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a b s t r a c t

When vector-valued observations are of high dimension N relative to the sample size T , it
is common to employ a linear factor model in order to estimate the underlying covariance
structure or to further understand the relationship between coordinates. Asymptotic
analyses of such models often consider the case in which both N andT tend jointly to
infinity.Within this framework,wederiveweak convergence results for processes of partial
sample estimates of the largest eigenvalues of the sample covariance matrix. It is shown
that if the effect of the factors is sufficiently strong, then the processes associated with the
largest eigenvalues have Gaussian limits under general conditions on the divergence rates
ofN andT , and the underlying observations. If the common factors are ‘‘weak’’, thenN must
growmuchmore slowly in relation to T in order for the largest eigenvalue processes to have
a Gaussian limit. We apply these results to develop general tests for structural stability of
linear factormodels that are based onmeasuring the fluctuations in the largest eigenvalues
throughout the sample, whichwe investigate further bymeans of aMonte Carlo simulation
study and an application to US treasury yield curve data.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

The largest eigenvalues and corresponding eigenvectors of the sample covariance matrix of vector-valued observations
are frequently used as a simplified summary of their variability and dependence structure, especially if the dimension N of
the observations is large. This general practice is commonly referred to as principal component analysis (PCA), and within
the last two decades there has been a surge of research in both the statistics and econometrics communities aiming to
understand the asymptotic properties of PCA when N is large in relation to the sample size T ; for a brief summary of this
literature we refer to [4,12,21,32]. These asymptotic analyses are often considered within the framework of linear factor
models, which basically posit that the dependence between coordinates may be explained by a common linear dependence
on a small number of random ‘‘factors’’. Under suchmodels and as N → ∞, the largest eigenvalues of the covariance matrix
diverge assuming that the factor loadings do not shrink too much as N increases. This observation seems to have given
rise to more general spiked covariance models, and asymptotics for the largest sample eigenvalues under such models are
considered in [33,41]. An important distinction in each of these works is the relative rate at which N may increase with
respect to T in order for the asymptotics to hold.

By and largemost papers in this direction assume the vector-valued observations form a simple random sample, although
in many arenas of application, such as finance and econometrics, the data are observed as time series that are potentially
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serially correlated or conditionally heteroscedastic. To give a few examples, PCA and the largest eigenvalues are often
utilized in Markowitz portfolio optimization [29,30], and to model co-movements of markets and stocks as a barometer
for risk [25,47], among many other applications. Moreover, with such time ordered data, it is often also of interest to
determine before conducting such analyses whether or not the second order structure measured by the largest eigenvalues
is homogeneous throughout the sample, or if it appears instead to exhibit one or more structural breaks. If the data under
consideration consist of US macroeconomic indicators, for example, then the onset of a recession or the introduction of a
new technology may be evidenced by instability in the largest eigenvalues of the covariance matrix. Additionally, PCA based
forecasting methods might be improved if changes in the second order structure of the data are taken into account.

Motivated by these problems, in this paper we develop asymptotic results for the process of largest eigenvalues of
the empirical covariance matrix based on an increasing proportion of the total sample. The asymptotic distribution of the
eigenvalue process is established assuming the observations follow a high-dimensional factor model with common factors
and errors satisfying a general weak dependence condition allowing for serial correlation and/or ARCH effects. A crucial
distinction in the limiting behavior of the largest eigenvalue process is whether or not the common factor is the dominant
component in the covariance matrix of the observations. If this is the case, then the largest eigenvalue diverges as N → ∞,
and we show that the process of largest eigenvalue estimates, suitably normalized, converges in distribution to a Gaussian
process as min(N, T ) → ∞. If the dependence on common factors is negligible, for instance if the cross sections are weakly
correlated, which may be achieved by clustering or transforming the cross sections of a high-dimensional time series, then
the largest eigenvalue of the covariance matrix is bounded, and the largest eigenvalue process has the usual Gaussian limit
only when N/

√
T → 0.We discuss the optimality of these rate conditions on N and T in detail in Theorem 3 and subsequent

remarks, which basically state that without the given rate conditions one cannot obtain a Gaussian approximation for the
centered largest eigenvalue process.

We further develop an application of these results to test for structural stability in linear factor models. These tests are
based on maximally selected self normalized CUSUM statistics derived from the largest eigenvalue processes, which are
shown to diverge in the presence of a common break in the mean or covariance matrix. An interesting technical challenge
that must be faced when implementing these tests is the estimation of a normalizing sequence for the largest eigenvalue
process which might diverge depending on the unknown rate of divergence of the largest eigenvalues. We show that this
sequence can in general be consistently estimated using a simple kernel lag-window periodogram-type estimator, even
when N is large in relation to T .

This work is inspired by, and builds upon, a number of recent contributions in change point analysis and structural break
testing in linear factor models. With regards to testing for and estimating changes in the mean of high-dimensional linear
factormodels,we refer to Bai [5],whoproposes a least squares changepoint estimator. Kim [26,27] extends thismethodology
to account for changes in linear trends in the presence of cross sectional dependence modeled by common factors. Horváth
and Hušková [18] develop a test for detecting a change in the mean based on the CUSUM statistic. Li et al. [28] and Qian and
Su [36] consider multiple structural breaks in panel data, and Kao et al. [22] consider break testing under cointegration.

Estimating and testing for changes in the covariance of scalar and vector-valued time series of a fixed dimension are
considered in [2,13,42]. Kao et al. [23] develop a change point test based on the spectra and principal components of the
covariance matrix in the finite-dimensional setting (N fixed). With regards to testing for changes in the factor structure in
high-dimensional factor models, seminal work was conducted by Breitung and Eickmeier [9], who developmethodology for
testing the constancy of factor loadings in individual cross sections using least squares regression of the cross section onto the
principal component factors. Their test depends on estimating the number of common factors according to the information
criterion developed in [6], and has been shown to be somewhat sensitive to the number of factors estimated. An alteration of
their test to address this issue is developed in [44]. In [10,17], methods are proposed to test for changes in the factor loadings
across a nonzero fraction of cross sections. In order that the estimation of the factors is asymptotically negligible, these tests
generally assume that the factor loadings do not become degenerate as N increases, and that

√
T/N → 0. In contrast, under

their conditions our test only requires that min(N, T ) → ∞.
The rest of the paper is organized as follows. In Section 2, we present our primary model and basic assumptions, as

well as the main asymptotic results for the largest eigenvalue. Section 3 contains the details of applying the results of
Section 2 to a change point problem, including asymptotic consistency results under the mean break and factor loading
break alternatives. We derive consistent estimates of the aforementioned normalizing sequences as well as self-normalized
statistics that bypass the need to perform such an estimation in Section 3. In Section 4, we discuss further practical details
of the implementation of the proposed tests, and present the results of a Monte Carlo simulation study. Section 5 contains
an application of the methodology developed in the paper to US treasury yield curve data. Analogous results for smaller
eigenvalues are considered in Section 6. We provide some concluding remarks in Section 7, and all proofs of the technical
results are collected in Section 8 as well as in an Online Supplement [19].

2. Models, assumptions, and main asymptotic results

We consider the linear factor model defined, for all i ∈ {1, . . . ,N} and t ∈ {1, . . . , T }, by

Xi,t = µi + γiηt + ei,t , (1)
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where Xi,t denotes the ith coordinate or cross section vector-valued time series observed at time t , µi denotes the mean of
the ith cross section, ηt denotes a real valued common factor with factor loadings γi, and ei,t denote the idiosyncratic errors.
It is presumed that both the common factor and idiosyncratic errors may be serially correlated. As we develop asymptotics,
we assume that the number of cross sections or dimension N and the sample size T tend jointly to infinity. We make the
assumption that ηt ∈ R in order to simplify the presentation and the intuition behind the results presented below, and these
results can be extended to the more general case of a vector-valued common factor and factor loading, which we discuss
in Remark 2. We let ⊤ denote the matrix transpose, and define the vectors Xt = (X1,t , . . . , XN,t )⊤ ∈ RN . We define, for all
u ∈ [1/T , 1],

ĈN,T (u) =
1

⌊Tu⌋

⌊Tu⌋∑
t=1

(Xt − X̄T )(Xt − X̄T )⊤,

to be the sample covariance matrix based on the proportion u of the sample, where X̄T = (X1 + · · · + XT )/T .
We first aim to study the processes derived from the K largest eigenvalues λ̂1(u) ≥ · · · ≥ λ̂K (u) of ĈN,T (u). At firstwe focus

our attention on the process derived from the largest eigenvalue, and make the primary objective of this section to establish
the weak convergence of λ̂1(u) under model (1). Analogous results for processes derived from the smaller eigenvalues are
provided in Section 6. We note that an alternative to using λ̂i(u) is to use λ̃i(u) = (⌊Tu⌋/T )λ̂i(u), which are equivalent with
the largest eigenvalues of the map defined, for all u ∈ [0, 1], by

C̃N,T (u) =
1
T

⌊Tu⌋∑
t=1

(Xt − X̄T )(Xt − X̄T )⊤.

Letting C = cov(Xt ), we define the eigenvalues and eigenvectors of C by

λ1e1 = Ce1, . . . , λNeN = CeN , (2)

where ∥e1∥ = · · · = ∥eN∥ = 1, and ∥ · ∥ denotes the Euclidean norm in RN . Since N is allowed to increase with T , both
the eigenvalues λi and eigenvectors ei may evolve as functions of N , i.e., λi = λi(N). We suppress this dependence below for
notational convenience. Throughout this paper, we make use of the following assumptions:

Assumption 1. There exists a positive integer K such that the eigenvalues λ1, . . . , λK satisfy mini∈{1,...,K }(λi − λi+1) ≥ c0 for
some constant c0 > 0 not depending on N .

Assumption 2. The common factor loadings satisfy that |γi| ≤ c1 for all i ∈ {1, . . . ,N}with some c1 > 0 not depending onN .

Assuming that the eigenvalues of C are distinct is necessary to derive a normal approximation for their estimates, and is
a common assumption in the literature. We assume that the common factors and idiosyncratic errors satisfy a fairly general
weak dependence condition.

Definition 1. We say that a stationary time series {εt : −∞ < t < ∞} is an Lp-m-approximable Bernoulli shift with
rate function χ if Eεt = 0, Eεpt < ∞, and εt = g(νt , νt−1, . . .) for some measurable function g : R∞

→ R where
{νs : −∞ < s < ∞} are independent and identically distributed random variables, and {E(εt − ε

(m)
t )p}1/p = χ (m) with

ε
(m)
t = g(νt , νt−1, . . . , νt−m, ν

∗

t−m−1,t,m, ν
∗

t−m−2,t,m, . . .) and the ν∗

i,j,ℓ are independent and identically distributed copies of ν0.

The space of stationary processes that may be represented as Bernoulli shifts is quite large; we refer to [43] for a
discussion. Examples include stationary ARMA, ARCH, and GARCH processes. The rate function describes the rate at which
such processes can be approximated with sequences exhibiting a finite range of dependence. In many examples of interest,
such as those listed above, the rate function may be taken to decay exponentially in the lag parameter.

Assumption 3.

(a) {ηt : −∞ < t < ∞} is L12-m-approximable with rate function χη(m) = c2m−αη for constants c2 > 0 and αη > 1, and
Eη2t = 1.

(b) The sequences {ei,t : −∞ < t < ∞},with i ∈ {1, . . . ,N}, are each L12-m-approximable with rate functions χe,i(m) ≤

c3m−αe for constants c3 > 0 and αe > 1. There exist constants c4 and c5 such that 0 < c4 ≤ Ee2i,t = σ 2
i,e ≤ c5 < ∞.

(c) The sequences {ηt : −∞ < t < ∞} and {ei,t : −∞ < t < ∞}, for all i ∈ {1, . . . ,N}, are independent.

The least restrictivemoment condition that could be assumed in order to obtain a normal approximation for the empirical
eigenvalues is four moments. Our assumption of twelve moments comes from the fact that we apply a third order Taylor
series expansion for the difference between the empirical eigenvalue process λ̂i(u) and λi [15] and twelve moments are
needed to get an upper bound for the highest order term that is uniform with respect to u. The condition in Assumption 3
that Eη2t = 1 is nonrestrictive, as it makes the model (1) identifiable.

According to (1), we have that C = γγ⊤
+ Λ, where γ = (γ1, . . . , γN )⊤, and Λ is an N × N diagonal matrix with

σ 2
1,e, . . . , σ

2
N,e in the diagonal. As mentioned in the Introduction, the ‘‘strength’’ of the common factor is crucial in explaining
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the overall asymptotic behavior of λ1 and λ̂1(u). We consider two cases here separately: the case when ∥γ∥ → ∞ as
min(N, T ) → ∞, and the case when ∥γ∥ = O(1) as min(N, T ) → ∞. In the first case, the common factor is the dominant
term in the covariance matrix, and indeed λ̂1(u)/∥γ∥2

→ 1 in probability for all u > 0. In the latter case, according to
Assumption 3(b), no one principal value of the covariance matrix dominates as N → ∞, and the largest eigenvalue of C
is bounded. This might be a reasonable assumption for high-dimensional time series from which the effect of the first few
estimated common factors have been removed. In order to state the main result, we define ξi,t = e⊤i (Xt −EX0)(Xt −EX0)⊤ei.

