
Research Statement
Gabriel Islambouli

Overview

The topology of smooth 4-dimensional manifolds is among the deepest, yet poorly understood areas of
low dimensional topology. My research is focused on trying to understand smooth 4-manifolds using
singularity theory and simplicial complexes associated to surfaces. To pass to these theories, I primar-
ily use trisections and, more generally, multisections, which are decompositions of smooth, compact,
orientable 4-manifolds into simple pieces. A nice feature of these decompositions is that they encode
the smooth topology of the manifold as sets of curves on a surface. This allows us to recast questions
about 4-manifolds into questions about these curves, which tend to be more combinatorial in nature. In
this vein, Section 3 of this statement describes joint work with Michael Klug which provides a combi-
natorial answer to the basic question: “When is an orientable 4-manifold the boundary of an orientable
5-manifold.”

The theory of 4-manifolds presents unique difficulties due to the vast difference between the smooth
and topological categories. In contrast to other dimensions, a fixed homeomorphism class of 4-manifolds
may have infinitely many diffeomorphism types within it. Section 2 describes joint work with Patrick
Naylor which explains how this difference is reflected in a multisection, giving a construction for passing
between multisections of any two topologically, but not smoothly equivalent 4-manifolds. In a related
direction, multisections also hold the potential for developing new combinatorial invariants of smooth
4-manifolds. Towards this end, Section 4 describes joint work which provides a set of moves relating any
two multisections of a fixed 4-manifold. This section also describes independent work constructing the
only known trisections which require these moves.

1 Background and Constructions of multisections

A common technique in topology is to build a space out of simple pieces, and analyze how these pieces fit
together to make a more complex space. A useful building block in this regard is an n-dimensional genus
g handlebody, which is the manifold obtained by taking a neighbourhood of a bouquet of g circles in
Rn. In 1898, Poul Heegaard [7] introduced a decomposition of 3-manifolds into two handlebodies which
we now call a Heegaard splitting. Motivated by this decomposition, Gay and Kirby [4] introduced the
notion of a trisection, which is a decomposition of a 4-manifold into three 4-dimensional handlebodies.
They also showed that an arbitrary smooth, orientable, compact 4-manifold admits a trisection. In [11],
we generalize their decomposition to an arbitrary number of handlebodies, and we present this definition
below. A schematic of a trisection and a 4-section can be seen in Figure 1, and can be used as a reference
while absorbing the formal definition.

Definition 1.1. Let X be a smooth, orientable, closed, connected 4-manifold. A genus g n-section, or
multisection of X is a decomposition X = X1 ∪X2 ∪ · · · ∪Xn such that:

1. Xi is a 4-dimensional handlebody;

2. X1 ∩X2 ∩ . . . ∩Xn = Σg, a closed orientable surface of genus g;

3. Xi ∩Xj = Hi,j is a 3-dimensional handlebody if |i− j| = 1, and Xi ∩Xj = Σg if |i− j| > 1;

4. ∂Xi
∼= #kiS1 × S2 has a Heegaard splitting given by H(i−1),i ∪Σ Hi,(i+1).

We call the Xi sectors and a union of one or more consecutive sectors a subsection

One of the nice features that multisections share with Heegaard splittings is that they can be described
as sets of curves on a surface. A cut system for a genus g surface is a collection of g disjoint simple
closed curves which cut the surface into a 2g punctured sphere. An elementary application of a theorem
of Laudenbach and Poenaru [14] shows that all of the structure of an n-section can be encoded by an
ordered list of n cut systems on the trisection surface. Some examples of such diagrams can be found at
the bottom of Figure 1. We call the surface, together with the cut systems, a multisection diagram.
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Figure 1: Top: Schematics for a trisection and a 4-section. Each Xi is diffeomorphic to a 4-dimensional
handlebody and each Hij is diffeomorphic to a 3-dimensional handlebody. The Hij meet in a closed
surface indicated by a dot in the center of the disk. Bottom: Diagrams for the trisection of CP 2 (left)
and the 4-section of S2 × S2 (right).

