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Lecture 07: Sparse Recovery of Basis Pursuit (cont’d)

I Given y 2 Cn
and A 2 Cm⇥n

, solve the basis pursuit (BP)

problem:

min
z2Cn

kzk1 s.t. ky � Azk  ⌘, where ⌘ � 0.

I Goal: Study conditions on A that provide reconstruction

guarantees of (BP).

I Last time: Null Space Property

I Today:

I Coherence Condition

I RIP Condition

From now on, we use the Theorems’ numbers from the reference.
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Recall: Null Space Property, `1 ) `0

I The `1-error of best s-term approximation of a vector x 2 Kn
:

�s(x)1 = inf{kx� zk1 : z 2 Kn
and z is s-sparse}

I A matrix A 2 Km⇥n
is said to satisfy the null space property of

order s

, kvSk1 < kvSck1, 8 v 2 kerA \ {0}, 8S ⇢ [n] with |S |  s.

, 2kvSk1 < kvk1, 8v 2 kerA \ {0} and

S = {indices of s largest ab.entries of v}.
, kvk1 < 2�s(v)1, for all v 2 kerA \ {0}.

I Theorems 4.4 1
. Given A 2 Km⇥n

, every s-sparse vector w 2 Kn
is

the unique solution of

min
z2Kn

kzk1 s.t. Aw = Az

if and only if A satisfies the null space property of order s.

1
A Mathematical Introduction to Compressive Sensing, by S. Foucart & H. Rauhut.



Recall: Stable and Robust Null Space Property

I Theorem 4.19. Let A 2 Cm⇥n
and k · k be a norm on Cm

.

Suppose there exist constants ⇢ 2 (0, 1) and ⌧ > 0 s.t.

kvSk1  ⇢kvSck1 + ⌧kAvk 8v 2 Cn, 8S ⇢ [n] with |S |  s. (1)

Let w 2 Cn
and y = Aw + e with kek  ⌘. Then a solution w#

of

the `1-minimization problem

min
z2Cn

kzk1 s.t. ky � Azk  ⌘

approximates the vector w with `1-error:

kw � w
#k1 

2(1 + ⇢)

1� ⇢
�s(w)1 +

4⌧

1� ⇢
⌘.

I Theorem 4.12. If ⌘ = 0 , ⌧ = 0, and we only require that condition

(1) holds for v 2 kerA, we have the stable sparse recovery result.

Hustlers
118112



Recall: `2-Robust Null Space Property

I A matrix A 2 Cm⇥n
is said to satisfy the `2-robust null space

property of order s w.r.t. k · k with constants 0 < ⇢ < 1 and ⌧ > 0

if

kvSk2 
⇢

s1/2
kvSck1 + ⌧kAvk 8v 2 Cn, 8S ⇢ [n] with |S |  s.

I Theorem 4.22. Suppose the matrix A 2 Cm⇥n
is said to satisfy the

`2-robust null space property of order s w.r.t. k · k2 with constants

0 < ⇢ < 1 and ⌧ > 0. Then for any w 2 Cn
, a solution w

#
of the

BPDN:

min
z

kzk1 s.t. kAz � yk2  ⌘,

with y = Aw + e and kek2  ⌘ approximates the vector w with:

kw � w
#k1  C �s(w)1 + D

p
s ⌘,

kw � w
#k2 

Cp
s
�s(w)1 + D⌘,

for some constants C ,D depending only on ⇢ and ⌧ .

If 5>0
and

gcwz→o ,
then w
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Training and Generalization Errors Estimation

From the error estimations on the solution, we can derive the

corresponding generalization error. For example,

Suppose A 2 Cm⇥n
satisfies the `2-robust NSP of order s with constants

⇢ 2 (0, 1) and ⌧ > 0. Given y = Aw + e with kek2  ⌘. From Theorem

6.8., any solution w#
of the `1-minimization problem

min
z2Cn

kzk1 s.t. ky � Azk2  ⌘

approximates the vector w with

kw � w
#k1  C�s(w)1 + D

p
s⌘,

for some constants C ,D > 0 depending only on ⇢ and ⌧ , Therefore,

ky � Aw#k2  ky � Awk2 + kAw � Aw#k2 = kek2 + kAk1!2kw �w#k1
 ⌘ + kAk1!2

�
C�s(w)1 + D

p
s⌘
�
.
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Coherence Condition for Basis Pursuit

Recall: Let A 2 Cm⇥n be a matrix with `2-normalized columns a1, . . . , an.

I The `1-coherence function µ1 of A is defined for s 2 [n � 1] by

µ1(s) := max
k2[n]

max
nX

j2S

|hak , aji|, S ⇢ [n], |S | = s, k 62 S
o
.

I The coherence µ = µ(A) of the matrix A is defined as

µ = µ(A) := max
1k 6=jn

|hak , aji|.

Theorem 5.15. Let A 2 Cm⇥n
be a matrix with `2-normalized

columns. If

µ1(s) + µ1(s � 1) < 1,

then every s-sparse vector w 2 Cn
is exactly recovered from the

measurement y = Aw via basis pursuit.



Coherence Condition for Basis Pursuit

Sketch Proof. We will prove that if µ1(s) + µ1(s � 1) < 1, then A

satisfies the NSP:

kvSk1 < kvSck1 8v 2 kerA \ {0}, 8S ⇢ [n] with |S |  s.

