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Abstract
We construct and study a test to detect possible change
points in the regression parameters of a linear model
when the model errors and covariates may exhibit
heteroscedasticity. Being based on a new trimming
scheme for the CUSUM process introduced in Horváth
et al. (2020), this test is particularly well suited to
detect changes that might occur near the endpoints
of the sample. A complete asymptotic theory for the
test is developed under the null hypothesis of no
change in the regression parameter, and consistency
of the test is also established in the presence of a
parameter change. Monte Carlo simulations show that
our test is comparable to existing methods when the
errors are homoscedastic. In contrast, existing meth-
ods developed for homoscedastic data are demonstrated
to be ill-sized and poorly performing in the presence
of heteroscedasticity, while the proposed test contin-
ues to perform well in heteroscedastic environments.
These results are further demonstrated in a study of
the linear connection between the price of crude oil
and the U.S. dollar, and in detecting changes points
in asset pricing models surrounding the COVID-19
pandemic.
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M O S S U B J E C T C L A S S I F I C A T I O N

Primary 62E20, Secondary 62J05, 62P20

1 INTRODUCTION AND MAIN RESULTS

In this paper, we consider the time varying linear model

yt = x⊤
t 𝜷 t + 𝜖t, 1 ≤ t ≤ T, (1)

where xt ∈ Rd, and E[𝜖t|X ,t] = 0, with X ,t = 𝜎(Xs, s ≤ t) denoting the 𝜎-algebra generated by
the covariates up to time t. Generally we are interested in testing the null hypothesis

H0 ∶ 𝜷1 = 𝜷2 = … = 𝜷T ,

against the alternative

HA ∶ there exists a t∗ such that 𝜷1 = … 𝜷 t∗ ≠ 𝜷 t∗+1 = … = 𝜷T .

Under the alternative the regression coefficients (loadings) change at a single time t*. Testing
H0 against HA is a classical problem that was initiated by Quandt, 1960, and since then the lit-
erature on this problem has developed at a steady pace. For example, Kim and Siegmund (1989)
advocate the application of the maximally selected likelihood ratio test assuming independent
and identically distributed normal errors in (1), and Gombay and Horváth (1994) show that the
asymptotic distribution of the resulting test statistic satisfies a Darling–Erdős law. Ploberger and
Krämer (1992) employ the least squares residuals in a CUSUM procedure to perform such a test,
which is similar to Brown et al. (1975). Csörgő and Horváth (1997) survey several methods when
the innovations are independent and identically distributed. Bai (1999) and Bai and Perron (1998)
extend some of these detection techniques to dependent errors and multiple change points under
the alternative. Hidalgo and Seo (2013) develop a Lagrange multiplier type test for this purpose.
More recently, Horváth et al. (2020) use sequential averages of the sample residuals to develop
efficient tests to detect early or late changes in the linear model parameters. For a survey on the
change point problem from a time series point of view, we refer to Aue and Horváth (2013).

Generally in the literature to date it is assumed that the sequence (xt, 𝜖t)’s is at least strictly
stationary. Exceptions that do not necessarily focus on linear models include Gorecki et el. (2017),
Harvey et al. (2016), Bardsley et al. (2017), Harris et al. (2017), and Wu and Zhou (2018), where
nonstationarity is allowed in the observations that covers heteroscedasticity or changing volatil-
ities. Commonly in applications, and as is the case with the data examples studied below, the
assumption of heteroscedasticity is much more realistic. Further, available methods valid under
heteroscedasticity have not been studied or optimized in terms of their ability to detect changes
that might be near the beginning or end of the sample. Detecting such changes is often of interest
when applying change point detection procedures retrospectively to a sample where a change is
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HORVÁTH et al. 579

suspected to have occurred recently. In this paper, we aim to extend the residual based test of
Horváth et al. (2020), which is based on a novel trimming scheme for the CUSUM process that is
effective for end of sample change point detection, to the setting of heteroscedastic linear models.