Theorem 1. Suppose (1) and Assumptions 1–3 hold, and c ∈ (0, 1]. If ∥γ∥ → ∞, and

min
{

N2

∥γ∥4T 1/2 ,

(
N2

T
+

N
T 1/2

)
1

∥γ∥2

}
→ 0, (3)

then T 1/2 u{λ̂1(u)−λ1}/(∥γ∥2ση)
D[c,1]
−→ W (u), whereW (u) is aWiener process,

D[c,1]
−→ denotes weak convergence in the Skorokhod

topology on [c, 1], and

σ 2
η =

∞∑
t=−∞

cov(η20, η
2
t ).

If instead ∥γ∥ = O(1) asmin(N, T ) → ∞, and

N/T 1/2
→ 0, (4)

then T 1/2 u{λ̂1(u) − λ1}/σ1
D[c,1]
−→ W (u), where

σ 2
1 = σ 2

1 (N) =

∞∑
t=−∞

cov(ξ1,0, ξ1,t ).

Remark 1. Theorem 1 shows that, under the given rate conditions relatingN and T , the distribution of the largest eigenvalue
process may be approximated by that of a Brownian motion. In the first case when ∥γ∥ → ∞, we note that if in addition
∥γ∥2 is proportional to N , which would hold if |γi| > 0 for a nonzero proportion of the cross sections, or if γi were stochastic
and independent of the common factor and idiosyncratic errors with a non-degenerate distribution, then (5) reduces to the
condition that min(N, T ) → ∞. Moreover, the norming sequence depends only on the long run variance of the common
factors and the common factor loadings. In the case when ∥γ∥ = O(1), the norming sequence σ 2

1 is essentially the long run
variance of the quadratic forms ξ1,t , which is bounded under Assumptions 2 and 3.

In the above theoremwe considered weak convergence of the largest eigenvalue process defined on an interval bounded
away from the origin. One can obtain a similar result on the entire unit interval by assuming slightly stronger rate conditions
on N and T , as demonstrated by the following theorem.

Theorem 2. Suppose (1) and Assumptions 1–3 hold. If ∥γ∥ → ∞ asmin(N, T ) → ∞, and

min
{
N2(ln T )1/3

∥γ∥4T 1/2 ,

(
N2

T
+

N
T 1/2

)
(ln T )1/3

∥γ∥2

}
→ 0, (5)

then we have that T 1/2 u{λ̂1(u) − λ1}/(∥γ∥2ση)
D[0,1]
−→ W (u), If instead ∥γ∥ = O(1) asmin(N, T ) → ∞, and

N(ln T )1/3/T 1/2
→ 0, (6)

then T 1/2 u{λ̂1(u) − λ1}/σ1
D[0,1]
−→ W (u).

Remark 2. In the more general case where ηt ∈ Rp with factor loading matrix γ ∈ RN×p, we would require in Theorem 2
that the largest eigenvalue of γ⊤γ is unique and tends to infinity in place of the condition that ∥γ∥ → ∞, or that the largest
eigenvalue of γ⊤γ is bounded in place of ∥γ∥ = O(1). The normalization in Theorem 1 by ∥γ∥2 would be replaced by this
eigenvalue.

When ∥γ∥ is bounded, conditions (4) and (6) require that the sample size T increases faster than the squared dimension
N2, which is quite restrictive. The case when N is proportional to T has received considerable attention in the probability
and statistics literature. Assuming that ĈN,T (1) is based on independent and identically distributed entries, the distribution
of λ̂1(1) when properly standardized converges to a Tracy–Widomdistribution [20]. For a survey of the theory of eigenvalues
of large randommatrices, we refer to [3]. The result in the following theorem shows that if (4) fails, then even in a somewhat
simpler setting than considered above, T 1/2

{λ̂1(1) − λ1} cannot be asymptotically Gaussian, and that, moreover, λ̂1(1)
asymptotically overestimates λ1.
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Theorem 3. Suppose (1) and Assumptions 1–3 hold. In addition suppose that for each i ∈ {1, . . . ,N}, {ei,t : t ∈ Z} are
independent and identically distributed, and {ηt : t ∈ Z} is a sequence of independent and identically distributed random
variables, there exists a positive constant c6 and κ > 2 such that maxi∈{1,...,N}E|ei,0|3κ ≤ c6 and E|η0|3κ < ∞, and N/T 1/2

→ ∞,
N1+2/κ/T → 0. Then, there exists a positive constant c7 such that, asmin(N, T ) → ∞, Pr[c7 ≤ T 1/2

{λ̂1(1) − λ1}] → 1.

Theorem 3 basically shows then that in the absence of (4), one cannot obtain a Gaussian process for the centered
eigenvalue process. Theorem 3 is proven in the Online Supplement [19].

3. Changepoint detection

Theorems 1 and 2may be used to develop change point tests for the first and second order structure of high-dimensional
data based on the largest empirical eigenvalue process. In order to formalize this, consider the model defined, for all
i ∈ {1, . . . ,N} and t ∈ {1, . . . , T }, by

Xi,t = {µi + δi1(t ≥ t∗)} + {γi + ψi1(t ≥ t∗)}ηt + ei,t , (7)

in which the observations follow a factor model whose mean parameters and/or factor loadings might change at a common
change point t∗. We would then like to test the null hypothesis H0 : t∗ > T .

Under H0 the observed data follow (1). The largest eigenvalue of the covariance matrix is expected to be able to detect
such changes for the following reasons. First of all, in the presence of a mean change the estimator X̄T converges to a linear
combination of the means before and after the change point, which would asymptotically perturb the sample covariance
matrices ĈN,T (u) and affect the largest eigenvalue process. Additionally, a large enough change in the loadings would also be
expected to change the largest eigenvalue of the covariance matrix. Hence, a natural test statistic is to consider the size of
the process defined, for all u ∈ [c, 1], by

B̂T ,1(u) = T 1/2 u{λ̂1(u) − λ̂1(1)}/v̂1,T ,

where v̂1,T is a consistent estimator of either σ 2
η ∥γ∥2 or σ 2

1 . Such an estimator is studied in Section 3.1; see specifically
Theorem 4.

Corollary 1. Under the conditions of Theorems 1 and 4 below, B̂T ,1(u)
D[c,1]
−→ W 0(u), where W 0 is a standard Brownian bridge.

The continuous mapping theorem and Corollary 1 imply that

sup
u∈[c,1]

|B̂T ,1(u)|
D
→ sup

u∈[c,1]
|W 0(u)|. (8)

The limiting distribution on the right-hand side of (8) may be easily estimated for any value of the trimming parameter c
using Monte Carlo simulation. An approximate test of size α ofH0 is to reject if supu∈[c,1]|B̂T ,1(u)| is larger than the α critical
value of the estimated distribution. We study this test in finite samples in Section 4 below.

Remark 3. We would like to compare and contrast the conditions and strengths of this test to other tests available in the
literature for detecting changes in the covariance structure of vector-valued observations. The tests developed in [9,10,17,44]
are also cast in the setting of high-dimensional factor models, and rely on the condition that

√
T/N → 0 in order that the

estimation error incurred by estimating the common factors using PCA is asymptotically negligible. Their test is then based
on detecting changes in the coefficients estimated from regressing the data onto these factor estimates, and importantly
relies on a good estimate of the number of common factors. Our proposed test is instead based on measuring directly for
changes in the covariance asmeasured in the largest eigenvaluewithout the need to estimate the number of common factors.
In addition, their tests rely on the basic assumptions of [4], including their Assumption F3, which is effectively a stronger
condition than ∥γ∥2

= O(N). Under this condition our test only requires that min(N, T ) → ∞.
In the absence of

√
T/N → 0, our proposed test is expected to work generally in two cases: one is in which N/T 1/2

→ 0,
and in this case our test does not require further conditions. This compares to the change point tests developed in [2,13,23]
and [42] which each assume N is fixed. The aforementioned tests are quite sensitive to the dimension of the data since they
rely on estimating and inverting the second order structure of the vectorized covariance matrix, which is akin to estimating
and inverting a covariancematrix containingN(N+1)/2 elements. The second case is when the common factor is dominate,
in which case again our method only requires that min(N, T ) → ∞. An interesting open case is when the common factor is
not dominate, andN and T are proportional. According to Theorem3 a fundamentally different approach is required, perhaps
relating to more modern Tracy–Widom limit laws.

3.1. Estimating the norming sequence

Consistent estimation of σ 2
η ∥γ∥2 and σ 2

1 is required in order to apply Theorems 1 and 2 to test H0. Moreover, as it is
unknown in practice whether ∥γ∥ → ∞ or ∥γ∥ = O(1), a desirable property is that the estimator be consistent to each
possible limiting variance under the appropriate conditions. As these parameters represent the long run variance of the
quadratic forms ξi,t , we propose a standard nonparametric estimator of the spectral density at frequency zero. We define êi
for each i ∈ {1, . . . ,N} by λ̂i(1)êi = ĈN,T (1)êi, and let ξ̂i,t = {ê⊤i (Xt − X̄T )}2.
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Let J be a kernel/weight function that is positive, continuous and symmetric about the origin in Rwith bounded support
that satisfies J(0) = 1. Examples of such functions include the Bartlett and Parzen kernels; further examples and discussion
may be found in [39]. We define the estimator v̂21,T for either σ 2

η ∥γ∥2 or σ 2
1 by

v̂21,T =

N−1∑
s=−N+1

J (s/h) r̂1,s, (9)

where h denotes a smoothing bandwidth parameter, and

r̂1,s =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

T − s

T−s∑
t=1

(ξ̂1,t − ξ̄1,T )(ξ̂1,t+s − ξ̄1,T ) if s ≥ 0,

1
T − |s|

T∑
t=−s

(ξ̂1,t − ξ̄1,T )(ξ̂1,t+s − ξ̄1,T ) if s < 0,

with ξ̄1,T = (ξ̂1,1 + · · · + ξ̂1,T )/T . The following theorem establishes the consistency of this estimate, and is proven in the
Online Supplement [19].

Theorem 4. Suppose H0 and Assumptions 1–3 hold. If ∥γ∥ → ∞ asmin(N, T ) → ∞, and

h = h(T ) → ∞ with h
(

N
∥γ∥2T 1/2 +

N3/2

∥γ∥4T 1/2

)
→ 0, (10)

then, asmin(N, T ) → ∞, v̂21,T/(σ
2
η ∥γ∥4)

P
→ 1. If instead ∥γ∥ = O(1), then if

hN3/2/T 1/2
→ 0, (11)

v̂21,T/σ
2
1

P
→ 1 asmin(N, T ) → ∞.

Remark 4. Theorem 4 provides rate conditions on the bandwidth parameter h that involve both N and T , as well as ∥γ∥
in the case when it diverges. If ∥γ∥2 is proportional to N , then (10) reduces to the condition that h/T 1/2

→ 0, which is a
standard condition in nonparametric spectral density and long run variance estimation. On the other hand, condition (11)
is somewhat less appealing since it differs with the apparent optimal condition based on Theorem 2 that hN/T 1/2

→ 0 by
a factor of N1/2. This may be avoidable by an alternative method of proof, but the given condition still allows for a similar
divergence rate of N with respect to T . Theorem 4 is proven in the Online Supplement [19].

3.2. Self-normalized/ratio statistics

Oneway of avoiding the estimation of the long run variance parameter is to consider self-normalized statistics. The simple
idea is that a ratio of two functionals of λ̂1(u) can be constructed in such a way that both its limiting distribution does not
depend on the scaling constants ση nor σ1, and the corresponding test statistic still has power. Self-normalization has been
utilized fairly extensively in the context of change point analysis, see, e.g., [16] and [46], and these results among others on
the topic are summarized in the review [38].

Towards defining a self-normalized statistic based on the largest eigenvalue process, we define λ̃(1)1 (v, s) to be the largest
eigenvalue of the matrix defined for all v, s ∈ {1, . . . , T } by

Ĉ(1)
N,T (v, s) =

1
T

v∑
t=1

(Xt − X̄s)(Xt − X̄s)⊤,

where v ∈ {1, . . . , s}, and X̄s = (X1 + · · · + Xs)/s. Similarly we define λ̃(2)1 (v, s) to be, for v, s ∈ {1, . . . , T }, the largest
eigenvalue of

Ĉ(2)
N,T (v, s) =

1
T

T∑
t=v+1

(Xt − X̃s)(Xt − X̃s)⊤,

where v ∈ {s, . . . , T }, and X̃s = (Xs+1 + · · · + XT )/(T − s).We then base the test statistic on

Q (1)
N,T (s) = max

1≤v≤s
|λ̃

(1)
1 (v, s) − vλ̃

(1)
1 (s, s)/s| and Q (2)

N,T (s) = max
s≤v<T

|λ̃
(2)
1 (v, s) − (T − v)λ̃(2)1 (s, s)/(T − s)|.

