AMATH 840: Advanced Numerical Methods for Computational and Data Sciences

Giang Tran

Department of Applied Mathematics, University of Waterloo

Jan 26, 2021

Lecture 07: Sparse Recovery of Basis Pursuit (cont'd)

► Given $\mathbf{y} \in \mathbb{C}^{m \times n}$, solve the basis pursuit (BP) problem:

$$\min_{\mathbf{z} \in \mathbb{C}^n} \|\mathbf{z}\|_1 \quad \text{s.t.} \quad \|\mathbf{y} - A\mathbf{z}\| \leq \eta, \quad \text{where } \eta \geq 0.$$

- ► Goal: Study conditions on A that provide reconstruction guarantees of (BP).
 - Last time: Null Space Property
 - ► Today:
 - ► Coherence Condition
 - ▶ RIP Condition

From now on, we use the Theorems' numbers from the reference.

Recall: Null Space Property, $\ell_1 \Rightarrow \ell_0$

▶ The ℓ_1 -error of best *s*-term approximation of a vector $\mathbf{x} \in \mathbb{K}^n$:

$$\sigma_s(\mathbf{x})_1 = \inf\{\|\mathbf{x} - \mathbf{z}\|_1 : \mathbf{z} \in \mathbb{K}^n \text{ and } \mathbf{z} \text{ is } s\text{-sparse}\}$$

▶ A matrix $A \in \mathbb{K}^{m \times n}$ is said to satisfy the null space property of order s

$$\Leftrightarrow \|v_S\|_1 < \|v_{S^c}\|_1, \ \forall \ v \in \ker A \setminus \{0\}, \ \forall S \subset [n] \ \text{with} \ |S| \le s.$$

$$\Leftrightarrow 2\|v_S\|_1 < \|v\|_1, \ \forall v \in \ker A \setminus \{0\} \ \text{and}$$

$$S = \{\text{indices of } s \text{ largest ab.entries of } v\}.$$

$$\Leftrightarrow \|v\|_1 < 2\sigma_s(v)_1, \quad \text{for all } v \in \ker A \setminus \{0\}.$$

▶ Theorems 4.4 ¹. Given $A \in \mathbb{K}^{m \times n}$, every *s*-sparse vector $w \in \mathbb{K}^n$ is the unique solution of

$$\min_{z \in \mathbb{K}^n} \|z\|_1$$
 s.t. $Aw = Az$

if and only if A satisfies the null space property of order s.

¹A Mathematical Introduction to Compressive Sensing, by S. Foucart & H. Rauhut.

Recall: Stable and Robust Null Space Property

▶ **Theorem 4.19.** Let $A \in \mathbb{C}^{m \times n}$ and $\|\cdot\|$ be a norm on \mathbb{C}^m . Suppose there exist constants $\rho \in (0,1)$ and $\tau > 0$ s.t.

$$\|v_S\|_1 \le \rho \|v_{S^c}\|_1 + \tau \|Av\| \quad \forall v \in \mathbb{C}^n, \ \forall S \subset [n] \text{ with } |S| \le s. \quad (1)$$

Let $\mathbf{w} \in \mathbb{C}^n$ and $\mathbf{y} = A\mathbf{w} + \mathbf{e}$ with $\|\mathbf{e}\| \leq \eta$. Then a solution $\mathbf{w}^\#$ of $\min_{\mathbf{z} \in \mathbb{C}^n} \|\mathbf{z}\|_1 \quad s.t. \quad \|y - A\mathbf{z}\| \leq \eta$

$$\min_{z \in \mathbb{C}^n} \|\mathbf{z}\|_1 \quad s.t. \quad \|y - A\mathbf{z}\| \le \eta$$

approximates the vector \mathbf{w} with ℓ_1 -error:

$$\|w-w^{\#}\|_{1} \leq \frac{2(1+\rho)}{1-\rho}\sigma_{s}(w)_{1} + \frac{4\tau}{1-\rho}\eta.$$

▶ **Theorem 4.12.** If $\eta = 0$, $\tau = 0$, and we only require that condition (1) holds for $v \in \ker A$, we have the stable sparse recovery result.