In particular, we model xt ∈ Rd and 𝜖t as random variables that are interval stationary, that is
to say that their distributions are allowed to change at up to M points,

1 < t1 = ⌊T𝜃1⌋ < t2 = ⌊T𝜃2⌋ < … < tM = ⌊T𝜃M⌋ < T, (2)

(we use the notation t0 = 0 and tM + 1 =T). We assume that the factors xt and the errors 𝜖t on each
interval of stationarity evolve according to Bernoulli shifts:

𝜖t = fi(𝜂t, 𝜂t−1, 𝜂t−2, …), if ti−1 < t ≤ ti, 1 ≤ i ≤ M + 1, (3)

and

xt = gi(𝜂t, 𝜂t−1, 𝜂t−2, …), if ti−1 < t ≤ ti, 1 ≤ i ≤ M + 1, (4)

where the 𝜂t are independent and identically distributed random elements of a measurable
space  . We do not require that f i ≠ f i+ 1 and/or gi ≠ gi+ 1, that is, t1, t2, … , tM are only possible
times where the structure of the processes generating xt and 𝜖t might change, and hence these
sequences could exhibit fairly broad forms of nonstationarity. For example, (xt, 𝜖t) might evolve
as a vector valued linear process whose representation changes at each point t1, t2, … , tM .

Our method is based on sequentially comparing 𝜷̂ t,1 and 𝜷̂ t,2, where 𝜷̂ t,1 and 𝜷̂ t,2 are the
least squares estimators for the regression coefficients computed from {(ys, xs), 1≤ s≤ t} and
{(ys, xs), t < s≤T}, respectively. Let Yt, 1 = (y1, y2, … , yt)⊤ and Yt, 2 = (yt + 1, yt + 2, … , yT)⊤, and sim-
ilarly

Xt,1 =

⎛⎜⎜⎜⎜⎜⎝

x⊤
1

x⊤
2

⋮

x⊤
t

⎞⎟⎟⎟⎟⎟⎠
and Xt,2 =

⎛⎜⎜⎜⎜⎜⎝

x⊤
t+1

x⊤
t+2

⋮

x⊤
T

⎞⎟⎟⎟⎟⎟⎠
.

Then we may express the least squares estimates before and after a candidate change point
location t as

𝜷̂ t,1 = (X⊤
t,1Xt,1)−1X⊤

t,1Yt,1 and 𝜷̂ t,2 = (X⊤
t,2Xt,2)−1X⊤

t,2Yt,2.

Let Ai = {ai(k,𝓁), 1≤ k,𝓁 ≤ d}, where

lim
T→∞

1
ti − ti−1

ti∑
t=ti−1+1

Ext(k)xt(𝓁) = ai(k,𝓁), 1 ≤ k,𝓁 ≤ d, 1 ≤ i ≤ M + 1,

xt = (xt(1), xt(2), … , xt(d))⊤. Below we make use of the following assumptions in order to quan-
tify the asymptotic behavior of the test statistics proposed below. These basically entail and
imply that the change point(s) in the parameters and volatility of the regressors must be well
separated, and that the partial sample estimators of the regression parameters must satisfy a
functional central limit theorem with a quantifiable rate of convergence.
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580 HORVÁTH et al.

Assumption 1. The constants 𝜃i in (2) satisfy 0 < 𝜃1 < 𝜃2 < … < 𝜃M < 1.

Assumption 2. The matrices A1, A2, … , AM + 1 are nonsingular.

Let || ⋅ || denote the Euclidean norm of vectors and matrices. The following assumption implies
that the covariates and errors in (3) and (4) are generally weakly dependent with at least four
finite moments.

Assumption 3. f j and gj, 1≤ j≤M + 1 are nonrandom functionals defined on ∞ with values in
R and Rd, with  being a measurable space. The sequences 𝜖i, xi,−∞ < i < ∞ can be approxi-
mated with m-dependent sequences 𝜖i,m and xi, m in the sense that with some 𝜅1 > 4, 𝜅2 > 2 and
c> 0, E|𝜖i|𝜅1 < ∞, E||xi||𝜅1 < ∞,

(E|𝜖i − 𝜖i,m|𝜅1)1∕𝜅1 ≤ cm−𝜅2 , (5)

and

(E||xi − xi,m||𝜅1)1∕𝜅1 ≤ cm−𝜅2 , (6)

where 𝜖i,m = fj(𝜂i, 𝜂i−1, 𝜂i−2, … , 𝜂i−m+1, 𝜼
∗
i,m), xi,m = gj(𝜂i, 𝜂i−1, 𝜂i−2, … , 𝜂i−m+1, 𝜼

∗
i,m), tj−1 < i ≤

tj, 1 ≤ j ≤ M + 1, 𝜼∗i,m = (𝜂∗i,m,i−m, 𝜂
∗
i,m,i−m−1, 𝜂

∗
i,m,i−m−2, …) and the 𝜂∗i,m,n’s are independent copies

of 𝜂0, independent of {𝜂i,−∞ < i < ∞}.