Roughly speaking, given a point s that partitions the total sample into two subsamples, we calculate functionals of the
largest eigenvalue processes in each subsample in Q (1)

N,T and Q (2)
N,T . Under H0, the limit distribution of the ratios of these
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quantities can be obtained. Letting c ∈ (0, 1/2), we define

QN,T = Q (c)
N,T = max

{
maxs∈{1,...,⌊T/2⌋} Q

(2)
N,T (s)

maxs∈{⌊cT⌋,...,⌊T/2⌋} Q
(1)
N,T (s)

,
maxs∈{⌊T/2⌋,...,T } Q

(1)
N,T (s)

maxs∈{⌊T/2⌋,...,⌊(1−c)T⌋} Q
(2)
N,T (s)

}
,

and

Q = Q (c)
= max

[
sup0≤x≤1/2 supx≤u≤1|W (1) − W (u) − (1 − u){W (1) − W (x)}/(1 − x)|

supc≤x≤1/2 sup0≤u≤x|W (u) − uW (1)/x|
,

sup1/2≤x≤1 sup0≤u≤x|W (u) − uW (1)/x|
sup1/2≤x≤1−c supx≤u≤1|W (1) − W (u) − (1 − u){W (1) − W (x)}/(1 − x)|

]
.

Theorem 5. If the conditions of Theorem 1 are satisfied, and either ∥γ∥ → ∞ and (3) holds, or ∥γ∥ = O(1) and (4) holds, then
QN,T

D
→ Q , asmin(N, T ) → ∞.

Theorem 5 is proven in the Online Supplement [19]. The limiting distribution of Q is free of nuisance parameters, and its
quantiles can be produced for a given value of c via Monte Carlo simulation. There are several other ways to define such self
normalized statistics, for example

Q ∗

N,T = max
{

max
s∈{⌊cT⌋,...,⌊T/2⌋}

Q (2)
N,T (s)/Q

(1)
N,T (s), max

s∈{⌊T/2⌋,...,⌊(1−c)T⌋}

Q (1)
N,T (s)/Q

(2)
N,T (s)

}
could also be used. Moreover, instead of calculating maximum differences in Q (i)

N,T (s) i = 1,2, one might also consider the
sum of squared differences.

3.3. Consistency under alternatives

We now turn our attention to studying the consistency of tests for H0 based on supu∈[c,1]|B̂T ,1(u)| under the mean break
and factor loading break alternatives. We assume that the change does not occur too close to the end points of the sample,
i.e. for some θ ∈ (0, 1)

t∗ = ⌊Tθ⌋ (12)

First we consider the case of a break in the mean, i.e., the model for i ∈ {1, . . . ,N} and t ∈ {1, . . . , T }

Xi,t = {µi + δi1(t ≥ t∗)} + γiηt + ei,t , (13)

holds. Let δ = (δ1, . . . , δN )⊤ and assume

lim
min(N,T )→∞

T 1/2
∥δ∥/∥γ∥2

= ∞. (14)

Theorem6. Under (13), Assumptions1–3, and assuming that (3), (12), and (14) are satisfied, thenwe have that supu∈[c,1]|B̂T ,1(u)|
P

→ ∞.

We note that assumptions (12) and (14) also appeared in [18] where their optimality is discussed. It is clear if N is large,
relatively small changes can be detected by λ̂1(u). Moreover, we note that condition (14) does not require that there are
changes in all cross sections. As a consequence of the proof of Theorem 6, it follows that

max
i∈{2,...,K }

sup
u∈[0,1]

T 1/2
|λ̂i(u) − λ̂i(1)| = OP (1),

i.e., a change in the mean is asymptotically entirely captured by the largest eigenvalue of the partial covariance matrices.
The condition (14) suggests how a local change in the mean alternative may be considered. For example, if δ1 = · · · =

δN = δ(N, T ) and γ1 = · · · = γN = γ , γ being fixed, we need that (T/N)1/2|δ(N, T )| → ∞ for (14) to hold, which describes
at what rate δ(N, T ) may tend to zero while maintaining consistency.

Next we consider the model for i ∈ {1, . . . ,N} and t ∈ {1, . . . , T } defined by

Xi,t = µi + {γi + ψi1(t ≥ t∗)}ηt + ei,t , (15)

i.e., the means of the panels remain the same but the loadings change at time t∗. Let ψ = (ψ1, . . . , ψN )⊤.



L. Horváth, G. Rice / Journal of Multivariate Analysis 169 (2019) 138–165 145

Theorem 7. Under (15), Assumptions 1–3, and assuming that (3), (12) and

lim
min(N,T )→∞

(1 − θ )[∥ψ∥
2
+ 2|ψ⊤γ|] + (ψ⊤γ)2/∥ψ∥

2

∥γ∥2 + max1≤i≤N σ
2
i

> 1 (16)

hold, then supu∈[c,1]|B̂T ,1(u)|
P

→ ∞, asmin(N, T ) → ∞.

Roughly speaking, it is possible that the covariancemight change on a subspace that is orthogonal to the first eigenvector
(or more generally the first K eigenvectors), and then if this change is not sufficiently large, the first eigenvalue cannot have
power to detect it. Condition (16) is sufficient to imply that this does not occur. One can show in addition that QN,T → ∞ in
probability under the conditions of Theorems 6 and 7.

3.4. Differentiating between level shifts and changes in the common factor loadings

Under model (7), a rejection of H0 based on the supremum of the largest eigenvalue process may be caused by either
a change in the cross sectional means, or a change in the common factor loadings of the cross sections, and in some cases
it may be of interest to differentiate between these potential causes. We leave the development of a complete theory to
address this problem for future research, but a simple idea to accomplish this is to, in the case of a rejection of H0, perform
the test additional times after adjusting for potential changes in the mean and/or common factor loadings. Let

X̄∗

T ,t =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1
t̂∗

t̂∗∑
t=1

Xt if t ∈ {1, . . . , t̂∗},

1
T − t̂∗

T∑
t=t̂∗+1

Xt if t ∈ {t̂∗ + 1, . . . , T },

where t̂∗ is the least squares change point estimator for a change in the mean defined in Section 3 of [5], and define
X∗

t = Xt − X̄∗

T ,t . If the test no longer rejects when applied to the observations X∗
t , then presumably the cause of the original

rejection was a change in the cross sectional means. Otherwise, we suspect there is a change to the factor loadings. Of course
in this latter case it is possible that there is a change in both the means and common factor loadings. In order differentiate
these possibilities, let λ̂c,1, êc,1 denote the largest eigenvalue and eigenvector, respectively, of the sample covariance matrix
ofX∗

t , with t ∈ {1, . . . , t̂∗}, and similarly define λ̂c,2, êc,2 based on the sample covariancematrix ofX∗
t with t ∈ {t̂∗+1 . . . , T }.

We then define X∗∗
t = Xt −⟨Xt , êc,1⟩êc,1 for all t ∈ {1, . . . , t̂∗}, and X∗∗

t = Xt −⟨Xt , êc,2⟩êc,2 for t ∈ {t̂∗ + 1, . . . , T }. If the test
rejects when applied to X∗∗

t , then we conclude there is a change in the means and common factor loadings.

4. Finite-sample performance

In order to demonstrate how the above results are manifested in finite samples, we present here the results of a Monte
Carlo simulation study involving several different data generating processes (DGPs) that follow (7). All simulations were
carried out in the R programming language (R Development Core Team [37]). In order to compute the long run variance
estimate v̂21,T defined in (9), we used the ‘‘sandwich’’ package (see Zeileis [45]), in particular the ‘‘kernHAC’’ function.
The Parzen kernel with corresponding empirical bandwidth defined in [1] computed from the random variables ξ̂i,t were
employed. An important consideration in structural break testing brought to light in [34] and [40] is that of non-monotonic
power of the test relative to increasing sizes of the change. In order to account for this, we replaced the mean estimates X̄
used in the definition of the long run variance estimator with X̄∗

T ,t defined in Section 3.4.

4.1. Empirical size

We begin by presenting the results on the empirical size of the tests for stability based on the largest eigenvalue by
considering two examples of synthetic data generated according tomodel (1). We use the notation Yi ∼ Y to denote that the
sequence of random variables Yi are independent and identically distributedwith distribution Y . LetNi,t (0, 1), i ∈ {0, 1, . . .},
and t ∈ Z denote iid standard normal random variables, and let ARi(1, p) i ∈ {0, 1, . . .} denote independent autoregressive
one processes with parameter p based on standard normal errors. We generated observations Xi,t according to (1) and the
DGPs

(IID): ηt = N0,t (0, 1), ei,t = siNi,t (0, 1), si ∼ U(.8, 1.2), γi ∼ N (0, 1);
(AR1): ηt = AR0(1, .5), ei,t = siARi(1, .5), si ∼ U(.8, 1.2), γi ∼ N (0, 1).

The purpose of choosing random parameters si, which define the standard deviations of the idiosyncratic errors, and γi is
two fold. Firstly, this forces Assumption 1 to hold. Secondly, this choice highlights that the methodology is relatively robust
to variations in the parameter values.
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Fig. 1. The left panel illustrates five simulated paths of B̂T ,1(u) when N = 20 and T = 100 under (IID), and the right panel illustrates five simulated paths
of B̃T ,1(u) under the same conditions with c = 0.05.

Five simulated paths of the process B̂T ,1(u) are shown in the left hand panel of 1when T = 100 andN = 20, under IID. The
most notable feature is that each process always starts with a spike near the origin, i.e., λ̂i(u) is much larger than λ̂i(1) when
u is small. The reason for this is that, when u is small, λ̂i(u) is computed from a matrix that is low rank, and hence will tend
to be closer to the norm of the observation vectors, which is on the order of N , than the eigenvalue that it being estimated.
This problem is ameliorated when N decreases or T increases, but significantly affects the results for many practical values
of N and T .

In order to correct for this, we define, for all u ∈ (c, 1],

B̃T ,1(u) = B̂T ,1(u) − (1 − u)B̂T ,1(c)/(1 − c)

for a trimming parameter 0 < c < 1. It follows then under the conditions of Theorem 1 that

sup
u∈[c,1]

|B̃T ,1(u)|
D

→ sup
u∈[c,1]

|W 0(u) − (1 − u)W 0(c)/(1 − c)|, (17)

and the limit on the right-hand side can be approximated byMonte Carlo simulation. Five corresponding paths of B̃T ,1(u) are
illustrated in the right panel of Fig. 1, with c = 0.05.

Table 1 contains the percentages of the test statistics supu∈[c,1]|B̃T ,1(u)| and Q (c)
N,T that are larger than the 10%, 5%, and 1%

critical values of the distribution on the right-hand side of (17) and Q (c). The results can be summarized as follows:

1. When T is small (T = 50), then the size of the test may be inflated by two sources. One of them is the spiked effect,
and this is particularly pronounced when c is small and N is large. If the temporal dependence in the data is low, then
increasing c can allow the test to achieve good size even for small T and relatively large N . However, strong temporal
dependence can cause size inflation for small T that cannot be accounted for by increasing c. In general as long as the
sample size is at least larger than or equal to the dimension we recommend c = 0.1, which we use in the application
below.

2. Another source of size inflation that is present for larger values of T may be attributed to estimating the variance
under the alternative of a break in the mean. This may be improved by considering alternative variance estimation
approaches, such as those developed in [24].

3. The difference in the results between the IID andAR1DGP’swere small for larger values of T (T = 100, 200), indicating
that the nonparametric long run variance estimation performs relatively well with large enough samples.

4. For T = 200, the empirical sizes are close to nominal in all cases.
5. The self normalized statistic Q (c)

N,T exhibited similar behavior regarding empirical size, and even some improvement
when N is large relative to T .

4.2. Empirical power

In order to study the power of our test under both the mean break and loading break alternatives, we considered two
processes that satisfy (7)with t∗ = Tθ with θ ∈ (0, 1). Throughout the simulations below,we set t∗ = T/2, i.e., the breakwas
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Table 1
Empirical sizes with nominal levels of 10%, 5%, and 1% in both the independent (IID) and dependent (AR1) cases based on the statistics supu∈[c,1]|B̃T ,1(u)|,
and Q (c)

N,T .

DGP: IID AR1

c = 0.05 c = 0.1 c = 0.05 c = 0.1

N T 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%

supu∈[c,1]|B̃T ,1(u)|

10 50 18.1 11.2 3.8 8.8 4.9 1.8 26.7 18.4 10.0 24.7 17.9 8.4
100 8.3 3.5 0.7 9.2 3.6 0.7 17.1 10.3 3.4 9.2 3.6 0.7
200 8.7 4.1 0.7 8.6 4.3 1.0 11.7 5.7 2.0 10.4 5.1 1.6

20 50 18.6 12.3 5.5 9.5 4.8 0.7 23.7 16.5 8.0 25.8 17.8 8.7
100 8.5 3.6 0.6 9.1 4.5 0.3 14.9 9.4 3.4 14.9 9.0 3.7
200 8.4 4.2 0.6 8.8 3.3 0.5 11.8 6.5 2.0 12.4 6.8 1.5

50 50 23.3 13.7 5.3 10.2 3.9 0.7 24.8 17.3 8.8 24.4 18.6 4.9
100 8.8 3.5 0.6 9.0 4.2 1.0 17.8 11.6 4.0 15.3 8.5 3.5
200 10.0 5.0 1.3 8.9 3.8 0.5 13.0 7.1 2.1 12.2 6.4 1.7

Q (c)
N,T

10 50 15.7 10.8 4.8 12.5 8.5 4.0 21.2 15.8 8.8 17.7 13.4 7.1
100 10.7 5.9 2.0 9.8 6.7 1.7 14.6 9.2 4.5 12.7 8.2 3.4
200 6.3 3.6 0.9 6.9 3.6 0.7 10.3 5.7 2.3 10.0 6.2 2.2

20 50 14.7 9.2 4.0 12.4 8.4 3.2 20.4 14.7 7.5 17.4 13.3 7.6
100 10.3 6.7 2.1 10.0 6.7 2.3 11.8 7.9 3.5 14.3 10.3 3.7
200 7.2 3.4 0.8 7.6 4.0 0.6 11.8 7.1 3.0 9.2 6.2 1.5

50 50 13.9 9.7 4.1 12.7 7.2 3.0 21.8 16.3 10.4 17.6 12.3 5.5
100 9.6 5.2 1.2 9.4 5.8 1.6 14.9 10.0 4.8 14.5 9.9 4.8
200 7.7 4.1 1.1 6.5 3.7 1.3 9.9 6.0 2.4 9.2 6.0 1.6

in the middle of the sample. We also studied the situation in which breaks occurred towards the endpoints of the sample.
The results in those cases tended to be worse, but not more so than is typical in these problems. We define the DGPs for
i ∈ {1, . . . ,N} and t ∈ {1, . . . , T } by

MB(δ): Xi,t = δi1(t ≥ T/2) + γiηt + ei,t , where δi ∼ U(−δ, δ);
LB(∆): Xi,t = {γi + ψi1(t ≥ T/2)}ηt + ei,t ,where ψi ∼ N (0,∆2).