Recall: ℓ_2 -Robust Null Space Property

A matrix $A \in \mathbb{C}^{m \times n}$ is said to satisfy the ℓ_2 -robust null space property of order s w.r.t. $\|\cdot\|$ with constants $0 < \rho < 1$ and $\tau > 0$ if

$$\|v_S\|_2 \leq \frac{\rho}{s^{1/2}} \|v_{S^c}\|_1 + \tau \|Av\| \quad \forall v \in \mathbb{C}^n, \ \forall S \subset [n] \text{ with } |S| \leq s.$$

▶ **Theorem 4.22.** Suppose the matrix $A \in \mathbb{C}^{m \times n}$ is said to satisfy the ℓ_2 -robust null space property of order s w.r.t. $\|\cdot\|_2$ with constants $0 < \rho < 1$ and $\tau > 0$. Then for any $w \in \mathbb{C}^n$, a solution $w^\#$ of the BPDN:

$$\min_{z} \|z\|_1 \quad s.t. \quad \|Az - y\|_2 \le \eta,$$

with y = Aw + e and $||e||_2 \le \eta$ approximates the vector w with:

$$\|w-w^{\#}\|_{1} \leq C \, \sigma_{s}(w)_{1} + D\sqrt{s} \, \eta, \quad \text{formal of } 0 \text{ and } 0 \text{ formal of }$$

for some constants C, D depending only on ρ and τ .

Training and Generalization Errors Estimation

From the error estimations on the solution, we can derive the corresponding generalization error. For example,

Suppose $A \in \mathbb{C}^{m \times n}$ satisfies the ℓ_2 -robust NSP of order s with constants $\rho \in (0,1)$ and $\tau > 0$. Given $\mathbf{y} = A\mathbf{w} + \mathbf{e}$ with $\|e\|_2 \leq \eta$. From Theorem 6.8., any solution $\mathbf{w}^\#$ of the ℓ_1 -minimization problem

$$\min_{\mathbf{z} \in \mathbb{C}^n} \|\mathbf{z}\|_1 \quad s.t. \quad \|y - A\mathbf{z}\|_2 \le \eta$$
Recall $p, q > 1$

$$|Ax|_q$$

$$|A|_{\mathbf{z} = \mathbf{sup}} |Ax|_q$$

$$|A|_{\mathbf{z} = \mathbf{sup}} |Ax|_q$$

$$|A|_{\mathbf{z} = \mathbf{sup}} |Ax|_q$$

$$|A|_{\mathbf{z} = \mathbf{sup}} |Ax|_q$$

approximates the vector \mathbf{w} with

$$\|\mathbf{w} - \mathbf{w}^{\#}\|_1 \leq C\sigma_s(\mathbf{w})_1 + D\sqrt{s}\eta,$$

for some constants C, D > 0 depending only on ρ and τ , Therefore,

$$\|\mathbf{y} - A\mathbf{w}^{\#}\|_{2} \le \|\mathbf{y} - A\mathbf{w}\|_{2} + \|A\mathbf{w} - A\mathbf{w}^{\#}\|_{2} \le \|\mathbf{e}\|_{2} + \|A\|_{1\to 2} \|\mathbf{w} - \mathbf{w}^{\#}\|_{1}$$

$$\le \eta + \|A\|_{1\to 2} \left(C\sigma_{s}(w)_{1} + D\sqrt{s}\eta\right).$$

Coherence Condition for Basis Pursuit

Recall: Let $A \in \mathbb{C}^{m \times n}$ be a matrix with ℓ_2 -normalized columns a_1, \ldots, a_n .