This structural dependence condition encompasses the vast majority of time series models
that are driven by independent identically distributed innovations sequences, under suitable
conditions on the models implying the existence of stationary causal solutions. For example,
Assumption 3 holds for series following ARMA and GARCH models under mild conditions.
A thorough comparison of such dependence conditions with related mixing conditions can be
found in Wu (2005).

Let

et = 𝜖txt = (xt(1)𝜖t, xt(2)𝜖t, … , xt(d)𝜖t)⊤,

and define the corresponding long run variances on the intervals of stationarity by

Di = lim
T→∞

1
(ti − ti−1)

E
⎡⎢⎢⎣
( ti∑

t=ti−1+1
et

)( ti∑
t=ti−1+1

et

)⊤⎤⎥⎥⎦ , 1 ≤ i ≤ M + 1.

Assumption 4. D1 and DM + 1 are nonsingular matrices.

The requirement that only the matrices D1 and DM + 1 are nonsingular arises due to the
method that we propose below to estimate normalizing matrices for 𝜷̂ t,1 and 𝜷̂ t,2, which involve
estimating them based on the data before and after candidate break points. The resulting esti-
mates may then be considered as convex combinations of estimators that necessarily contain
estimates for D1 and DM + 1.

The long run covariance matrix of the normalized sum of the et’s is time dependent so we
need a time-dependent estimator as well. First we define the residuals as

𝜖t = yt − x⊤
t 𝜷̂T,1, 1 ≤ t ≤ T.
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HORVÁTH et al. 581

The corresponding estimator for et = 𝜖txt is

êt = 𝜖txt = (xt(1)𝜖t, xt(2)𝜖t, … , xt(d)𝜖t)⊤.

The estimators for the long-run covariance matrices starting from the beginning and the end of
the data we define as

Q̂t(1) =
1
t

t∑
s=1

êsê⊤
s +

t−1∑
u=1

K
(

u
ht

)
1

t − u

( t−u∑
s=1

êsê⊤
s+u +

t−u∑
s=1

ês+uê⊤
s

)
,

and

Q̂t(2) =
1

T − t

T∑
s=t+1

êsê⊤
s +

T−t−1∑
u=1

K
(

u
hT−t

)
1

T − t + u

( T−u∑
s=t+1

êsê⊤
s+u +

T−u∑
s=t+1

ês+uê⊤
s

)
.

The test statistic we propose is the maximized quadratic form

ẐT = max
aT≤t≤T−bT

(
(𝜷̂ t,1 − 𝜷̂ t,2)⊤Q̂−1

T,t(𝜷̂ t,1 − 𝜷̂ t,2)
)1∕2

, (7)

where

Q̂T,t =

(
X⊤

t,1Xt,1

t

)−1

Q̂t(1)

(
X⊤

t,1Xt,1

t

)−1

1{t ≤ T∕2}+

(
X⊤

t,2Xt,2

T − t

)−1

Q̂t(2)1{t >T∕2}

(
X⊤

t,2Xt,2

T − t

)−1

.

and 1 denotes the indicator function. It straightforward to see that

Q̂−1
T,t =

(
X⊤

t,1Xt,1

t

)
Q̂t(1)−1

(
X⊤

t,1Xt,1

t

)
1{t ≤ T∕2} +

(
X⊤

t,2Xt,2

T − t

)
Q̂t(2)−1

(
X⊤

t,2Xt,2

T − t

)
1{t > T∕2}.

The motivation to use Q̂−1
T,t in the normalization defining ẐT is to improve power when

the change point might occur near the end of the sample, and guard against conditional het-
eroscedasticity: we use Q̂t(1) when evaluating for potential early changes, and Q̂t(2) in evaluating
for changepoints that might be near the end of the sample. In order that these estimates are
consistent, we also make the following two standard assumptions on the kernel function and
bandwidth:

Assumption 5. (i) K(0)= 1 (ii) K(u)= 0 if |u|≥ c with some c> 0 (iii) K is Lipschitz continuous
on the real line

Assumption 6. (i) ht →∞ and ht = O(t1∕2(log t)−(3+𝜁)) with some 𝜂 > 0, as t →∞ (ii) ht =
h𝜌i−1 , 𝜌i−1 ≤ t < 𝜌i, 1 ≤ i < ∞ with some 𝜌 > 1.