In each case we take the other terms in (7), i.e., the idiosyncratic errors, common factor, and factor loadings, to satisfy
AR1. The results improve when the data are IID. We let the parameters δ and ∆ vary between 0 and 3 at increments of 0.5,
and let N ∈ {10, 20, 50}, and T ∈ {50, 100, 200}. The results are displayed in terms of power curves in Fig. 2 for the statistic
supu∈[0.1,1]|B̃T ,1(u)|, and Fig. 3 for Q (0.1)

N,T when the significance level of the test was fixed at 5%. We summarize the results as
follows.

Mean break

1. For each value of T and N that we considered there is a substantial gain in power for δ exceeding 1.5 with the statistic
supu∈[0.1,1]|B̃T ,1(u)|. We note that data generated according to AR1 have cross-sectional standard deviations of on
average 1.6, and, when δ = 2, the average squared size of the change in the mean of each cross section is 1.33. Thus
testing based on the largest eigenvalue seemed fairly sensitive to detect changes in the mean. The statistic QN,T by
contrast was less sensitive for detecting changes in the mean.

2. Due to the estimation of the variance under a mean break, the test based on supu∈[c,1]|B̃T ,1(u)| exhibited monotonic
power.

3. Increasing T with fixed N improved the empirical power, as expected, and the same was observed when T was fixed
and N increased. The latter occurrence is likely attributable to the fact that as N increases, changes in the mean occur
in more cross sections, and the size is inflated in these cases due to the spiked effect.

Loading break

1. In the case of a break in the factor loadings, even smaller changes relative to the size of the standard deviation (∆ = 1)
of the idiosyncratic errors resulted in dramatic increases in power.

2. We noticed that for smaller values of T (T = 50) the power seemed to level off for larger breaks in the common factors,
and never reached more than 90%.

3. For larger T (T ∈ {100, 200}), the power approached 1 at a much faster rate for breaks in the factor loadings, and this
occurrence seemed to be independent of the value of N .
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Fig. 2. The top two panels contain power curves generated from data following MB(δ) based on supu∈[0.1,1]|B̃T ,1(u)| for varying N and T as a function of δ.
The bottom two panels contain similar curves generated from data following LB(∆). The horizontal axis measures δ,∆, and the vertical axis measures the
empirical power when the significance level is fixed at 5%, indicated by the bottom horizontal (blue) line. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

4. Increasing N resulted in reduced power in this case, although the effects of changing N were not particularly
pronounced.

5. The statistic QN,T outperformed supu∈[c,1]|B̃T ,1(u)|with regards to detecting changes in the loadings. The two statistics
thus exhibited complementary strengths.

5. Application to US yield curve data

Following [44], we consider an application of our methodology to test for structural breaks in US Treasury yield curve
data considered in Gürkaynak et al. [14], which are available at http://www.federalreserve.gov/econresdata, and which the
authors graciously maintain. The data consist of estimates of the yields for fixed interest securities with maturities between
one and thirty years with one year increments (N = 30). We studied a portion of this data set spanning from November 25,
1985 to June 5, 2017 thatwe further reduced fromdaily to approximatelymonthly observations by considering only the data
from each 22nd day, resulting in time series of length 356 for each maturity. Fig. 4 illustrates the yield curves corresponding
to 1, 5, 10, and 30 year maturities for a subset of the data.

http://www.federalreserve.gov/econresdata
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Fig. 3. The top two panels contain power curves generated from data following MB(δ) based on Q (0.1)
N,T for varying N and T as a function of δ. The bottom

two panels contain similar curves generated from data following LB(∆). The horizontal axis measures δ,∆, and the vertical axis measures the empirical
power when the significance level is fixed at 5%, indicated by the bottom horizontal (blue) line. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

In order to remove the effects of stochastic trends, and to allow for a comparison of our results to [44], we first differenced
each series. The eigenvalues calculated from the covariancematrix calculated from the full, first differenced, sample Ĉ30,356(1)
are displayed in the right-hand panel of Fig. 4, from which it is clear that the largest eigenvalue is substantially greater than
the others. This suggests the validity of the single dominant common factor model that is the subject of the first half of
Theorem 1.

We applied the hypothesis test for stability of the largest eigenvalue based on supu∈[c,1]|B̃T ,1(u)|with trimming parameter
c = 0.1 to sequential blocks of the first differenced data of length 5 years, corresponding to 60 monthly observations in
each sample (T = 60). The first block contained data spanning from November, 1985 to October, 1999, and the last block
contained data spanning from July, 2012 to June, 2017, which constituted a total of 296 tests. The p-value from each test is
plotted against the end date of the corresponding 5 year block in Fig. 5.

Onenoticeswhen looking at Fig. 5 several points atwhich the largest eigenvalue of the sample covariancematrix appeared
to be unstable. The first appears in the years from 1986–1991. More pronounced instability appears in the years following
2001, presumably spurred by the 9/11 attacks and the bursting of the dot-com bubble, and again in the years leading up to
the subprime crisis, which sparked what has been termed the ‘‘Great Recession’’ in 2007. The findings of structural breaks
in the correlation structure of the yield curves during these periods corroborate the findings of [44].
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Fig. 4. (Left panel) Yield curves at a 1-month resolution between January, 1990 and August, 2015 corresponding to 1 year, 5 year, 10 year, and 30 year
maturities. (Right panel) Screen plot of the eigenvalues of Ĉ30,356(1) calculated from the first differenced data. λ̂1(1)/tr{Ĉ30,356(1)} ≈ 0.88.

Fig. 5. p-values corresponding to tests of H0 applied to 5-year blocks of the first differenced yield curve data. The vertical axis measures the magnitude of
the p-value, and the horizontal axis indicates the concluding date of the 5-year block; p-values below the horizontal red line are below 0.05.

6. Results for smaller eigenvalues

In this section, we provide analogous results to Theorems 1 and 2 for the smaller eigenvalues. Namely, we aim to establish
the weak convergence of the K -dimensional process

AN,T (u) = (AN,T ,1(u), . . . , AN,T ,K (u))⊤,

where for i ∈ {1, . . . , K }, AN,T ,i(u) = T 1/2u{λ̂i(u) − λi} for u ∈ [1/T , 1] and AN,T ,i(u) = 0 for u ∈ [0, 1/T ). Let

σ 2
η =

∞∑
ℓ=−∞

cov(η20, η
2
ℓ ),

V2 =

{
∞∑

s=−∞

lim
T→∞

N∑
k=1

ei(k)ej(k)cov(η0, ηs)cov(ek,0, ek,s) : 1 ≤ i, j ≤ K

}
,
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V3 =

⎧⎨⎩
∞∑

s=−∞

lim
T→∞

⎡⎣ N∑
k=1

e2i (k)e
2
j (k)cov(e

2
k,0, e

2
k,s) + 2

{
N∑

k=1

ei(k)ej(k)cov(ek,0, ek,s)

}2

− 2
N∑

k=1

e2i (k)e
2
j (k){cov(ek,0, ek,s)}

2

⎤⎦ : 1 ≤ i, j ≤ K

⎫⎬⎭ .
We use the notation V2 = {V2(i, j) : 1 ≤ i, j ≤ K } and V3 = {V3(i, j) : i, j ∈ {1, . . . , K }}.

Remark 5. If, for example, we assume that r(s) = cov(ek,0, ek,s) for all k ∈ {1, . . . ,N}, then V2 is a diagonal matrix with

V2(i, i) =

∞∑
s=−∞

cov(η0, ηs)r(s).

The expression for V3 also simplifies since by the orthonormality of the eis we have
N∑

k=1

ei(k)ej(k)cov(ek,0, ek,s) = r(s)1(i = j).

If we further assume that each of the {ek,s : −∞ < s < ∞} sequences are Gaussian, then cov(e2k,0, e
2
k,s) = 2r2(s), and V3 also

reduces to a diagonal matrix with V3(i, i) = 2
∑

∞

s=−∞
r2(s).

For each i ∈ {1, . . . , K }, let

ai = lim
min(N,T )→∞

e⊤i γ, (18)

and define G = {G(i, j) : 1 ≤ i, j ≤ K } with G(i, j) = a2i a
2
j σ

2
η + 4aiajV2(i, j) + V3(i, j). Lemma 4 demonstrates that the limit in

(18) is finite.

Theorem 8. Suppose H0 and Assumptions 1–3, (6) hold, and ∥γ∥ = O(1) as min(N, T ) → ∞, then we have that
AN,T (u) converges weakly in DK

[0, 1] to WG(u),whereWG(u) is a K-dimensional Wiener process, i.e.,WG(u) is Gaussian with
EWG(u) = 0 and EWG(u)W⊤

G (u
′) = min(u, u′)G.

Remark 6. If ∥γ∥ → 0, as min(N, T ) → ∞, then ai = 0 according to Lemma 4. In this case the weak limit of AN,T (u) is the
K -dimensional Wiener processWV3 (u), since G = V3.

To state the next result we introduce the covariance matrixH = {H(i, j) : 1 ≤ i, j ≤ K } by setting H(1, 1) = σ 2
η ,H(1, i) =

H(i, 1) = a2i σ
2
η and H(i, j) = a2i a

2
j σ

2
η + 4aiajV2(i, j) + V3(i, j) for all i, j ∈ {2, . . . , K }.

Theorem 9. Suppose H0 and Assumptions 1–3, (6) hold, and ∥γ∥ → ∞ as min(N, T ) → ∞, then we have that
{∥γ∥−2AN,T ;1(u), AN,T ;i(u), 2 ≤ i ≤ K } converges weakly inDK

[0, 1] toWH(u), whereWH(u) is a K-dimensional Wiener process,
i.e.,WH(u) is Gaussian with EWH(u) = 0 and E{WH(u)W⊤

H (u
′)} = min(u, u′)H.

Remark 7. We note that σ 2
1 defined in Theorem 2 coincide with G(1, 1) and H(1, 1)∥γ ∥

2 in the cases when ∥γ∥ = O(1) and
∥γ∥ → ∞ as min(N, T ) → ∞, respectively.

Remark 8. Theorems 2, 8 and 9 provide the limits of the weighted differences T 1/2u{λ̂i(u) − λi} = T 1/2(λ̃i − uλi) for all
i ∈ {1, . . . , K }. If the conditions of Theorem 1 are satisfied and (4) holds, then for each i ∈ {1, . . . , K }, T 1/2

{λ̂i(u) − λi}

converges weakly in DK
[c, 1] to WG(u)/u for any c ∈ (0, 1] where WG(u) is defined in Theorem 2.

6.1. Testing using first d largest eigenvalues

Theorems 8 and 9 may be used to construct tests H0 based on the first d largest eigenvalue. Let for u ∈ (0, 1)

B̂T ,j(u) = T 1/2 u{λ̂j(u) − λ̂j(1)}/v̂j,T ,

where v̂2j,T is defined as in (9). One can show that under the conditions of Theorem 4, v̂2j,T converges to eitherH(j, j) or G(j, j) if
∥γ∥ → ∞ or ∥γ∥ = O(1), respectively. Therefore, one can perform a conservative test of sizeα forH0 based on d eigenvalues
by comparing maxj∈{1,...,d}sup0≤u≤1|B̂T ,j(u)|, to the α/d critical value of the Kolmogorov distribution, where the choice α/d is
motivated by Bonferroni’s inequality.
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7. Conclusion

We considered the problem of testing for generic structural breaks in high-dimensional linear factor models by way of
analyzing the processes of partial sample estimates of the largest eigenvalues of the covariance matrix. We showed that a
Gaussian approximation may be obtained for these processes in two cases: one is when the contribution of the common
factor to the covariance structure of the cross sections is dominate, and in this case we only require mild conditions on
the divergence rates of N and T for the approximation to hold. Secondly, in the case when the common factor is relatively
negligible, we showed that a Gaussian approximation for these processes is only attainable when N/T 1/2

→ 0. These results
can be used to test for the stability of factor models by considering sup functionals of a CUSUM processes derived from
the eigenvalue processes. As it is unknown in practice whether or not there is a dominant common factor, we derived
normalizing sequence estimators that converge in either situation, as well as ratio type test statistics. We studied the
theoretical and empirical properties of such test statistics under both H0 and HA. Finally, we applied these results to US
treasury yield data, and the results demonstrate that there was a pronounced structural break in the largest eigenvalue of
the covariance matrix following the US subprime crisis.