▶ The ℓ_1 -coherence function μ_1 of A is defined for $s \in [n-1]$ by

$$\mu_1(s) := \max_{k \in [n]} \max \Big\{ \sum_{j \in S} |\langle a_k, a_j \rangle|, S \subset [n], |S| = s, k \not \in S \Big\}.$$

▶ The coherence $\mu = \mu(A)$ of the matrix A is defined as

$$\mu = \mu(A) := \max_{1 \le k \ne j \le n} |\langle a_k, a_j \rangle|.$$

Theorem 5.15. Let $A \in \mathbb{C}^{m \times n}$ be a matrix with ℓ_2 -normalized columns. If

$$\mu_1(s) + \mu_1(s-1) < 1,$$

then every s-sparse vector $\mathbf{w} \in \mathbb{C}^n$ is exactly recovered from the measurement $\mathbf{y} = A\mathbf{w}$ via basis pursuit.

Coherence Condition for Basis Pursuit

Sketch Proof. We will prove that if $\mu_1(s) + \mu_1(s-1) < 1$, then *A* satisfies the NSP:

$$\|v_S\|_1 < \|v_{S^c}\|_1 \quad \forall v \in \ker A \setminus \{0\}, \ \forall S \subset [n] \text{ with } |S| \leq s.$$

Take $v = (v_1, \dots, v_n)^T \in \ker A \setminus \{0\}$ and $S \subset [n]$ with $|S| \leq s$. Then,

$$0 = Av = \sum_{i=1}^{n} v_i a_i$$

$$0 = \langle 0, v_k \rangle = \left\langle \sum_{j=1}^n v_j a_j, a_k \right\rangle = v_k + \sum_{j=1, j \neq k}^n v_j \langle a_j, a_k \rangle$$

$$v_k = -\sum_{j=1, j \neq k}^{n} v_j \langle a_j, a_k \rangle = -\sum_{j \in S^c, j \neq k} v_j \langle a_j, a_k \rangle - \sum_{\ell \in S, \ell \neq k} v_\ell \langle a_\ell, a_k \rangle$$

$$\sum |v_k| \leq \cdots$$

Some Properties of Coherence

$$\mu_1(s) := \max_{k \in [n]} \max \left\{ \sum_{j \in S} |\langle a_k, a_j
angle|, S \subset [n], |S| = s, k \not\in S
ight\}$$
 $\mu = \mu(A) := \max_{1 \le k
eq j \le n} |\langle a_k, a_j
angle|.$

Theorem 5.3. Let $A \in \mathbb{C}^{m \times n}$ be a matrix with ℓ_2 -normalized columns and let $s \in [n]$. Then

- 1. $\mu \le \mu_1(s) \le s\mu \le s$, for all $1 \le s \le n-1$.
- 2. $\max\{\mu_1(s), \mu_1(t)\} \le \mu_1(s+t) \le \mu_1(s) + \mu_1(t)$, for all $1 \le s, t \le n-1$ with $s+t \le n-1$.
- 3. For all *s*-sparse vector $\mathbf{x} \in \mathbb{C}^n$, we have

$$(1 - \mu_1(s-1)) \|\mathbf{x}\|_2^2 \le \|A\mathbf{x}\|_2^2 \le (1 + \mu_1(s-1)) \|\mathbf{x}\|_2^2.$$

Proof. See Lecture0304 slides or Theorem 5.3. in the Reference.

Some Properties of Coherence

Theorems 5.7& 5.8 (Welch bound). Let $A \in \mathbb{C}^{m \times n}$ be a matrix with $n \geq m$ and ℓ_2 -normalized columns and let $s \in [n]$. Then

1. The coherence of A satisfies

$$\mu \geq \sqrt{\frac{n-m}{m(n-1)}}.$$

2. The ℓ_1 -coherence of A satisfies

$$\mu_1(s) \ge s \sqrt{\frac{n-m}{m(n-1)}}$$
 whenever $s < \sqrt{n-1}$.