The assumption that the kernel function has bounded support is made mainly to simplify
the proofs, and could be replaced with the condition that it is square integrable. A form of
Assumption 6(ii) already appeared in Berkes et al. (2005, 2006), where uniform convergence of
the Bartlett estimator of the long run covariance is studied. Our final assumption describes the
strength/size of the trimming of the CUSUM in defining ẐT . One feature that separates this work
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582 HORVÁTH et al.

from the past literature is that we allow the trimming parameters aT and bT to be small, that is, of
lower order than the sample size T, in order to improve performance for end of sample changes.

Assumption 7. aT →∞, bT →∞, aT/T → 0 and bT/T → 0.

Let

rT = min(aT , bT),

and define

lim
T→∞

rT

aT
= 𝛾1, lim

T→∞

rT

bT
= 𝛾2.

The standard Wiener process in Rd is denoted by W, i.e. W is a Gaussian process with EW(t)= 0
and EW(t)W(s)⊤ is a diagonal matrix with min(t, s) in the diagonal. Let

𝜁 = max
0≤u≤1
||W(u)||,

and define

𝜉 = max
(
𝛾

1∕2
1 𝜁1, 𝛾

1∕2
2 𝜁2

)
,

where 𝜁1, 𝜁2 are independent random variables, distributed as 𝜁 .

Theorem 1. If H0 holds and Assumptions 1, 2, 3, 4, 5, 6, and 7 are satisfied, then we have that

r1∕2
T ẐT



→ 𝜉.

Remark 1. If the weighted errors {es, s≥ 0} are uncorrelated, that is, Eese⊤
u is the zero matrix, then

we only need to keep the first terms in the definitions Q̂t(1) and Q̂t(2). For example, in many
popular volatility models 𝜖t is independent of {𝜖s, s < t, xu,u ≤ t}, and the vectors {es, s≥ 0} are
uncorrelated. Let

Qt(1) =
1
t

t∑
s=1

êsê⊤
s , Qt(2) =

1
T − t

T∑
s=t+1

êsê⊤
s ,

and

QT,t =

(
X⊤

t,1Xt,1

t

)−1

Qt(1)

(
X⊤

t,1Xt,1

t

)−1

1{t ≤ T∕2}+

(
X⊤

t,2Xt,2

T − t

)−1

Qt(2)

(
X⊤

t,2Xt,2

T − t

)−1

1{t > T∕2}.

For uncorrelated et’s the test statistic is

ZT = max
aT≤t≤T−bT

(
(𝜷̂ t,1 − 𝜷̂ t,2)⊤Q

−1
T,t(𝜷̂ t,1 − 𝜷̂ t,2)

)1∕2
,

and under H0 and Assumptions 1, 2, 3, 4, and 7, we have
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HORVÁTH et al. 583

r1∕2
T ZT



→ 𝜉. (8)

These results motivate one to reject H0 when r1∕2
T ẐT exceeds the 1 − 𝛼 critical value of 𝜉, which

according to Theorem 1 is an asymptotically size 𝛼 test of H0.
Next we consider the consistency of our testing procedure under the alternative of exactly one

change in the 𝜷’s. Let 𝜷 (1) and 𝜷(T) denote the regression parameter before and after the change.
To compare our result with existing literature, we consider the case when the change is not too
late (cf. Assumption 9 in Theorem 2). Not too early changes can be handled similarly.

Theorem 2. If Assumptions 1, 2, 3, 4, 5, 6, and 7 are satisfied,

lim sup
T→∞

t∗
T

< 1, (9)

lim sup
T→∞

aT

t∗
< ∞, (10)

and

r1∕2
T min

(
t∗
aT

, 1
) ||𝜷(1) − 𝜷(T)||→ ∞, as T → ∞, (11)

then we have that

r1∕2
T ẐT

P
→ ∞. (12)

If aT ≤ t*, then we only require that the size of the change is larger than r−1∕2
T . Hence this

test is expected to be able to detect relatively small changes, even if ||𝜷(1) − 𝜷(T)||→ 0. The
residual-based approaches require additional conditions on the change 𝜷 (1) − 𝜷(T). For example,
the Rényi-type statistic in Horváth et al. (2020) will not detect a change if 𝜷 (1) − 𝜷(T) and

∑T
t=1 xt

are orthogonal vectors. Further these results hold under the above general heteroscedasticity
assumptions.