8. Technical results

8.1. Proof of Theorems 2–3, 8 and 9

Throughout these proofs we use the terms of the form ci,j to denote unimportant numerical constants. We can assume
without loss of generality that EXt = 0, and so we define

CN,T (u) =
1
T

⌊Tu⌋∑
t=1

XtX⊤

t .

Lemma 1. If (1) and Assumptions 1–3 hold, then we have, asmin(N, T ) → ∞,

sup
u∈[0,1]

∥C̃N,T (u) − CN,T (u)∥ = OP (N/T ) .

Proof. It is easy to see that

C̃N,T (u) = CN,T (u) − X̄T

(
1
T

⌊Tu⌋∑
t=1

Xt

)⊤

−

(
1
T

⌊Tu⌋∑
t=1

Xt

)
X̄⊤

T + X̄T X̄⊤

T ,

and therefore

sup
u∈[0,1]

∥C̃N,T (u) − CN,T (u)∥ ≤ 2 sup
u∈[0,1]

X̄T

(
1
T

⌊Tu⌋∑
t=1

Xt

)⊤
+

X̄T X̄⊤

T

 ≤ 3 sup
u∈[0,1]

X̄T

(
1
T

⌊Tu⌋∑
t=1

Xt

)⊤
 .

Using model (1) we obtain that

T 2


⌊Tu⌋∑
t=1

Xt X̄⊤

T


2

=

N∑
ℓ=1

N∑
p=1

(
γℓ

T∑
t=1

ηt +

T∑
t=1

eℓ,t

)2(
γp

⌊Tu⌋∑
t=1

ηt +

⌊Tu⌋∑
t=1

ep,t

)2

=

(
N∑
ℓ=1

γ 2
ℓ

)2(
⌊Tu⌋∑
t=1

ηt

)2( T∑
t=1

ηt

)2

+ 2
N∑
ℓ=1

γ 2
ℓ

(
⊤∑

t=1

ηt

)2 (
⌊Tu⌋∑
v=1

ηv

)⎛⎝⌊Tu⌋∑
s=1

N∑
p=1

γpep,s

⎞⎠
+

N∑
ℓ=1

γ 2
ℓ

(
⊤∑

t=1

ηt

)2 N∑
p=1

(
⌊Tu⌋∑
t=1

ep,t

)2

+

N∑
p=1

γ 2
p

(
⌊Tu⌋∑
t=1

ηt

)2 N∑
ℓ=1

(
⊤∑
s=1

eℓ,s

)2

+ 2
N∑
ℓ=1

(
⊤∑
s=1

eℓ,s

)2 (
⌊Tu⌋∑
s=1

ηs

)⎛⎝⌊Tu⌋∑
s=1

N∑
p=1

γpep,s

⎞⎠+

N∑
ℓ=1

(
⊤∑
s=1

eℓ,s

)2 N∑
p=1

(
⌊Tu⌋∑
s=1

ep,s

)2

+ 2
⊤∑

t=1

ηt

N∑
ℓ=1

γℓ

(
⊤∑
s=1

eℓ,s

)
N∑

p=1

γ 2
p

(
⌊Tu⌋∑
v=1

ηv

)2

+ 2
⊤∑

t=1

ηt

N∑
ℓ=1

γℓ

(
⊤∑
s=1

eℓ,s

)
N∑

p=1

(
⌊Tu⌋∑
s=1

ep,s

)2
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+ 4
⊤∑

t=1

ηt

N∑
ℓ=1

(
⊤∑
s=1

γℓeℓ,s

)
⌊Tu⌋∑
z=1

ηz

N∑
p=1

(
⌊Tu⌋∑
s=1

γpep,s

)
≡ RT ,1(u) + · · · + RT ,9(u).

First we prove that

sup
u∈[0,1]

⏐⏐⏐⏐⏐
⌊Tu⌋∑
t=1

ηt

⏐⏐⏐⏐⏐ = OP (T 1/2). (19)

It follows from Proposition 4 of [7] that under conditions Assumption 3(a) and Assumption 3(a) we have for any κ ∈ (2, 12]
that, for all u, v ∈ [0, 1] with v ≤ u

E

⎛⎝ ⌊Tu⌋∑
t=⌊Tv⌋

ηt

⎞⎠κ

≤ c1,1(⌊Tu⌋ − ⌊Tv⌋)κ/2, (20)

and therefore the maximal inequality of [31] implies (19). Next we show that

sup
u∈[0,1]

⏐⏐⏐⏐⏐⏐
⌊Tu⌋∑
s=1

N∑
p=1

γpep,s

⏐⏐⏐⏐⏐⏐ = OP (1)T 1/2
∥γ∥. (21)

Following the arguments leading to (20) one can verify that for any κ ∈ (2, 12] and all u, v ∈ [0, 1] with v ≤ u

E

⏐⏐⏐⏐⏐⏐
⌊Tu⌋∑

s=⌊Tv⌋

ep,s

⏐⏐⏐⏐⏐⏐
κ

≤ c1,2(⌊Tu⌋ − ⌊Tv⌋)κ/2, (22)

with some constant c1,2 for all p ∈ {1, . . . ,N}. Hence for any 0 ≤ v < u ≤ 1 we have via Rosenthal’s inequality ([35], p. 59)
and (22) that

E

⏐⏐⏐⏐⏐⏐
⌊Tu⌋∑

s=⌊Tv⌋

N∑
p=1

γpep,s

⏐⏐⏐⏐⏐⏐
κ

= E

⏐⏐⏐⏐⏐⏐
N∑

p=1

⌊Tu⌋∑
s=⌊Tv⌋

γpep,s

⏐⏐⏐⏐⏐⏐
κ

≤ c1,3

⎧⎪⎨⎪⎩
N∑

p=1

|γp|
κE

⏐⏐⏐⏐⏐⏐
⌊Tu⌋∑

s=⌊Tv⌋

ep,s

⏐⏐⏐⏐⏐⏐
κ

+

⎛⎜⎝ N∑
p=1

γ 2
p E

⎛⎝ ⌊Tu⌋∑
s=⌊Tv⌋

ep,s

⎞⎠2
⎞⎟⎠
κ/2⎫⎪⎬⎪⎭

≤ c1,4(⌊Tu⌋ − ⌊Tv⌋)κ/2

⎧⎪⎨⎪⎩
N∑

p=1

|γp|
κ

+

⎛⎝ N∑
p=1

γ 2
p

⎞⎠κ/2
⎫⎪⎬⎪⎭ .

Using again the maximal inequality of [31] we conclude

E sup
u∈[0,1]

⏐⏐⏐⏐⏐⏐
⌊Tu⌋∑
s=1

N∑
p=1

γpes,p

⏐⏐⏐⏐⏐⏐
κ

≤ c1,5T κ/2

⎧⎪⎨⎪⎩
N∑

p=1

|γp|
κ

+

⎛⎝ N∑
p=1

γ 2
p

⎞⎠κ/2
⎫⎪⎬⎪⎭ ≤ c1,6T κ/2 ∥γ∥κ ,

by Assumption 2. This completes the proof of (21). Similarly to (21) we show that

sup
0≤s≤1

N∑
ℓ=1

(
⌊Tu⌋∑
s=1

eℓ,s

)2

= OP (NT ). (23)

First we note

E sup
u∈[0,1]

N∑
ℓ=1

(
⌊Tu⌋∑
s=1

eℓ,s

)2

≤

N∑
ℓ=1

E sup
u∈[0,1]

(
⌊Tu⌋∑
s=1

eℓ,s

)2

and by Jensen’s inequality we have

E sup
u∈[0,1]

(
⌊Tu⌋∑
s=1

eℓ,s

)2

≤

(
E sup

u∈[0,1]

⏐⏐⏐⏐⏐
⌊Tu⌋∑
s=1

eℓ,s

⏐⏐⏐⏐⏐
κ)2/κ

.

Using again Proposition 4 of [7] we get for all u, v ∈ [0, 1] with v ≤ u that

E

⏐⏐⏐⏐⏐⏐
⌊Tu⌋∑

s=⌊Tv⌋

eℓ,s

⏐⏐⏐⏐⏐⏐
κ

≤ c1,7(⌊Tu⌋ − ⌊Tv⌋)κ/2
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and therefore the maximal inequality of [31] yields(
E sup

u∈[0,1]

⏐⏐⏐⏐⏐
⌊Tu⌋∑
s=1

eℓ,s

⏐⏐⏐⏐⏐
κ)2/κ

≤ c1,8T 1/2.

This completes the proof of (21). The upper bounds in (19)–(23) imply

sup
u∈[0,1]

|RT ,i(u)| = OP ((∥γ∥4
+ ∥γ∥3)T 2), if i ∈ {1, 2, 7}, sup

u∈[0,1]
|RT ,i(u)| = OP ((∥γ∥2

+ ∥γ∥)NT 2), if i ∈ {3, 4, 5, 8, 9}.

and

sup
u∈[0,1]

|RT ,6(u)| = OP (N2T 2).

Assumption 2 implies that ∥γ∥ ≤ c1,9N, the proof of Lemma 1 is complete. □

Let λ̄1(u) ≥ · · · ≥ λ̄K (u) denote the K largest eigenvalues of CN,T (u).

Lemma 2. If (1) and Assumptions 1–3 hold, then we have, asmin(N, T ) → ∞,

max
i∈{1,...,K }

sup
u∈[0,1]

|λ̃i(u) − λ̄i(u)| = OP (N/T ) .

Proof. It is well-known (see, e.g., p. 577 of [11]) that

max
i∈{1,...,K }

sup
u∈[0,1]

|λ̃i(u) − λ̄i(u)| ≤ sup
u∈[0,1]

∥C̃N,T (u) − CN,T (u)∥,

and therefore the result follows from Lemma 1. □

For each i ∈ {1, . . . , K }, let

ZN,T ;i(u) =

N∑
ℓ̸=i

1
u(λi − λℓ)

[e⊤i {CN,T (u) − uC}eℓ]
2.

Lemma 3. If (1), Assumptions 1–3 hold, then we have, asmin(N, T ) → ∞,

sup
u∈[0,1]

|λ̄i(u) − (⌊Tu⌋/T )λi − e⊤i {CN,T (u) − uC}ei − ZN,T ;i(u)| = OP (N2T−3/2).

Proof. According to formula (5.17) of [15] we have

sup
u∈[0,1]

|λ̄i(u) − (⌊Tu⌋/T )λi − e⊤i {CN,T (u) − uC}ei − ZN,T ;i(u)| ≤ c2,1 sup
u∈[0,1]

∆3(u),

where∆(u) = maxℓ∈{1,...,N}RN,T ;ℓ(u) with

RN,T ;ℓ(u) =

⎡⎣ N∑
j=1

{CN,T ;j,ℓ(u) − (⌊Tu⌋/T )Cj,ℓ}
2

⎤⎦1/2

,

and CN,T ;j,ℓ(u) and Cj,ℓ denote the (j, ℓ)th element of ĈN,T (u) andC, respectively. By inequality (2.30) in [35], p. 58,we conclude

R6
N,T ;ℓ(u) ≤ N2

N∑
j=1

{CN,T ;j,ℓ(u) − (⌊Tu⌋/T )Cj,ℓ}
6

and hence

E sup
u∈[0,1]

{RN,T ;ℓ(u)}6 ≤ N2
N∑
j=1

E sup
u∈[0,1]

{CN,T ;j,ℓ(u) − (⌊Tu⌋/T )Cj,ℓ}
6.
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Using the definitions of CN,T ;j,ℓ(u) and Cj,ℓ, we write{
CN,T ;j,ℓ(u) −

⌊Tu⌋
T

Cj,ℓ

}6

= T−6

[
⌊Tu⌋∑
s=1

{
γℓγj(η2s − 1) + γℓηsej,s + γjηseℓ,s + eℓ,sej,s − Eeℓ,sej,s

}]6

≤ 46T−6

⎡⎣γ 6
ℓ γ

6
j

{
⌊Tu⌋∑
s=1

(η2s − 1)

}6

+ γ 6
ℓ

(
⌊Tu⌋∑
s=1

ηsej,s

)6

+ γ 6
j

(
⌊Tu⌋∑
s=1

ηseℓ,s

)6

+

{
⌊Tu⌋∑
s=1

(eℓ,sej,s − Eeℓ,sej,s)

}6⎤⎦ .
Utilizing Assumption 3(a), we obtain along the lines of (20) that E{

∑
⊤

s=1(η
2
s − 1)}6 ≤ c2,2t3, so by the stationarity of

{η2t : −∞ < t < ∞} and the maximal inequality of [31] we obtain that

E sup
u∈[0,1]

{
⌊Tu⌋∑
s=1

(η2s − 1)

}6

≤ c2,3T 3.

Similarly, for all j, ℓ ∈ {1, . . . ,N},

E sup
u∈[0,1]

(
⌊Tu⌋∑
s=1

ηseℓ,s

)6

≤ c2,4T 3 and E sup
u∈[0,1]

{
⌊Tu⌋∑
s=1

(eℓ,sej,s − Eeℓ,sej,s)

}6

≤ c2,5T 3.