Multisections arise in a wide array of natural settings, which may be surprising given the abundance
of structure present. Trisections were initially constructed by Gay and Kirby in [4] by taking a particular
map of a 4-manifold to a disk, dividing the disk into three pieces, and taking the inverse image of each
piece. Later, Baykur and Saeki [1] showed how to take an arbitrary stable map to the disk and modify
it so that it can be divided into three nice pieces as before. To get the flavor of how one can modify
such functions, Figure 3 shows some valid moves on the critical image of a map of a 4-manifold to the
disk. More indirectly, Gay [5] showed how to associate a multisection to a loop of generalized Morse
functions on a surface. Inspired by this work, joint work with Michael Klug [10] shows how to construct
a multisection from a loop in the pants complex; a viewpoint which will be elaborated on in Section 3.

2 Cut and Paste operations on multisections

Since multisections present manifolds as curves on a surface, it is natural to attempt to realize the cut
and paste operations ubiquitous in 4-manifold topology as operations on these curves. For the case of
trisections, there has been slow but steady progress on this problem. In practice however, implementing
cut and paste operations on a trisection can be quite unwieldy. In [11], we introduced the notion of a
multisection with the purpose of simplifying this procedure.

When cutting along a subsection of a multisection, the two resulting pieces inherit the structure of a
Heegaard splitting on their boundary. If we choose a gluing map that respects such a Heegaard splitting,
then the resulting manifold inherits a multisection structure as well. If one has a map of a 3-manifold
in mind, it is always possible to make the gluing compatible with some Heegaard splitting. Moreover, in
many important cases, it is actually practical to find concrete representatives of such maps.

Once a map respects a Heegaard splitting, a nice consequence is that the map is entirely determined
by its restriction to the surface. This allows one to locate and carry out cut and paste operations entirely
within the diagrams. A schematic of the effect of regluing on the diagram, as well as a particular example
of this effect is shown in Figure 2. The diagram in the bottom left of this figure represents a 4-section
of S2 × S2 and a Dehn twist about the red curve takes this to a 4-section of S2×̃S2 shown on the right.
The main result of [11] is the following theorem, which states that this regluing procedure completely
captures the subtle difference between homeomorphism and diffeomorphism in dimension 4.

Theorem 2.1. Suppose that X and X ′ are smooth, closed, oriented simply connected 4-manifolds that
are homeomorphic, but not diffeomorphic. Then, there exists a surface Σ, and cut systems C1, C2, C3,
C4, and C ′4, such that:

1. (Σ;C1, C2, C3, C4) is a 4-section diagram for X;

2. (Σ;C1, C2, C3, C
′
4) is a 4-section diagram for X ′;

3. There exists a map τ : Σ→ Σ such that, τ(C1) = C1, τ(C3) = C3, and τ(C4) = C ′4 where τ is the
restriction of a cork twist to Σ.
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Figure 2: Top: A schematic illustrating the process of cutting out and regluing a subsection by a map
respecting the boundary Heegaard splitting. The handlebodies on the boundary do not change, but
the handlebodies in the subsection being re-glued may change. Bottom: The gluing map transforming
S2×S2 to the nontrivial S2 bundle over S2 amounts to modifying the green curve by a Dehn twist about
the common orange and red curve.

3 Multisections and complexes associated to surfaces

Among the deepest and most subtle relations in 3-manifold theory is the connection between the topology
of a 3-manifold and the Hempel distances of its Heegaard splittings. The Hempel distance is defined as
a distance in the curve complex of the Heegaard surface, and contains deep geometric information about
the underlying 3-manifold. A central part of my research has been exploring how to make use of the
complexes associated to a multisection surface to gain knowledge about the underlying 4-manifold.

A particularly important complex associated to a surface is the pants complex. The vertices of this
complex correspond to isotopy classes of 3g − 3 mutually non-separating disjoint curves which separate
the surface into 2g−2 3-hold spheres, these being the namesake “pants.” Edges and 2-cells are associated
to configurations of curves in such a way that the complex becomes connected and simply connected. In
joint work with Michael Klug [10], we show how to take a loop L in the pants complex, L, and construct
a closed, smooth 4-manifold, X 4

C(L). Our main theorem is the following existence result.

Theorem 3.1. For every closed, smooth, orientable 4-manifold X4, there exists a closed loop L in the
pants complex of a closed surface so that X is diffeomorphic to X 4

C(L).