Remark 2. If the errors are uncorrelated, Assumptions 1, 2, 3, 4, 7 and (9), (10), (11) hold, then
we also have consistency of the test statistic ZT , in particular we have that

r1∕2
T ZT

P
→ ∞. (13)

Since the proof of (13) goes along the lines of (12), it is omitted.

Remark 3. The test described above is consistent to detect the single change point alternative HA.
It is beyond the scope of the present work to describe the consistency of the proposed test statistic
for detecting and estimating multiple change points; however, in the event that one is inter-
ested in doing so, we recommend applying binary segmentation. A single change point may be
consistently estimated as

t̂T = min
{

t ∈ [at,T − bT] ∶ ẐT =
(
(𝜷̂ t,1 − 𝜷̂ t,2)⊤Q̂−1

T,t(𝜷̂ t,1 − 𝜷̂ t,2)
)1∕2}

.
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584 HORVÁTH et al.

Based on this estimate, the sample may be partitioned into two subsamples with indices
{1, … , t̂T} and {t̂T + 1, … ,T}, and then one may apply the same detection and estimation proce-
dure for a single change point to each subsample. An effective stopping criterion for this procedure
applied to any particular interval is when one is not able to reject H0 at a specified significance
level. We illustrate the use of this procedure in the data example below.

Remark 4. In practice the user must select the trimming parameters aT and bT . Local power cal-
culations presented below and in the proof of Theorem 2 suggest that the power is maximized
when aT and bT are as large as possible so that {aT , … , T − bT} still includes the potential change
point(s). We compare a number of such choices in the simulation study below, ranging from
aT = bT = log(T) to aT = bT =T1/2, see Figure 4. Generally we suggest aT = bT =T1/2 as a default
setting.

Remark 5. We provide here a brief comparison in terms of local power of the proposed statistic to
standard CUSUM statistics. The standard maximally selected CUSUM process analogous to the
statistic ẐT is

PT = max
d<t<T−d

t(T − t)
T3∕2

(
(𝜷̂ t,1 − 𝜷̂ t,2)⊤Q

−1
T,t(𝜷̂ t,1 − 𝜷̂ t,2)

)1∕2
. (14)

It can be shown that under the conditions of Theorem 1 that

PT


→ sup
0<t<1
||𝚫(t)||,

where 𝚫 is a continuous Gaussian process satisfying 𝚫(0) = 0 and 𝚫(1) = 0. Under the conditions
of Theorem 2,

P
{

lim sup
T→∞

max
d<t<T−d

||Q −1
T,t || < ∞

}
= 1

and there is a positive definite matrix Q such that

QT,t∗
P
→ Q.

The difference between parameter estimates at a candidate change point t can be decomposed as

𝜷̂ t,1 − 𝜷̂ t,2 = T,t + zt,T ,

where zt, T is a nonrandom drift term. Standard arguments give that

zt,T ≈

{
T−t∗

T−t
(𝜷(1) − 𝜷 (T)), if d < t ≤ t∗

t∗

t
(𝜷 (1) − 𝜷(T)), if t∗ < t < T − d,

and further the error process T,t is the same under H0 and HA. The function t(T − t) ||zt, T|| will
hence reach its largest value around t*. An early change point may be defined asymptotically as

t∗
T

→ 0.
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HORVÁTH et al. 585

We define a local alternative as

t∗

T1∕2 ||𝜷(1) − 𝜷(T)||→ 𝔞 ∈ [0,∞], as T → ∞.

If 𝔞 = 0, then (14) still holds. If 0 < 𝔞 < ∞, then on account of 𝚫(0) = 0 it can be shown that there
is a constant 0 < 𝔞∗ < ∞ such that PT → 𝔞∗ in probability and PT →∞ in probability, if 𝔞 = ∞.
For the sake of simplicity, we assume in the definition of ẐT that aT = bT = rT and

lim sup
T→∞

rT

t∗
≤ 1, (15)

that is, the early change comes after trimming parameter rT . We observe similarly that the drift||zT, t|| reaches its largest value around t* again. We consider then the analogous local alternative
for Ẑt

rT||𝜷(1) − 𝜷(T)||→ 𝔟 ∈ [0,∞], as T → ∞.

