorem 4.4 in the Reference.
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Null Space Property - `0 and `1 Models

Theorem 6.3. If A 2 Km⇥n satisfies the NSP of order s

then for every y = Aw with s-sparse w , the basis pursuit
problem solves the `0-minimization problem. That is, the
solution of the basis pursuit problem is the solution of the
`0-minimization problem.

ls⇒ lo

Priory w= argmin 112-111 ,
W%É s -spare
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Null Space Property

Theorem 6.4. If A 2 Km⇥n satisfies the NSP of order s, the
following matrices also satisfy the NSP of order s:

Â := GA, where G 2 Km⇥m is some invertible matrix,

eA :=


A

B

�
, where B 2 Km0⇥n.

Remark:

I If A 2 Km⇥n satisfies the NSP of order s, there exists matrix
H 2 Kn⇥n such that AH does not satisfy the NSP.

I The above theorem indicates that the sparse recovery property
of basis pursuit is preserved if some measurements are
rescaled, reshu✏ed, or added.
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Stable Null Space Property

Definition 6.2. A matrix A 2 Cm⇥n is said to satisfy

I The stable null space property with constant 0 < ⇢ < 1
relative to a setS ⇢ [n] if

kvSk1  ⇢kvSck1 8v 2 kerA.

I The stable null space property of order s with constant
0 < ⇢ < 1 if

kvSk1  ⇢kvSck1 8v 2 kerA, 8S ⇢ [n] with |S |  s.

y
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Stable Null Space Property - Verification Theorem

Theorem 6.5. The matrix A 2 Cm⇥n satisfies the stable null
space property of order s with constant 0 < ⇢ < 1 relative to
a set S ⇢ [n] if and only if

kz � xk1 
1 + ⇢

1� ⇢
(kzk1 � kxk1 + 2kxSck1) ,

for all vectors x , z 2 Cn with Az = Ax .

See Theorem 4.14. in the Reference.
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Stable Sparse Recovery

Theorem 6.6. Suppose that A 2 Cm⇥n satisfies the stable
null space property of order s with constant 0 < ⇢ < 1. Then
for any w 2 Cn, a solution w

# of the basis pursuit,

min
z

kzk1 s.t. Az = Aw ,

approximates the vector w with `1-error:

kw � w
#k1 

2(1 + ⇢)

1� ⇢
�s(w)1.

See Theorem 4.12 in the reference.
Remark: If A 2 Cm⇥n satisfies the stable null space property of
order s with constant 0 < ⇢ < 1, the basis pursuit may have more
than one solution.
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Robust Null Space Property

Definition 6.3. A matrix A 2 Cm⇥n is said to satisfy

I The robust null space property w.r.t. k · k with constants
0 < ⇢ < 1 and ⌧ > 0 relative to a setS ⇢ [n] if

kvSk1  ⇢kvSck1 + ⌧kAvk 8v 2 Cn.

I The stable null space property of order s with constant
0 < ⇢ < 1 if

kvSk1  ⇢kvSck1 + ⌧kAvk 8v 2 Cn, 8S ⇢ [n] with |S |  s.

study min 112-111 sit fly -Azll £ 2 .



Robust Sparse Recovery

Theorem 6.7. Suppose a matrix A 2 Cm⇥n satisfies the
robust null space property of order s with constant 0 < ⇢ < 1
and ⌧ > 0. Then for any w 2 Cn, a solution w

# of the
BPDN:

min
z

kzk1 s.t. kAz � yk  ⌘,

with y = Aw + e and kek  ⌘ approximates the vector w
with `1-error:

kw � w
#k1 

2(1 + ⇢)

1� ⇢
�s(w)1 +

4⌧

1� ⇢
⌘.



`2-Robust Null Space Property

Definition 6.4. A matrix A 2 Cm⇥n is said to satisfy the `2-robust null
space property of order s w.r.t. k · k with constants 0 < ⇢ < 1 and ⌧ > 0
if

kvSk2 
⇢

s1/2
kvSck1 + ⌧kAvk 8v 2 Cn, 8S ⇢ [n] with |S |  s.

Theorem 6.8. Suppose the matrix A 2 Cm⇥n is said to satisfy the `2-
robust null space property of order s w.r.t. k ·k2 with constants 0 < ⇢ < 1
and ⌧ > 0. Then for any w 2 Cn, a solution w

# of the BPDN:

min
z

kzk1 s.t. kAz � yk2  ⌘,

with y = Aw + e and kek2  ⌘ approximates the vector w with `p-error:

kw � w
#kp  C

s1�1/p
�s(w)1 + Ds

1/p�1/2⌘, 1  p  2,

for some constants C ,D depending only on ⇢ and ⌧ .
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`2-Robust Null Space Property

Definition 6.4. A matrix A 2 Cm⇥n is said to satisfy the `2-robust null
space property of order s w.r.t. k · k with constants 0 < ⇢ < 1 and ⌧ > 0
if

kvSk2 
⇢

s1/2
kvSck1 + ⌧kAvk 8v 2 Cn, 8S ⇢ [n] with |S |  s.

Theorem 6.8. Suppose the matrix A 2 Cm⇥n is said to satisfy the `2-
robust null space property of order s w.r.t. k ·k2 with constants 0 < ⇢ < 1
and ⌧ > 0. Then for any w 2 Cn, a solution w

# of the BPDN:

min
z

kzk1 s.t. kAz � yk2  ⌘,

with y = Aw + e and kek2  ⌘ approximates the vector w with `p-error:

kw � w
#kp  C

s1�1/p
�s(w)1 + Ds

1/p�1/2⌘, 1  p  2,

for some constants C ,D depending only on ⇢ and ⌧ .
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