Equality holds iff there exist constants $c \ge 0$ and $\lambda > 0$ s.t.

$$|\langle a_i, a_j \rangle| = c, \quad \forall i, j \in [n], \ i \neq j; \quad \text{and} \quad AA^* = \frac{1}{\lambda} \mathsf{Id}_m.$$

If those conditions are satisfied, we say the columns of A form an equiangular tight frame.

Some Properties of Coherence

Proof. 1. See Theorem 5.7. in the Reference.

The main idea is to evaluate $\operatorname{tr}(A^*A)$ and $\operatorname{tr}(AA^*)$ using the following properties: For any matrix $H \in \mathbb{C}^{m \times m}$ and $B \in \mathbb{C}^{n \times m}$,

$$\operatorname{tr}(H) = \langle H, \operatorname{Id}_m \rangle_F \leq \|H\|_F \|\operatorname{Id}_m\|_F = \sqrt{m} \sqrt{\operatorname{tr}(HH^*)}.$$

$$\operatorname{tr}(AB) = \operatorname{tr}(BA).$$

2. See Theorem 5.8. in the Reference.

Remark. If the equality of the Welch bound holds, m cannot be arbitrarily large (see Theorem 5.10. in Reference). Indeed, let $A \in \mathbb{K}^{m \times n}$ be a matrix with $n \geq m$ and ℓ_2 -normalized columns. If the columns of A form an equiangular tight frame, then

1.
$$n = \frac{m(m+1)}{2}$$
 when $\mathbb{K} = \mathbb{R}$.

2. $n = m^2$ when $\mathbb{K} = \mathbb{C}$.

Number of Measurements for Basis Pursuit Using Coherence Condition

Summary: Let $A \in \mathbb{C}^{m \times n}$ be a matrix with ℓ_2 -normalized columns.

- ▶ Coherence condition: If $\mu_1(s) + \mu_1(s-1) < 1$, then every s-sparse vector $\mathbf{w} \in \mathbb{C}^n$ is exactly recovered from the measurement $\mathbf{y} = A\mathbf{w}$ via basis pursuit.
- ► Welch bound:

$$\mu(A) \geq \sqrt{\frac{n-m}{m(n-1)}}.$$

$$1 > \mu_{1}(s) + \mu_{1}(s-1) > (2s-1)\mu(A) > (2s-1)\sqrt{\frac{n-m}{m(n-1)}}$$
 $m(n-1) > (2s-1)^{2}(n-m)$
 $m(n-1+(2s-1)^{2}) > n(2s-1)^{2}$
 $m(1+\frac{4s^{2}-4s}{m}) > (2s-1)^{2}$
 $m(1+\frac{4s^{2}-4s}{m}) > (2s-1)^{2}$

Number of Measurements for Basis Pursuit Using Coherence Condition

erence Condition
$$(2\mu 1) S \leqslant \frac{2\widetilde{c}}{\sqrt{m}} S \leqslant 1$$
 For $\widetilde{C} = \sqrt{\frac{C}{5}}$ So, if $m \geq Cs^2$ and $\mu \leq \frac{\widetilde{c}}{\sqrt{m}}$, every s-sparse vector $w \in \mathbb{K}^n$ is

So, if $m \ge Cs^2$ and $\mu \le \frac{c}{\sqrt{m}}$, every s-sparse vector $w \in \mathbb{K}^n$ is exactly recovered from the measurement $\mathbf{y} = A\mathbf{w}$ via basis pursuit.

Remark. Using coherence condition for (BP), we cannot relax the quadratic in $m \ge Cs^2$. For example, choose

$$m = (2s-1)^2/2, \quad n \ge 2m, \quad s \le \sqrt{n-1}.$$

Then

$$\mu_1(s) + \mu_1(s-1) > 1.$$

Restricted Isometry Property

+) If
$$\delta_{28} < \frac{4}{\sqrt{41}}$$
, then $m > Cslog(\frac{n}{8})$.