If 𝔟 = 0, then a1∕2
T ẐT still satisfies the limit result in Theorem 1. If 0 < 𝔟 < ∞, then a1∕2

T ẐT con-
verges in distribution to a nondegenerate random variable, differing from the limit in Theorem 1.
In case of 𝔟 = ∞, a1∕2

T ẐT → ∞ in probability. These then constitute the necessary and sufficient
condition for consistency of ẐT under (15). In summary, ẐT can be expected to have superior
power against early and small changes when compared to PT , as the local alternative causing the
normalized ẐT to be asymptotically constant forces ||𝜷(1) − 𝜷 (T)|| ≈ 𝔟r−1

T , in which case t* must be
of the order T1/2rT >>rT in order for PT to be asymptotically constant.

2 SIMULATIONS STUDY

We now present the results of a simulation study in which we aimed to both evaluate the finite
sample properties of the test based on ẐT in both homoscedastic and heteroscedastic environ-
ments, and compare this test to a number of existing procedures to detect structural changes in
linear regression models. In all simulations below we took the covariate dimension d= 2 in (1).
The data is generated as

yt =

{
𝜷
(1)
1 + xt,2𝜷

(1)
2 + 𝜖t, 1 ≤ t ≤ t∗

𝜷
(T)
1 + xt,2𝜷

(T)
2 + 𝜖t, t∗ + 1 ≤ t ≤ T,

(16)

We chose 𝜷 (1) = (1, 2)⊤ and 𝜷(T) = 𝜷(1) + 𝛿(1,−1)⊤. We considered the values of 𝛿 ∈ [−2, 2]
(incrementing by 0.1), and with this setup 𝛿 = 0 gives H0, while 𝛿 ≠ 0 gives alternatives of
various strengths satisfying HA. The data vector is xt = (1, xt, 2), and the xt, 2’s are taken to be
independent identically distributed N(1, 1) random variables. The tests that we consider include
the proposed test based on ẐT , along with the Rényi-type statistic of Horváth et al. (2020)
with trimming parameter aT = bT =T1/2 computed from the residuals, the CUSUM statistic of
Ploberger and Krämer (1992), Andrews (1993) Wald-type statistic, and the Hidalgo and Seo (2013)
statistic. The Rényi-type statistic of Horváth et al. (2020) and the CUSUM statistic of Ploberger
and Krämer (1992) are the univariate statistics computed from the estimated residuals of the
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586 HORVÁTH et al.

regression model. The Andrews and Hidalgo–Seo statistics were tailored to the regression con-
text as described in their papers, and are based on functionals of the process of estimated
regression coefficients 𝜷̂ t,1 − 𝜷̂ t,2, similar to the proposed test. For the Andrews (1993) Wald-type
statistic, we chose to trim 10% of the sample at both ends, and p-values were computed
using an empirical CDF of the limiting distribution of the statistic estimated from 1,000,000
realizations.

We note that these statistics do not all use the same long-run variance (LRV) estimation pro-
cedure. The Hidalgo–Seo statistic uses the periodogram matrix for LRV estimation. The statistics
of the present paper, the Rényi-type statistics of Horváth et al. (2020) and the CUSUM statistic of
Ploberger and Ploberger and Krämer (1992) use either the LRV estimation with kernel methods
(correlated errors) or the sample variance (uncorrelated data). If LRV estimation is needed we use
the quadratic spectral kernel, and the bandwidth was selected using the procedure advocated by
Andrews (1991) and implemented in Aschersleben and Wagner (2016). Andrews (1993) statistic
uses the procedure advocated in their paper allowing for correlated residuals. Notably in this case
the LRV estimator is consistent only under the null hypothesis of no change. The varying band-
widths ht are set to ht = m̂Tt1∕5, where the constant m̂T is estimated from the whole sample using
the method of Andrews (1991).

2.1 Early change

We start by assuming that the change in the regression parameter occurs early. We concentrate on
the case when the change is relatively close to the beginning of the sample, and take t* = ⌊T3/5⌋.