Moreover, given two such loops and a homotopy between them, we can build a unique cobordism
between the manifolds corresponding to the loops. Since the pants complex is simply connected [6],
we can contract a loop to give a null-bordism of the corresponding manifold. This gives our main
application, which is an elementary proof that the cobordism group of closed, smooth, orientable 4-
manifolds is isomorphic to the integers. We are also able to go backwards and gain information about
the pants complex using this correspondence, gaining insight into the types of simplicial disks a loop can
bound.

In order to explore the connection between 4-manifolds with boundary and complexes associated to
surfaces, joint work with Castro, Miller, and Tomova [2] introduces a new complex which we call the
p-cut complex. As before, a loop in this complex corresponds to a smooth orientable manifold, where
in this case the manifold has boundary. Inspired by work of Kirby and Thompson [13], we define a new
invariant of a 4-manifold, rL(M4), which is defined to be minimum length of a loop representing M4 in
this complex. One nice feature of this invariant is that it detects B4 among rational homology balls.

Theorem 3.2. If M is a rational homology ball with rL(M) = 0, then M ∼= B4.

Shifting viewpoints slightly, we can also use the pants complex to “compare” 4-manifolds. This is
the subject of my work in [8] which extends work of Johnson [12] to four dimensions. To compare two
trisections we can cut one sector out of each trisection and glue along the resulting boundary components.
This identifies two of the sets of curve in each trisection diagram. Since each trisection was completely
described by three sets of curves, the “difference” between these two trisections is contained in the
“difference” between the unidentified curves. More precisely, we extend these different sets of curves
to pants decompositions and compute the distance between these pants decompositions in the pants
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Figure 3: The sequence of moves making up a UPW move. Here, it is used to remove the cusp in the
top left sector, leaving this sector with no cusps in the final critical image. A sector with no cusps can
be contracted to give a multisection with fewer sectors (in this case, the result will be a trisection).

complex. There were a few choices suppressed in this description, but minimizing over all such choices
gives a well defined distance, D(T1, T2), between two trisections.

Given two (g, k)−trisections, we can stabilize both of them to obtain (g+ 3, k+ 1)-trisections, which
we can again compare in the pants complex. One may of course repeat this action, and compare the
twice stabilized trisections to each other. Given a trisection T , let Tn be the trisection obtained from T
by stabilizing n times. The main result of [8] is the following theorem.

Theorem 3.3. Let T1 and T2 be trisections of M1 and M2 with some sector of T1 diffeomorphic to
some sector of T2. The natural number limn→∞D(Tn

1 , T
n
2 ) exists, and depends only on the under-

lying manifolds M1 and M2. We can then define a distance between manifolds, D(M1,M2), to be
limn→∞D(Tn

1 , T
n
2 ) where T1 is any trisection of M1, and T2 is any trisection of M2.

4 Stable equivalence of Multisections

Two trisections X = X1 ∪X2 ∪X3 and X ′ = X ′1 ∪X ′2 ∪X ′3 are said to be diffeomorphic if there exists
a diffeomorphism, f : X → X ′, such that f(Xi) = X ′i. In [4], Gay and Kirby defined a stabilization
operation on trisections, and showed that any two trisections of a fixed 4-manifold become diffeomorphic
after some number of stabilizations. This theorem brings up a natural question: can a manifold admit
non-diffeomorphic trisections of the same genus? Drawing inspiration from geometric group theoretic
techniques used in dimension three, my work in [9] affirmatively answers this question in a strong sense.

Theorem 4.1. For any k > 1, there exist infinitely many manifolds admitting 2k− 1 non-diffeomorphic
(3k, k)-trisections.

It is straightforward to show that the stabilization operation which Gay and Kirby use to relate
trisections is insufficient to relate any two multisections of a 4-manifold. To account for this, in [11]
Naylor and I introduce an additional move, which we call a UPW move. This move is defined as a
modification of the map a multisection induces to the disk. The modification of the critical image of this
map is shown in Figure 3. Repeated applications of this move can turn any multisection into a trisection,
whereby we prove the following theorem.

Theorem 4.2. Let X be a smooth, oriented, closed, and connected 4-manifold. Any two multisections
of X are related by a sequence of UPW moves, stabilizations, and isotopy through multisections.