+) If $m \ge Cslog(\frac{m}{s}) + A$ random matrix $\Rightarrow \delta_2 < \frac{m}{s}$

Definition. The s^{th} restricted isometry constant $\delta_s = \delta_s(A)$ of a matrix $A \in \mathbb{C}^{m \times n}$ is the smallest $\delta > 0$ such that

$$(1 - \delta) \|\mathbf{x}\|_2^2 \le \|A\mathbf{x}\|_2^2 \le (1 + \delta) \|\mathbf{x}\|_2^2$$

for all s-sparse vector $\mathbf{x} \in \mathbb{C}^n$. Equivalently,

$$\delta_{s} = \max_{S \subset [n], |S| \leq s} \|A_{\mathsf{S}}^* A_{\mathsf{S}} - \mathsf{Id}\|_{2 \to 2}.$$

If
$$\delta \approx 0$$
, $\|Ax\|_{2}^{2} \approx \|x\|_{2}^{2} \quad \forall s$ -sporse vector $oc \in \mathbb{C}^{n}$.

RIP Theorems

Theorem 6.12. Suppose $A \in \mathbb{C}^{m \times n}$ satisfies the RIP condition:

BP	IHT	HTP	OMP	
$\delta_{2s} < \frac{4}{\sqrt{41}}$ ≈ 0.6246	$\delta_{6s} < rac{1}{\sqrt{3}} \ pprox 0.5773$	$\delta_{6s} < \frac{1}{\sqrt{3}}$ ≈ 0.5773	$\delta_{13s} < rac{1}{6} \ pprox 0.1666$	

Then for any $w \in \mathbb{C}^n$ and $y \in \mathbb{C}^m$ with $||y - Aw||_2 \le \eta$, a solution $w^\#$ of the ℓ_1 -minimization:

$$\min_{z \in \mathbb{C}^n} \|z\|_1 \quad s.t. \quad \|Az - y\|_2 \le \eta,$$

approximates the vector w with errors (C, D depend only on δ_{2s}):

$$\|w - w^{\#}\|_{1} \le C\sigma_{s}(w)_{1} + D\sqrt{s}\eta.$$

 $\|w - w^{\#}\|_{2} \le \frac{C}{\sqrt{s}}\sigma_{s}(w)_{1} + D\eta.$

RIP Theorems

Theorem 6.21. Suppose $A \in \mathbb{C}^{m \times n}$ satisfies the RIP condition:

		06		
BP	IHT	HTP	OMP	60
$\delta_{2s} < \frac{4}{\sqrt{41}}$	$\delta_{6s} < \frac{1}{\sqrt{3}}$ ~ 0.5773	$\delta_{6s} < \frac{1}{\sqrt{3}}$ ~ 0.5773	$\delta_{13s} < \frac{1}{6}$	6=6

Then for any $\mathbf{w} \in \mathbb{C}^n$ and $\mathbf{y} \in \mathbb{C}^m$ with $\mathbf{y} = A\mathbf{w} + \mathbf{e}$, the iteration \mathbf{w}^n of the IHT and HTP for $\mathbf{y} = A\mathbf{w} + \mathbf{e}$, $\mathbf{w}^0 = 0$ and \mathbf{s} is replaced by $2\mathbf{s}$ satisfies

$$\|\mathbf{w} - \mathbf{w}^n\|_1 \le C\sigma_s(\mathbf{w})_1 + D\sqrt{s}\|\mathbf{e}\|_2 + 2\rho^n\sqrt{s}\|\mathbf{w}\|_2.$$

$$\|\mathbf{w} - \mathbf{w}^n\|_2 \le \frac{C}{\sqrt{s}} \sigma_s(w)_1 + D\|\mathbf{e}\|_2 + 2\rho^n \|\mathbf{w}\|_2$$

Reference

Chapters 4, 5, and 6, A Mathematical Introduction to Compressive Sensing, by S. Foucart and H. Rauhut.