We consider a number of settings for 𝜖t that follow both homoscedastic and heteroscedastic
regimes. We use the following four data generating processes in the homoscedastic case: (HO-IID)
independent and identically distributed N(0, 1) random variables;

(HO-AR){𝜖t} is an AR(1) process with autocorrelation coefficient 𝜙 = 0.5 and the innovations
are i.i.d. normal random variables with zero mean and variance 0.5;

(HO-ARMA) {𝜖t} is an ARMA(2, 2) process 𝜖t = 𝜙1𝜖t−1 + 𝜙2𝜖t−2 + 𝜂t + 𝜃1𝜂t−1 + 𝜃2𝜂t−2 with
𝜙1 = 0.4, 𝜙2 = −0.03, 𝜃1 = 0.5, 𝜃2 = 0.06, and the variance of the i.i.d. mean zero normal noise
process is chosen so that variance of 𝜖t is 1;

(HO-GARCH) GARCH(1, 1) process 𝜖t = 𝜎t𝜂t, 𝜎2
t = 𝜔 + 𝛼𝜂2

t−1 + 𝛽𝜎2
t−1 with 𝜔 = 0.3, 𝛼 = 0.2,

and 𝛽 = 0.5 and the innovations are i.i.d. standard normal random variables.
If 𝜖t is heteroscedastic, then we consider a couple scenarios. First, we take 𝜖t to fol-

low one of the below four DGPs in the second half of the sample, while the sequence
in the first half is generated according to the corresponding above homoscedastic DGP.
(HE1-IID) after t1 = ⌊T/2⌋ the errors are independent and identically distributed N(0, 10) random
variables;

(HE1-AR) in the second half of the sample the errors follow an AR(1) sequence with 𝜙 = 0.5
and the innovations are i.i.d. normal random variables with zero mean and variance 5;

(HE1-ARMA) for the ARMA(2, 2) case, after t1 = ⌊T/2⌋ the 𝜖t’s have parameters 𝜙1 = 0.4,
𝜙2 = 0.2, 𝜃1 = −0.1, 𝜃2 = −0.42 and the variance of the i.i.d. mean zero normal noise process is
chosen so that variance of 𝜖t is 10;

(HE1-GARCH) in the GARCH(1, 1) case, in the second half the errors have parameters 𝜔 = 1,
𝛼 = 0.7, 𝛽 = 0.2. In all cases, the variance of the errors changes from 1 to 10 in the middle of the
data.
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F I G U R E 1 Power plots as a function of 𝛿 with nominal size 𝛼 = 0.05 for homoscedastic data when the
change in the regression parameters occurs at t* = ⌊T3/5⌋; columns from left to right correspond to the sample
sizes 250, 500, 750, and 1000 respectively, the first row is (HO-IID), the second row is (HO-AR), the third row is
(HO-ARMA), and the fourth row is (HO-GARCH). The power curves are displayed for the proposed method
ẐT ( ), Horváth et al. (2020) ( ), Ploberger and Krämer (1992) ( ), Andrews (1993) ( ), Hidalgo and
Seo (2013) ( ) [Colour figure can be viewed at wileyonlinelibrary.com]

The second heteroscedasticity scenario only changes the location of the change in variance, so
that the latter three-quarters of the sample has a different variance than the first, so t1 = ⌊T∕4⌋.
The magnitude and structure of the change is otherwise the same. In this scenario we care only
to study the effect of the location of the variance change, so we restrict ourselves to the Normal
DGP, labeled (HE2-IID).

For every combination of sample size, test statistic, 𝛿, and data-generating process for 𝜖t,
20,000 independent tests of each type considered were conducted, and their approximate p-values
were computed. H0 is rejected for p-values less than 𝛼 = 0.05. The sample sizes considered were
T ∈ {250, 500, 750, 1000}. These results are presented in terms of power plots in Figures 1 and 2.

These results can be summarized as follows. In the case of homoscedastic residuals, the
best-performing test statistic in all plots in terms of power is either the Hidalgo–Seo statistic
or Andrews’ statistic. The Hidalgo-Seo statistic displayed considerable size inflation in many
cases even for large sample sizes, while Andrews’ statistic exhibited size inflation less frequently,
although still often did. The residual-based statistics of Ploberger and Krämer (1992) and Horváth
et al. (2020) did not demonstrate good power properties, though they generally exhibited good
size. The CUSUM statistic is the worst performing while the univariate Rényi-type statistic of
Horváth et al. (2020) sometimes exhibited decent power for large sample sizes. On balance,
though, the statistic ẐT of (7) often exhibited strong power without suffering from size inflation,
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F I G U R E 2 Power plots as a function of 𝛿 with nominal size 𝛼 = 0.05 for heteroscedastic data when the
change in the regression parameters occurs at t* = ⌊T3/5⌋; columns correspond to the sample sizes 250, 500, 750,
and 1000 respectively, the first row is (HE1-IID), the second row is (HE1-AR), the third row is (HE1-ARMA), and
the fourth row is (HE1-GARCH). The power curves are displayed for the proposed method ẐT ( ), Horváth
et al. (2020) ( ), Ploberger and Krämer (1992) ( ), Andrews (1993) ( ), and Hidalgo and Seo (2013)
( ) [Colour figure can be viewed at wileyonlinelibrary.com]