Take v = (v1, . . . , vn)T 2 kerA \ {0} and S ⇢ [n] with |S |  s. Then,

0 = Av =

nX

j=1

vjaj

0 = h0, vki =
D nX

j=1

vjaj , ak
E
= vk +

nX

j=1,j 6=k

vjhaj , aki

vk = �
nX

j=1,j 6=k

vjhaj , aki = �
X

j2Sc ,j 6=k

vjhaj , aki �
X

`2S,` 6=k

v`ha`, aki

X

k2S

|vk |  · · ·



Some Properties of Coherence

µ1(s) := max
k2[n]

max
nX

j2S

|hak , aji|, S ⇢ [n], |S | = s, k 62 S
o

µ = µ(A) := max
1k 6=jn

|hak , aji|.

Theorem 5.3. Let A 2 Cm⇥n
be a matrix with `2-normalized columns

and let s 2 [n]. Then

1. µ  µ1(s)  sµ  s, for all 1  s  n � 1.

2. max{µ1(s), µ1(t)}  µ1(s + t)  µ1(s) + µ1(t), for all

1  s, t  n � 1 with s + t  n � 1.

3. For all s-sparse vector x 2 Cn
, we have

(1� µ1(s � 1))kxk2
2
 kAxk2

2
 (1 + µ1(s � 1))kxk2

2
.

Proof. See Lecture0304 slides or Theorem 5.3. in the Reference.



Some Properties of Coherence

Theorems 5.7& 5.8 (Welch bound). Let A 2 Cm⇥n
be a matrix with

n � m and `2-normalized columns and let s 2 [n]. Then

1. The coherence of A satisfies

µ �
r

n �m

m(n � 1)
.

2. The `1-coherence of A satisfies

µ1(s) � s

r
n �m

m(n � 1)
whenever s <

p
n � 1.

Equality holds i↵ there exist constants c � 0 and � > 0 s.t.

|hai , aji| = c, 8i , j 2 [n], i 6= j ; and AA⇤ =
1
�
Idm.

If those conditions are satisfied, we say the columns of A form an equiangular
tight frame.



Some Properties of Coherence

Proof. 1. See Theorem 5.7. in the Reference.

The main idea is to evaluate tr(A
⇤
A) and tr(AA

⇤
) using the following

properties: For any matrix H 2 Cm⇥m
and B 2 Cn⇥m

,

tr(H) = hH, IdmiF  kHkFkIdmkF =
p
m

p
tr(HH⇤).

tr(AB) = tr(BA).

2. See Theorem 5.8. in the Reference.

Remark. If the equality of the Welch bound holds, m cannot be

arbitrarily large (see Theorem 5.10. in Reference). Indeed, let A 2 Km⇥n

be a matrix with n � m and `2-normalized columns. If the columns of A

form an equiangular tight frame, then

1. n =
m(m + 1)

2
when K = R.

2. n = m
2

when K = C.



Number of Measurements for Basis Pursuit Using

Coherence Condition

Summary: Let A 2 Cm⇥n
be a matrix with `2-normalized columns.

I Coherence condition: If µ1(s) + µ1(s � 1) < 1, then every s-sparse

vector w 2 Cn
is exactly recovered from the measurement y = Aw

via basis pursuit.

I Welch bound:

µ(A) �
r

n �m

m(n � 1)
.
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Number of Measurements for Basis Pursuit Using

Coherence Condition

I So, if m � Cs
2
and µ  cp

m
, every s-sparse vector w 2 Kn

is

is exactly recovered from the measurement y = Aw via basis

pursuit.

Remark. Using coherence condition for (BP), we cannot relax the

quadratic in m � Cs
2
. For example, choose

m = (2s � 1)
2/2, n � 2m, s 

p
n � 1.

Then

µ1(s) + µ1(s � 1) > 1.
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Restricted Isometry Property

Definition. The s
th

restricted isometry constant �s = �s(A) of a

matrix A 2 Cm⇥n
is the smallest � � 0 such that

(1� �)kxk22  kAxk22  (1 + �)kxk22

for all s-sparse vector x 2 Cn
. Equivalently,

�s = max
S⇢[n],|S |s

kA⇤
SAS � Idk2!2.

⇒If %<¥y ,
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RIP Theorems

Theorem 6.12. Suppose A 2 Cm⇥n
satisfies the RIP condition:

BP IHT HTP OMP

�2s <
4p
41

�6s <
1p
3

�6s <
1p
3

�13s <
1
6

⇡ 0.6246 ⇡ 0.5773 ⇡ 0.5773 ⇡ 0.1666

Then for any w 2 Cn
and y 2 Cm

with ky � Awk2  ⌘, a solution w
#
of

the `1-minimization:

min
z2Cn

kzk1 s.t. kAz � yk2  ⌘,

approximates the vector w with errors (C, D depend only on �2s):

kw � w
#k1  C�s(w)1 + D

p
s⌘.

kw � w
#k2 

Cp
s
�s(w)1 + D⌘.
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RIP Theorems

Theorem 6.21. Suppose A 2 Cm⇥n
satisfies the RIP condition:

BP IHT HTP OMP

�2s <
4p
41

�6s <
1p
3

�6s <
1p
3

�13s <
1
6

⇡ 0.6246 ⇡ 0.5773 ⇡ 0.5773 ⇡ 0.1666

Then for any w 2 Cn
and y 2 Cm

with y = Aw + e, the iteration wn
of

the IHT and HTP for y = Aw+e, w0
= 0 and s is replaced by 2s satisfies

kw �wnk1  C�s(w)1 + D
p
skek2 + 2⇢n

p
skwk2.

kw �wnk2 
Cp
s
�s(w)1 + Dkek2 + 2⇢nkwk2

PECO,1)

e (%)
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Reference

Chapters 4, 5, and 6, A Mathematical Introduction to Compressive

Sensing, by S. Foucart and H. Rauhut.