Hence for all ℓ ∈ {1, . . . ,N}, we have by Assumption 2 that

E
{

sup
u∈[0,1]

RN,T ;ℓ(u)
}6

≤ c2,6T−3N3. (24)

Using (24) we conclude that, for all x > 0,

Pr
{

sup
u∈[0,1]

max
ℓ∈{1,...,N}

RN,T ;ℓ(u) > xN2/3T−1/2
}

≤

N∑
ℓ=1

Pr
{

sup
u∈[0,1]

RN,T ;ℓ(u) > xN2/3T−1/2
}

≤

N∑
ℓ=1

T 3

x6N6 E
{

sup
u∈[0,1]

RN,T ;ℓ(u)
}6

≤

N∑
ℓ=1

T 3

x6N6 C5T−3N3,

which shows that

sup
u∈[0,1]

∆3(u) = OP (N2T−3/2) and sup
u∈[0,1]

u∆̂3(u) = OP (N2T−3/2). □

Since e1 is defined via (2) up to a sign, we can assume without loss of generality that γ⊤e1 ≥ 0.

Lemma 4. If Assumptions 1–3 hold and ∥γ∥ → ∞ hold, then we have

∥e1 − γ/∥γ∥∥ = O(1/∥γ∥), (25)

λ1/∥γ∥
2

→ 1, (26)

max(|γ⊤e2|, . . ., |γ
⊤eN |) ≤ c3,1 with some constant c3,1, (27)

and

max(λ2, . . ., λN ) ≤ c3,2 with some constant c3,2.

Proof. By (1) we have C = γγ⊤
+ Λ,where Λ is the N × N diagonal matrix with σ 2

1 , . . . , σ
2
N in the diagonal. We can write

e1 = ᾱ1
γ

∥γ∥
+ β̄1r1, with some ᾱ1 ≥ 0, where ᾱ2

1 + β̄2
1 = 1, γ⊤r1 = 0 and ∥r1∥ = 1.

It follows from the definition of λ1 and e1 that λ1 = e⊤1 Ce1 ≥ ∥γ∥2, and

e⊤1 Ce1 = ᾱ2
1∥γ∥

2
+ e⊤1 ΛCe1, e⊤1 ΛCe1 ≤

N∑
ℓ=1

e2i (ℓ)σ
2
ℓ ≤ c5 (28)
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where c5 is defined in Assumption 3(b). Thus we conclude ∥γ∥2
≤ ᾱ2

1∥γ∥
2

+ c5. By assumption γ⊤e1 ≥ 0 and therefore
ᾱ1 ∈ [0, 1]. Hence (1 − ᾱ1)2 ≤ 1 − ᾱ2

1 ≤ c5/∥γ∥2 and β̄2
1 ≤ c5/∥γ∥2. Thus we get

∥e1 − γ/∥γ∥∥2
= (1 − ᾱ1)2 + β̄2

1 ≤ 2c5/∥γ∥2, (29)

completing the proof of (25). Since ᾱ2
2 ≥ 1 − c5/∥γ∥2, (26) follows from (28). For all i ∈ {2, 3, . . .} we have

|γ⊤ei| = ∥γ∥
⏐⏐(γ/∥γ∥ − e1)

⊤ei
⏐⏐ ≤ ∥γ∥ ∥γ/∥γ∥ − e1∥ ≤ 2c5

by (29) which gives (27). Since λi = e⊤i Cei = (e⊤i γ)
2
+ e⊤i Λei and e⊤i Λei =

∑N
ℓ=1e

2
i (ℓ)σ

2
ℓ ≤ c5 by Assumption 3(b), the last

claim of this lemma follows from (27). □

Lemma 5. If (1), and Assumptions 1–3 hold, then we have

max
i∈{1,...,K }

sup
u∈[0,1]

|ZN,T ;i(u)| = OP {N(ln T )1/3/T }. (30)

Proof. It follows from (2) that eiCeℓ = 0, if i ̸= ℓ. Hence we get

e⊤i {CN,T (u) − (⌊Tu⌋/T )C}eℓ =
1
T

⌊Tu⌋∑
s=1

e⊤i XsX⊤

s eℓ.

First we assume that ∥γ∥ = O(1). It follows from the definition of ZN,T ;i that

|ZN,T ;i(u)| =

⏐⏐⏐⏐⏐⏐
N∑
ℓ̸=i

1
u(λi − λℓ)

{e⊤i (CN,T (u) − uC)eℓ}2

⏐⏐⏐⏐⏐⏐ ≤
1
c5

1
T

N∑
ℓ̸=i

{
1

(Tu)1/2

⌊Tu⌋∑
s=1

e⊤i XsX⊤

s eℓ

}2

,

where c0 is defined in Assumption 1. Let ρ > 1 and write with c = ⌊1/ln ρ⌋ + 1

max
v∈{1,...,T }

v−1/2

⏐⏐⏐⏐⏐
v∑

s=1

e⊤i XsX⊤

s eℓ

⏐⏐⏐⏐⏐ ≤ max
1≤k≤c ln T

max
ρk−1<v≤ρk

v−1/2

⏐⏐⏐⏐⏐
v∑

s=1

e⊤i XsX⊤

s eℓ

⏐⏐⏐⏐⏐ ≤ max
1≤k≤c ln T

ρ−(k−1)/2 max
1≤v≤ρk

⏐⏐⏐⏐⏐
v∑

s=1

e⊤i XsX⊤

s eℓ

⏐⏐⏐⏐⏐ .
Thus we get for any x > 0 via Markov’s inequality that

Pr

{
max

v∈{1,...,T }

v−1/2

⏐⏐⏐⏐⏐
v∑

s=1

e⊤i XsX⊤

s eℓ

⏐⏐⏐⏐⏐ > x

}
≤

c ln T∑
k=1

Pr

{
max

1≤v≤ρk

⏐⏐⏐⏐⏐
v∑

s=1

e⊤i XsX⊤

s eℓ

⏐⏐⏐⏐⏐ > xρ(k−1)/2

}

≤

c ln T∑
k=1

x−6ρ−3(k−1)E

(
max

1≤v≤ρk

⏐⏐⏐⏐⏐
v∑

s=1

e⊤i XsX⊤

s eℓ

⏐⏐⏐⏐⏐
)6

. (31)

Using (1) we obtain with ei = (ei(1), . . . , ei(N))⊤ that

e⊤i XsX⊤

s eℓ =

N∑
k=1

γkei(k)
N∑

n=1

γneℓ(n)(η2s − 1) +

N∑
k=1

γkei(k)ηs
N∑

n=1

en,seℓ(n)

+

N∑
n=1

γneℓ(n)ηs
N∑

k=1

ek,sei(k) +

N∑
n=1

N∑
k=1

(ek,sen,s − Eek,sen,s)ei(k)eℓ(n),

since for i ̸= ℓwe have Ee⊤i XsX⊤
s eℓ = e⊤i Ceℓ = 0. Clearly, on account of ∥ei∥ = 1, the Cauchy–Schwarz inequality implies⏐⏐⏐⏐⏐

N∑
k=1

γkei(k)

⏐⏐⏐⏐⏐ ≤ ∥γ∥.

Following the proofs of (20), we get that from Assumption 3(a) that

E

⏐⏐⏐⏐⏐
N∑

k=1

γkei(k)
N∑

m=1

γmem(ℓ)
v∑

s=1

(η2s − 1)

⏐⏐⏐⏐⏐
6

≤ c4,1v3∥γ∥12. (32)

Let

τs = ηs

N∑
n=1

en,seℓ(n) and τ (m)
s = η(m)

s

N∑
n=1

e(m)
n,s eℓ(n),
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where η(m)
s and e(m)

n,s are defined in Assumption 3(a) and Assumption 3(b), respectively. By independence we have

E|τ0 − τ
(m)
0 |

6
≤ 26E|η0 − η

(m)
0 |

6E

⏐⏐⏐⏐⏐
N∑

n=1

en,0eℓ(n)

⏐⏐⏐⏐⏐
6

+ 26E|η(m)
0 |

6E

⏐⏐⏐⏐⏐
N∑

n=1

(en,0 − e(m)
n,0)eℓ(n)

⏐⏐⏐⏐⏐
6

.

By the independence of the variables e1,0, . . . , eN,0 and the Rosenthal inequality [35], we conclude that

E

⏐⏐⏐⏐⏐
N∑

n=1

en,0eℓ(n)

⏐⏐⏐⏐⏐
6

≤ c4,2

⎡⎣ N∑
n=1

E|en,0|6|eℓ(n)|6 +

{
N∑

n=1

Ee2n,0e
2
ℓ(n)

}3
⎤⎦ ≤ c4,3 sup

1≤n<∞

Ee6n,0 ≤ c4,4,

where c4,4 is a constant, on account of Assumption 3(b) and ∥eℓ∥ = 1. Due to the independence of en,0 − e(m)
n,0 and er,0 − e(m)

r,0 ,
if n ̸= r , we can apply again the Rosenthal inequality to get

E

⏐⏐⏐⏐⏐
N∑

n=1

(en,0 − e(m)
n,0)eℓ(n)

⏐⏐⏐⏐⏐
6

≤ c4,5

⎡⎣ N∑
n=1

E|en,0 − e(m)
n,0 |

6
|eℓ(n)|6 +

{
N∑

n=1

E(en,0 − e(m)
n,0)

2e2ℓ(n)

}3
⎤⎦ ≤ c4,6m−6α,

resulting in

E|τ0 − τ
(m)
0 |

6
≤ c4,7m−6α. (33)

Hence the moment inequality in [7] yields

E

⏐⏐⏐⏐⏐
v∑

s=1

τs

⏐⏐⏐⏐⏐
6

≤ c4,8v3. (34)

Similarly to (34) we have

E

⏐⏐⏐⏐⏐
v∑

s=1

ηs

N∑
k=1

ek,sei(k)

⏐⏐⏐⏐⏐
6

≤ c4,9v3. (35)

Let

τ̄s =

N∑
n=1

N∑
k=1

(ek,sen,s − Eek,sen,s)ei(k)eℓ(n) =

N∑
n=1

en,seℓ(n)
N∑

k=1

ek,sei(k) −

N∑
n=1

Ee2n,sei(n)eℓ(n)

and

τ̄ (m)
s =

N∑
n=1

N∑
k=1

(e(m)
k,s e

(m)
n,s − Eek,sen,s)ei(k)eℓ(n) =

N∑
n=1

e(m)
n,s eℓ(n)

N∑
k=1

e(m)
k,s ei(k) −

N∑
n=1

Ee2n,sei(n)eℓ(n),

where e(m)
n,s defined in Assumption 3(b). Clearly,⏐⏐⏐⏐⏐
N∑

n=1

Ee2n,sei(n)eℓ(n)

⏐⏐⏐⏐⏐ ≤ sup
n∈N

Ee2n,0,

and

τ̄s − τ̄ (m)
s =

{
N∑

n=1

(en,s − e(m)
k,s )eℓ(n)

}
N∑

k=1

ek,sei(k) +

{
N∑

k=1

(ek,s − e(m)
k,s )ei(k)

}
N∑

n=1

e(m)
n,s eℓ(n).

Thus we get by the Cauchy–Schwarz inequality that

E|τ̄0 − τ̄
(m)
0 |

6
≤ 26

⎡⎢⎣
⎧⎨⎩E

⏐⏐⏐⏐⏐
N∑

n=1

(en,0 − e(m)
k,0 )eℓ(n)

⏐⏐⏐⏐⏐
12

E

⏐⏐⏐⏐⏐
N∑

k=1

ek,sei(k)

⏐⏐⏐⏐⏐
12
⎫⎬⎭

1/2

+ E

⎧⎨⎩
⏐⏐⏐⏐⏐

N∑
k=1

(ek,0 − e(m)
k,0 )ei(k)

⏐⏐⏐⏐⏐
12

E

⏐⏐⏐⏐⏐
N∑

n=1

e(m)
n,0eℓ(n)

⏐⏐⏐⏐⏐
12
⎫⎬⎭

1/2
⎤⎥⎦ .
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Using again Rosenthal’s and Jensen’s inequalities, we obtain that

E

⏐⏐⏐⏐⏐
N∑

n=1

(en,0 − e(m)
k,0 )eℓ(n)

⏐⏐⏐⏐⏐
12

≤ c4,10

[
N∑

n=1

E|en,0 − e(m)
k,0 |

12
|eℓ(n)|12 +

{
N∑

n=1

E(en,0 − e(m)
k,0 )

2e2ℓ(n)

}6
⎤⎦ ≤ c4,11m−12α,

and similarly

E

⏐⏐⏐⏐⏐
N∑

k=1

ek,0ei(k)

⏐⏐⏐⏐⏐
12

≤ c4,12

⎡⎣ N∑
k=1

E|ek,0|12|ei(k)|12 +

{
N∑

k=1

Ee2k,0e
2
i (k)

}6
⎤⎦ ≤ 2c4,12 sup

1≤k<∞

E|ek,0|12.