5 Future Work

5.1 Invariants: old and new

Our understanding of the landscape of smooth 4-dimensional manifolds has, time and time again, been
challenged by the introduction of new invariants. The first of the truly perspective altering invariants
came from work of Donaldson [3]. In modern days, a more computable, and conjecturally equivalent, in-
variant comes from the theory of Heegaard-Floer homology, as developed by Ozsváth and Szabó [17]. The
Ozsváth-Szabó closed 4-manifold invariant is defined using decompositions which resemble multisections
quite closely, so it is natural to ask the following question.
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Problem 5.1. Compute the Ozsváth-Szabó closed 4-manifold invariant directly from a multisection
diagram. Use this calculation to deduce new cut and paste results and distinguish new classes of smooth
4-manifolds.

In addition to being an interesting way of building new 4-manifolds, an understanding of Problem 5.1
would also give subtle invariants of loops of Morse functions and loops in the pants complex. Going the
other way, these alternate characterizations of multisections give unorthodox pathways for deducing new
invariants of 4-manifolds. My work in [10] shows how to extract a classical invariant, the signature, from
a loop in the pants complex. The signature is also known to appear as an element of the cohomology
group of the mapping class group of a surface. Madsen and Weiss [15] showed that the cohomology in
the ”stable range” is generated by the Mumford-Miller-Morita classes, one of which is a multiple of the
aforementioned signature element. Since the genus of the surfaces which multisections are represented
on can be made arbitrarily large, we can push each surface into a desired stable range leading to the
following problem.

Problem 5.2. Interpret the Mumford-Miller-Morita classes of a multisection. Understand how these
behave under stabilizations to define invariants of 4-manifolds.

5.2 Interpreting manifolds in complexes associated to surfaces

Work of Meier and Zupan [16] shows how to represent a knotted surface in a 4-manifold on a trisection
surface. This amounts to puncturing the original surface in some number of points and connecting these
punctures via arcs. By analogy, a wide variety of the techniques used to construct multisections should
work to construct a 4-manifold together with an embedded surface.

Problem 5.3. Given a loop of generic smooth functions on a surface with boundary, construct a unique
4-manifold together with an embedded surface. Show that every 4-manifold/surface pair arises in this
fashion.

Smoothly knotted surfaces in 4-manifolds are still poorly understood and it is likely that such a
construction will lead to novel invariants. In addition, a representation of knotted surfaces as loops in a
complex could lead to combinatorial proofs of classical results.

We next turn to cobordisms. By Theorem 3.1, 4-manifolds can be represented by loops in the pants
complex. Some more work shows that a map of an annulus corresponds to a 5-dimensional cobordism.
It is straightforward to show that not every cobordism arises in this fashion, but it is likely that the most
interesting cobordisms can be represented like this.

Problem 5.4. Show that every smooth 5-dimensional h-cobordism can be represented as an annulus
in the pants complex. Study the complexity measure of the h-cobordism given by the simplicial area of
this annulus.

5.3 Constructions of new multisections

My work described in Section 4 describes the only known way to distinguish trisections of a fixed manifold,
and hinges on fundamental group arguments. By contrast, the complexity of smooth 4-dimensional
topology is present even among simply connected manifolds. This leads naturally to the following
problem.

Problem 5.5. Find two inequivalent trisections of a simply connected 4-manifold of the same genus.

The cut and paste techniques described in Section 2 give a very flexible set of tools to construct new
multisections. Perhaps the most interesting of these is the cork twist operation which underlies Theorem
2.1. A result of that theorem is that the entire cork twist operation can be described on the surface as a
mapping class. By the Nielsen-Thurston classification, mapping classes of a surface are either reducible,
finite order, or pseudo-Anosov. The previously cited work has examples of the first two classes of maps,
leading to the following problem.

Problem 5.6. Find an infinite order cork whose restriction to the multisection surface is a pseudo-
Anosov map.

Pseudo-Anosov maps usually increase distances in complexes associated to a surface. It is therefore
likely that the 4-manifolds constructed in this way are very different from each other, which could be
reflected as a complexity in the h-cobordism between them, as in Problem 5.4.
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