ECE 409 - Cryptography and System Security
Winter 2019

Instructor: Professor G. Gong
Office: EIT 4158, x35650, ggong@uwaterloo.ca
http://comsec.uwaterloo.ca
Office hours: TBA

Course Description: This course will provide introduction to cryptology and system security, theory of secure communications, points of attacks, symmetric-key and public-key cryptographic algorithms, network security protocols, access authentication, wireless system security, blockchain security, and applications.

Outcomes: Equip students with cryptography and security basics in modern computer network and systems.

Prereq Topics: Mathematical reasoning, discrete math, statistics, probability.

Prereqs: Level at least 4A Computer Engineering or Electrical Engineering or Software Engineering.

Antireqs: CS 458

Resources

References:
2. ECE 409 Course Notes -Available on UW-LEARN.

Course Outline

1. Introduction to cryptography and system security: cryptology, cryptanalysis, classification of cryptosystems, and basic concepts of secure systems.

2. Networks, Systems and Finite Fields: Model of secure systems, types of attacks, attacking points, trust and threat models, trusted platform, and arithmetics of finite fields.

5. Public-key Cryptographic Systems: arithmetic operations, discrete logarithm and integer factorization algorithms, learning with error, public-key systems (RSA, DH, DSS, ECC, and FHE), hashing chain authentication, and faulty attacks.

7. Network Security Protocols: the man-in-the-middle attacks, mutual authentication, key establishment, security association, network security protocols (IPsec, TLS), and attacks on TLS.

8. Access Authentication: basic concepts in access authentication, wireless access authentication and key agreement (AKA), AAA, and attacks on password based authentication.

9. Wireless System Security: air link protection (3G/4G-LTE), IEEE 802.11 security solutions (flawed WEP, CCMP), and jamming and location service attacks.

10. Applications and Special Topics: IoT, blockchain and cryptocurrency, and privacy preserving machine learning.

Tutorial Description: Question and answer on material covered in lectures and homework assignment, and problem solving skills.

Course Grading: The overall grade is based on two sets of assignment questions, one course project (individual or 2-person group), and one final exam. For the project, a list of the project problems will be provided. Program demo and a report of 5-10 pages is a must to obtain the score.

Other Resources