Thus we have

E|τ̄0 − τ̄
(m)
0 |

6
≤ c4,13m−6α, (36)

and therefore Proposition 4 of [7] implies

E

⏐⏐⏐⏐⏐
v∑

s=1

τ̄s

⏐⏐⏐⏐⏐
6

≤ c4,14v3. (37)

Putting together (32)–(37) we conclude

E

⏐⏐⏐⏐⏐
v∑

s=1

e⊤i XsX⊤

s eℓ

⏐⏐⏐⏐⏐
6

≤ c4,15v3(1 + ∥γ∥6
+ ∥γ∥12). (38)

Since {e⊤i XsX⊤
s eℓ : −∞ < s < ∞} is a stationary sequence, (38) and the maximal inequality of [31] imply

E max
v∈{1,...,z}

⏐⏐⏐⏐⏐
v∑

s=1

e⊤i XsX⊤

s eℓ

⏐⏐⏐⏐⏐
6

≤ c4,16z3(1 + ∥γ∥6
+ ∥γ∥12). (39)

Now we use (31) with x = u(ln T )1/6 resulting in

Pr

{
max

v∈{1,...,T }

v−1/2

⏐⏐⏐⏐⏐
v∑

s=1

e⊤i XsX⊤

s eℓ

⏐⏐⏐⏐⏐ > u(ln T )1/6
}

≤ c4,17u−6,

implying

E

(
max

v∈{1,...,T }

v−1/2
v∑

s=1

e⊤i XsX⊤

s eℓ

)2

≤ c4,18(ln T )1/3.

This completes the proof of (30).
Next we assume that ∥γ∥ → ∞. It is easy to see that for 2 ≤ i ≤ K

|ZN,T ;i(u)| ≤
1
T

⏐⏐⏐⏐⏐⏐
N∑

ℓ̸=i,ℓ̸=1

1
λi − λℓ

{
1

(Tu)1/2

⌊Tu⌋∑
s=1

e⊤i XsX⊤

s e
⊤

ℓ

}2
⏐⏐⏐⏐⏐⏐+ 1

T
1

λ1 − λ2

{
1

(Tu)1/2

⌊Tu⌋∑
s=2

e⊤i XsX⊤

s e1

}2

.

If i ∈ {2, . . . , K }, then the proof of (38) shows that

N∑
ℓ̸=i,ℓ̸=1

{
1

(Tu)1/2

⌊Tu⌋∑
s=1

e⊤i XsX⊤

s eℓ

}2

= OP {N(ln T )1/3},

and therefore by Assumption 1 for any i ∈ {2, . . . , K } we have⏐⏐⏐⏐⏐⏐
∑

ℓ̸=i,ℓ̸=1

1
λi − λℓ

{
1

(Tu)1/2

⌊Tu⌋∑
s=1

e⊤i XsX⊤

s e
⊤

ℓ

}2
⏐⏐⏐⏐⏐⏐ = OP {N(ln T )1/3}.

By (37) we have, along the lines of the proof of (31),

E max
v∈{1,...,T }

1
v

{
v∑

s=1

e⊤i XsX⊤

s eℓ − γ⊤eiγ
⊤eℓ

v∑
s=1

(η2s − 1)−

γ⊤ei

v∑
s=1

N∑
n=1

en,seℓ(n)−γ⊤eℓ

v∑
s=1

N∑
k=1

ek,sei(k)

}2

≤ c4,19(ln T )1/3, (40)
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where in the last step we used (27). Also, (34) and (35) imply via the maximal inequality in [31] that

E max
v∈{1,...,T }

{
1
v

v∑
s=1

(η2s − 1)

}2

≤ c4,20(ln T )1/3, (41)

and

E sup
v∈{1,...,T }

1
v

{
v∑

s=1

N∑
k=1

ek,sei(k)

}2

≤ c4,21(ln T )1/3. (42)

Using now (41) and (42) we conclude that

1
λ1 − λ2

{
1

(Tu)1/2

⌊Tu⌋∑
s=1

e⊤i XsX⊤

s e1

}2

=
(e⊤1 γ)

2

λ1 − λ2
OP {(ln T )1/3}.

Since by Lemma 4 we have that (e⊤1 γ)
2/(λ1 − λ2) = O(1), the proof of (30) is complete when i ∈ {2, . . . , K }. It is easy to see

that, by (40) and Lemma 4,

sup
u∈[0,1]

|ZN,T ;1(u)| ≤
1
T

1
λ1 − λ2

sup
u∈[0,1]

N∑
ℓ=2

{
1

(Tu)1/2

⌊Tu⌋∑
s=1

e⊤1 XsX⊤

s eℓ

}2

=
1
T

N
λ1 − λ2

⎡⎣OP (ln T )1/3 + (e⊤1 γ )
2E max

v∈{1,...,T }

{
v−1/2

v∑
s=1

(η2s − 1)

}2

+ E max
2≤i≤N

{
v−1/2

v∑
s=1

N∑
k=1

ek,sei(k)

}2
⎤⎦

=
(e⊤1 γ )

2

λ1 − λ2

N(ln T )1/3

T

on account of (41) and (42). According to Lemma 4 we have that (e⊤1 γ )
2/(λ1 − λ2) = O(1), completing the proof of

Lemma 5. □

Lemma 6. Suppose H0 and Assumptions 1–3 hold, and ∥γ∥ → ∞, then we have as min(N, T ) → ∞, and for c ∈ (0, 1],

sup
u∈[c,1]

|λ̄1(u) − (⌊Tu⌋/T )λ1 − e⊤1 {CN,T (u) − (⌊Tu⌋/T )C}e1| = OP

(
N2

∥γ∥2T

)
.

and

sup
u∈[0,1]

|λ̄1(u) − (⌊Tu⌋/T )λ1 − e⊤1 {CN,T (u) − (⌊Tu⌋/T )C}e1| = OP

{
N2 ln(T )2/3

∥γ∥2T

}
.

Proof. Let ē1(u) denote the eigenvector corresponding to the largest eigenvalue of CN,T (u), multiplied by either 1 or −1 so
that sign{⟨ē1(u), e1⟩} > 0. Then according to the definitions of λ̄1(u), ē1(u), λ1, and e1,

[(⌊Tu⌋/T )C + {CN,T (u) − (⌊Tu⌋/T )C}] × [e1 + {ē1(u) − e1}]

= [(⌊Tu⌋/T )λ1 + {λ̄1(u) − (⌊Tu⌋/T )λ1}] × [e1 + {ē1(u) − e1}].

By rearranging these terms we have that

{λ̄1(u) − (⌊Tu⌋/T )λ1}e1 = {CN,T (u) − (⌊Tu⌋/T )C}e1 + (⌊Tu⌋/T )C{ē1(u) − e1}

− (⌊Tu⌋/T )λ1{ē1(u) − e1} + GN,T (u), (43)

where

GN,T (u) = {CN,T (u) − (⌊Tu⌋/T )C}{ē1(u) − e1} − {λ̄1(u) − (⌊Tu⌋/T )λ1} × {ē1(u) − e1}.

We then have according to the triangle and Cauchy–Schwarz inequalities that

|e⊤1 GN,T (u)| ≤ |e⊤1 {CN,T (u) − (⌊Tu⌋/T )C} × {ē1(u) − e1}| + |{λ̄1(u) − (⌊Tu⌋/T )λ1} × e⊤1 {ē1(u) − e1}|

≤ ∥CN,T (u) − (⌊Tu⌋/T )C∥ × ∥ē1(u) − e1∥ + |λ̄1(u) − (⌊Tu⌋/T )λ1| × ∥ē1(u) − e1∥. (44)
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We have, using the results in Chapter 7 of [11], that

|λ̄1(u) − (⌊Tu⌋/T )λ1| ≤ ∥CN,T (u) − (⌊Tu⌋/T )C∥,

from which it follows along with (44) that

sup
u∈[c,1]

|e⊤1 GN,T (u)| ≤ c5,1 sup
u∈[c,1]

∥CN,T (u) − (⌊Tu⌋/T )C∥ sup
u∈[c,1]

∥ē1(u) − e1∥.

Following the proof of Lemma 1, one can verify that

sup
u∈[c,1]

∥CN,T (u) − (⌊Tu⌋/T )C∥ = O(NT−1/2). (45)

Furthermore according to the inequality of [11],

sup
u∈[c,1]

∥ē1(u) − e1∥ ≤ c5,2
1

λ1 − λ2
sup

u∈[c,1]
∥CN,T (u) − (⌊Tu⌋/T )C∥ = O

(
N

∥γ∥2T 1/2

)
,

since, by Lemma 4, 1/(λ1 − λ2) = O(∥γ∥−2). It follows that

sup
u∈[c,1]

|e⊤1 GN,T (u)| = OP

(
N2

∥γ∥2T 1

)
. (46)

By multiplying the left- and right-hand sides of (43) by e⊤1 , we obtain

λ̄1(u) − (⌊Tu⌋/T )λ1 = e⊤1 {CN,T (u) − (⌊Tu⌋/T )C}e1 + e⊤1 GN,T (u),

from which the first part of the lemma now follows from (46). The second part follows by replacing the supremum to be
taken over the whole interval, and replacing (45) with the bound achieved in (41). □

Using the definition of CN,T (u) and (1) we get for any i ∈ {1, . . . , K },

T e⊤i (CN,T (u) − (⌊Tu⌋/T )C)ei = (e⊤i γ)
2

⌊Tu⌋∑
t=1

(η2t − 1) + 2e⊤i γ
⌊Tu⌋∑
t=1

ηt

N∑
ℓ=1

ei(ℓ)eℓ,t

+

⌊Tu⌋∑
t=1

{
N∑
ℓ=1

ei(ℓ)eℓ,t

}2

− ⌊Tu⌋
N∑
ℓ=1

e2i (ℓ)σ
2
ℓ .

For each i ∈ {1, . . . , K }

DN,T (u) =
1

T 1/2

⌊Tu⌋∑
t=1

(η2t − 1), FN,T ;i(u) =
1

T 1/2

⌊Tu⌋∑
t=1

ηt

N∑
ℓ=1

ei(ℓ)eℓ,t ,

and

GN,T ;i(u) =
1

T 1/2

⎡⎣⌊Tu⌋∑
t=1

{
N∑
ℓ=1

ei(ℓ)eℓ,t

}2

− ⌊Tu⌋
N∑
ℓ=1

e2i (ℓ)σ
2
ℓ

⎤⎦ ,
Lemma 7. If (1) and Assumptions 1–3 hold, then {DN,T (u), FN,T ;i(u),GN,T ;i(u) : 0 ≤ u ≤ 1, 1 ≤ i ≤ K } converges inD2K+1

[0, 1]
to the Gaussian process Γ(u) = (Γ1(u), . . . ,Γ2K+1(u))⊤ defined for all u ∈ [0, 1], where EΓ(u) = 0, and

EΓ(u)Γ⊤(u′) = min(u, u′)

⎛⎝σ 2
η 0⊤ 0⊤

0 V2 O
0 O V3

⎞⎠
Proof. First, for each i ∈ {1, . . . , K }, we define them-dependent processes

D(m)
N,T (u) =

1
T 1/2

⌊Tu⌋∑
t=1

{(η(m)
t )2 − 1}, F (m)

N,T ;i(u) =
1

T 1/2

⌊Tu⌋∑
t=1

ηt

N∑
ℓ=1

ei(ℓ)e
(m)
ℓ,t ,

and

G(m)
N,T ;i(u) =

1
T 1/2

⎡⎣⌊Tu⌋∑
t=1

{
N∑
ℓ=1

ei(ℓ)e
(m)
ℓ,t

}2

− ⌊Tu⌋
N∑
ℓ=1

e2i (ℓ)σ
2
ℓ

⎤⎦ ,
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where η(m)
t and e(m)

ℓ,t are defined in Assumption 3(a) and Assumption 3(b), respectively. We show that for any x > 0

lim
m→∞

lim sup
T→∞

Pr{|DN,T (u) − D(m)
N,T (u)| > x} = 0, (47)

lim
m→∞

lim sup
T→∞

Pr{|FN,T ;i(u) − F (m)
N,T ;i(u)| > x} = 0, (48)

and

lim
m→∞

lim sup
T→∞

Pr{|GN,T ;i(u) − G(m)
N,T ;i(u)| > x} = 0, (49)

for all u ∈ (0, 1] and i ∈ {1, . . . , K }. It follows from Assumption 3(a) and the Cauchy–Schwarz inequality that

E|η20 − (η(m)
0 )2|

6
= E{|η0 + η

(m)
0 | |η0 − η

(m)
0 |}

6
≤ 24(Eη120 )1/2(E|η0 − η(m)

|
12
)1/2 ≤ c6,1m−6α. (50)

By stationarity, we get that

var

[
T−1/2

⌊Tu⌋∑
s=1

{η2s − (η(m)
s )2}2

]
≤

1
T

⊤∑
s=1

E[η2s − {η(m)
s }

2
] + 2

⊤∑
s=1

E[η20 − {η
(m)
0 }

2
] × [η2s − {η(m)

s }
2
]

≤ E[η20 − {η
(m)
0 }

2
]
2
+ 2

⊤∑
s=1

|E[η20 − {η
(m)
0 }

2
] × [η2s − {η(m)

s }
2
]|.

Since η20 − (η(m)
0 )2 is independent of η(m)

s , if s > m, we obtain that

⊤∑
s=m+1

|E[η20 − {η
(m)
0 }

2
] × [η2s − {η(m)

s }
2
]| ≤

⊤∑
s=m+1

|E(η20 − 1)η2s | +

⊤∑
s=m+1

|E[{η(m)
0 }

2
− 1]η2s |.

The independence of η0 and η(s)s , (50), and Hölder’s inequality yield

⊤∑
s=m+1

|E(η20 − 1)η2s | =

⊤∑
s=m+1

|E(η20 − 1)[η2s − {η(s)s }
2
]| ≤

∞∑
s=m+1

(E|η20 − 1|
6/5

)5/6[E[η20 − {η
(s)
0 }

2
]
6
]
1/6

≤ c6,2m−(α−1)

with c6,2 = {c6,1/(α − 1)}(E|η20 − 1|6/5)5/6. The same argument yields

⊤∑
s=m+1

|[E[{η(m)
0 }

2
] − 1]η2s | ≤ c6,2m−(α−1).

On the other hand, applying again (50) and the Cauchy–Schwarz inequality we conclude
m∑

s=1

|E[η20 − {η
(m)
0 }

2
] × [η2s − {η(m)

s }
2
]| ≤

m∑
s=1

E[η20 − {η
(m)
0 }

2
]
2

≤ c6,1m−(α−1).

Chebyshev’s inequality now implies (47). The proofs of (48) and (49) go along the lines of (47), we only need to replace (50)
with (33) and (36), respectively. Next we show that for each m, {D(m)

N,T (u), F
(m)
N,T ;i(u),G

(m)
N,T ;i(u) : 0 ≤ u ≤ 1, 1 ≤ i ≤ K }

converges in D2K+1
[0, 1] to the Gaussian process Γ(m)(u) = (Γ (m)

1 (u), . . . ,Γ (m)
2K+1(u))

⊤ defined for all u ∈ [0, 1], with
EΓ(m)(u) = 0, and

EΓ(m)(u)(Γ(m))⊤(u′) = min(u, u′)

⎛⎝(σ 2
η )

(m) 0⊤ 0⊤

0 V(m)
2 O

0 O V(m)
3

⎞⎠
with

(σ 2
η )

(m)
=

m∑
ℓ=−m

cov{(η(m)
0 )2, (η(m)

ℓ )2}, (51)

V(m)
2 =

{
m∑

s=−m

lim
N→∞

N∑
k=1

ei(k)ej(k)cov{η
(m)
0 , η(m)

s }cov{e(m)
k,0 , e

(m)
k,s } : 1 ≤ i, j ≤ K

}
, (52)
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and

V(m)
3 =

{
m∑

s=−m

lim
N→∞

[
N∑

k=1

e2i (k)e
2
j (k)cov

[
{e(m)

k,0 }
2, {e(m)

k,s }
2
]

+ 2

[
N∑

k=1

ei(k)ej(k)cov{e
(m)
k,0 , e

(m)
k,s }

]2

− 2
N∑

k=1

e2i (k)e
2
j (k)

[
cov
{
e(m)
k,0 , e

(m)
k,s

}]2]
: 1 ≤ i, j ≤ K

}
. (53)

Let 0 ≤ u1 < · · · < uM ≤ 1 and µi,k,ℓ for all i ∈ {1, . . . ,M} and k ∈ {1, . . . , K }. We can write
M∑

k=1

µk,1,1{D
(m)
N,T (uk) − D(m)

N,T (uk−1)} +

M∑
k=1

K∑
i=1

µk,2,i{F
(m)
N,T ,i(uk) − F (m)

N,T ,i(uk−1)}

+

M∑
k=1

K∑
i=1

µk,3,i{G
(m)
N,T ,i(uk) − G(m)

N,T ,i(uk−1)} = S1 + · · · + SM ,

where, for each i ∈ {1, . . . ,M},

Sk =

⌊Tui⌋∑
s=⌊Tui−1⌋+1

ξN,T ;s(k).

The variables ξN,T ;s(k), ⌊Tuk−1⌋ + 1 ≤ s ≤ ⌊Tuk⌋, 1 ≤ k ≤ M arem-dependent and therefore T−1/2S1, T−1/2S2, . . . , T−1/2SM
are asymptotically independent. Hence we need only show the asymptotic normality of T−1/2Sk for all k ∈ {1, . . . ,M}. For
every fixed k the variables ξN,T ;s(k), ⌊Tuk−1⌋ + 1 ≤ s ≤ ⌊Tuk⌋ form anm-dependent stationary sequence with zero mean,

lim
T→∞

var(T−1/2Sk) = var

[
µk,1,1Γ

(m)
1 (uk) − {Γ

(m)
1 (uk−1)} +

K∑
i=1

µk,2,i{Γ
(m)
i+1 (uk) − Γ

(m)
i+1 (uk−1)}

+

K∑
i=1

µk,3,i{Γ
(m)
i+K+1(uk) − Γ

(m)
i+K+1(uk−1)}

]
and E|ξN,T ;s(k)|3 ≤ C1, where C1,1 does not depend on N nor on T . Due to the m-dependence, these properties imply the
asymptotic normality of T−1/2Sk. Applying the Cramér–Wold device [8], we get that the finite-dimensional distributions of
{D(m)

N,T (u), F
(m)
N,T ;i(u),G

(m)
N,T ;i(u) : 0 ≤ u ≤ 1, 1 ≤ i ≤ K } converge to that of Γ(m)(u). Since ∥V(m)

− V∥ → 0 as T → ∞, and Γ(u)
and Γ(m)(u) are Gaussian processes we conclude that Γ(m)(u) converges in D2K+1

[0, 1] to Γ(u). On account of (47)–(49) we
obtain that the finite-dimensional distributions of {DN,T (u), FN,T ;i(u),GN,T ;i(u) : 0 ≤ u ≤ 1, 1 ≤ i ≤ K } converge to that of
Γ(u). It is shown in the proof of Lemma 1 that

E

⏐⏐⏐⏐⏐
v∑

t=1

(η2t − 1)

⏐⏐⏐⏐⏐
3

≤ c6,3v3/2, E

⏐⏐⏐⏐⏐
v∑

t=1

ηt

N∑
ℓ=1

ei(ℓ)eℓ,t

⏐⏐⏐⏐⏐
3

≤ c6,4v3/2

and

E

⏐⏐⏐⏐⏐⏐
v∑

t=1

{
N∑
ℓ=1

ei(ℓ)eℓ,t

}2

− v

N∑
ℓ=1

e2i (ℓ)σ
2
ℓ

⏐⏐⏐⏐⏐⏐
3

≤ c6,5v3/2.

Due to the stationarity of η, ei,t , i ∈ {1, . . . ,N}, the tightness follows from Theorem 8.4 of [8]. □

Proof of Theorem 2. First we consider the case when ∥γ∥ → ∞. Lemmas 2 and 3 yield

sup
u∈[0,1]

|T 1/2
∥γ∥−2

{λ̃1(u) − (⌊Tu⌋/T )λ1} − T 1/2
∥γ∥−2e⊤1

{
CN,T (u) − (⌊Tu⌋/T )C

}
e1| = OP

{(
N2

T
+

N
T 1/2

)
(ln T )1/3

∥γ∥2

}
.

In addition, we have from Lemma 6 that

sup
u∈[0,1]

|T 1/2
∥γ∥−2

{λ̃1(u) − (⌊Tu⌋/T )λ1} − T 1/2
∥γ∥−2e⊤1 {CN,T (u) − (⌊Tu⌋/T )C}e1| = OP

{
N2(ln T )1/3

∥γ∥4T 1/2

}
.

Therefore, under (5),

sup
u∈[0,1]

|T 1/2
∥γ∥−2

{λ̃1(u) − (⌊Tu⌋/T )λ1} − T 1/2
∥γ∥−2e⊤1 {CN,T (u) − (⌊Tu⌋/T )C}e1| = oP (1).
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Thus Lemma 7 implies that

sup
u∈[0,1]

⏐⏐⏐⏐T 1/2
∥γ∥−2

{λ̃1(u) − (⌊Tu⌋/T )λ1} −
(e⊤1 γ)

2

∥γ∥2 DN,T (u)
⏐⏐⏐⏐ = oP (1).

According to Lemma 7, supu∈[0,1]|DN,T (u)| = OP (1) and since (e⊤1 γ)
2/∥γ∥2

→ 1 by Lemma 4, we conclude

sup
u∈[0,1]

|T 1/2
∥γ∥−2

{λ̄1(u) − (⌊Tu⌋/T )λ1} − DN,T (u)| = oP (1).

Therefore by Lemma 7 we obtain that T 1/2
| ∥γ∥−2

{λ̃1(u) − uλ1} converges weakly in D[0, 1] to σηW (u), which establishes
the first part of the theorem.

When ∥γ∥ = O(1), we again have by Lemmas 2, 3, and 5 that

sup
u∈[0,1]

|T 1/2
{λ̃1(u) − (⌊Tu⌋/T )λ1} − T 1/2e⊤1 {CN,T (u) − (⌊Tu⌋/T )C}e1| = OP {N(ln T )1/3/T 1/2

} = oP (1),

under (6). Also,

sup
u∈[0,1]

|T 1/2e⊤1
{
CN,T (u) − (⌊Tu⌋/T )C

}
e1 − GN,T ;1(u)| ≤ (e⊤1 γ)

2 sup
u∈[0,1]

|DN,T (u)| + 2|e⊤1 γ| sup
u∈[0,1]

|FN,T ;1(u)|

= OP (1){(e⊤1 γ)
2
+ |e⊤1 γ|},

since by Lemma 7

sup
u∈[0,1]

|DN,T (u)| = OP (1) and sup
u∈[0,1]

|FN,T ;1(u)| = OP (1).

By the Cauchy–Schwarz inequality we have that |e⊤i γ| ≤ ∥γ∥ = O(1) and therefore

sup
u∈[0,1]

|T 1/2e⊤1
{
CN,T (u) − (⌊Tu⌋/T )C

}
e1 − GN,T ;1(u)| = oP (1).

The weak convergence of the process GN,T ;1(u), is proven in Lemma 7, which completes the proof of the second part of
Theorem 2. □

Proof of Theorem 1. This follows precisely as Theorem 2 by only replacing Lemma 5 with the result that for all c > 0

max
i∈{1,...,K }

sup
u∈[c,1]

|ZN,T ;i(u)| = OP (N/T ) ,

which follows from (39) and Markov’s inequality. □

Proof of Theorem 8. By Lemmas 2–5 we have that

sup
u∈[0,1]

|T 1/2
{λ̃i(u) − (⌊Tu⌋/T )λi} − T 1/2e⊤i {CN,T (u) − (⌊Tu⌋/T )C}ei| = oP (1).

Also,

sup
u∈[0,1]

⏐⏐T 1/2e⊤i
(
CN,T (u) − (⌊Tu⌋/T )C

)
ei − GN,T ;i(u)

⏐⏐
≤ (e⊤i γ)

2 sup
u∈[0,1]

|DN,T (u)| + 2|e⊤i γ| sup
u∈[0,1]

|FN,T ;i(u)| = OP (1)((e⊤i γ)
2
+ |e⊤i γ|),

since by Lemma 7

sup
u∈[0,1]

|DN,T (u)| = OP (1) and sup
u∈[0,1]

|FN,T ;i(u)| = OP (1).

By the Cauchy–Schwarz inequality we have that |e⊤i γ| ≤ ∥γ∥ and therefore

sup
u∈[0,1]

|T 1/2e⊤i
{
CN,T (u) − (⌊Tu⌋/T )C

}
ei − GN,T ;i(u)| = oP (1).

The weak convergence of GN,T ;i(u), defined for all u ∈ [0, 1] for all i ∈ {1, . . . , K }, is proven in Lemma 7, which completes
the proof of Theorem 2. □

Proof of Theorem 9. Lemmas 2 and 3 yield

sup
u∈[0,1]

|T 1/2
∥γ∥−2

{λ̃1(u) − (⌊Tu⌋/T )λ1} − T 1/2
∥γ∥−2e⊤1 {CN,T (u) − (⌊Tu⌋/T )C}e1| = oP (1).

Thus Lemma 7 yields

sup
u∈[0,1]

⏐⏐⏐⏐T 1/2
∥γ∥−2

{λ̃1(u) − (⌊Tu⌋/T )λ1} −
(e⊤1 γ)

2

∥γ∥2 DN,T (u)
⏐⏐⏐⏐ = oP (1).
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According to Lemma 7, supu∈[0,1]|DN,T (u)| = OP (1) and since (e⊤1 γ)
2/∥γ∥2

→ 1 by Lemma 4, we conclude again that

sup
u∈[0,1]

|T 1/2
∥γ∥−2

{λ̃1(u) − (⌊Tu⌋/T )λ1} − DN,T (u)| = oP (1). (54)

Lemmas 4 and 5 imply

sup
u∈[0,1]

|T 1/2
{λ̃i(u) − uλi} − {(e⊤i γ)

2DN,T (u) + 2e⊤i γFN,T ;i(u) + GN,T ;i(u)}| = oP (1). (55)

Combining (54) and (55) with Lemma 7, we obtain that {T 1/2
| ∥γ∥−2

{λ̃1(u) − uλ1}, T 1/2(λ̃i(u) − uλi) : 2 ≤ i ≤ K } converges
weakly in DK

[0, 1] to Γ0(u) = (Γ 0
1 (u), . . . ,Γ

0
K (u))

⊤, where Γ 0
1 (u) = Γ1(u) and Γ 0

i (u) = a2i Γ1(u) + 2aiΓi+1(u) + Γi+K+1(u)
for all i ∈ {2, . . . , K }. The computation of the covariance function of Γ0(u) finishes the proof of Theorem 9. □
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