in fact generally we observed that the test based on ẐT was slightly undersized. Although the
statistic ẐT was designed for heteroscedastic data, it performs reasonably well in homoscedastic
environments.

In the case of heteroscedastic errors, the residual-based statistics of Ploberger and
Krämer (1992) and Horváth et al. (2020) effectively exhibited no power for our choices of parame-
ters. The Hidalgo–Seo statistic was markedly oversized for heteroscedastic data for all sample sizes
considered. Andrews’ statistic did not display size problems to the same degree as the Hidalgo–Seo
statistic, but still exhibited considerable size inflation. Further the power of each of these statistics
was markedly reduced when compared to the homoscedastic settings. The tests based on the pro-
posed statistic ẐT though exhibited good size, and similar power profiles as in the homoscedastic
case, sometimes even beating the ill–sized Hidalgo–Seo and Andrews’ statistics in terms of power.
Figure 3 suggests, though, that the size problems experience by the Hidalgo-Seo and Andrews
statistics could be due to the location of the change in variance, since causing the variance change
to happen much earlier eliminates the size problems experienced by these statistics. However,
they still do not attain the same level of power as observed in ẐT .

The trimming parameter for ẐT used in the above simulations was aT = bT =T1/2. We also
explored alternative trimming parameters and show simulations results for those comparisons in
Figure 4. The trimming parameter furthest from the location of the change point is log(T), the
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F I G U R E 3 Power plots as a function of 𝛿 with nominal size 𝛼 = 0.05 for heteroscedastic data following
process (HE2-IID) when the change in the regression parameters occurs at t* = ⌊T3/5⌋; columns correspond to
the sample sizes 250, 500, 750, and 1000, respectively. The power curves are displayed for the proposed method
ẐT ( ), Horváth et al. (2020) ( ), Ploberger and Krämer (1992) ( ), Andrews (1993) ( ), and Hidalgo
and Seo (2013) ( ) [Colour figure can be viewed at wileyonlinelibrary.com]
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F I G U R E 4 Power plots as a function of 𝛿 with nominal size 𝛼 = 0.05 for heteroscedastic data following
process (HO-IID) when the change in the regression parameters occurs at t* = ⌊T3/5⌋; columns from left to right
correspond to the sample sizes 250, 500, 750, and 1000, respectively. The power curves are displayed for the
proposed method when the trimming parameter is T1/2 ( ), T3/5 ( ), and log(T) ( ) [Colour figure can be
viewed at wileyonlinelibrary.com]

closest is T3/5, which coincides with the location of the change point, and the parameter generally
used in this paper is T1/2. We see that power increases as the trimming parameter gets closer to
the location of the change point, as expected. Indeed, in this case the power of the proposed test
exceeds that of the Andrews’ statistic even in this homoscedastic setting. Taking the trimming
parameter to be very small, such as aT = log(T), results in markedly reduced power, as expected.
For this reason we generally recommend aT = bT =T1/2 as a default setting.

2.2 Mid-sample change

Although the proposed statistic is tailored to end-of-sample change points, it is worthwhile to
study it empirical properties for mid-sample changes as well.

We present simulation results taking t* =T/2, that is, the change in linear model coefficients
happens in the middle of the sample. We consider only (HO-IID) and (HE1-IID) DGPs, as we
are investigating here only the effect of the location of the change point on the behavior of
the investigated statistics. Note that when the DGP is (HE1-IID), the location of the variance
change and the location of the potential change point equal each other. We plot our results in
Figure 5.

In the homoscedastic case Andrews’ statistic performed the best, having excellent size and
power. ẐT also retained good power and size properties in this context. The Hidalgo–Seo statistic
also has good power but exhibited some size inflation as before. In the heteroscedastic case, the
Andrews and Hidalgo–Seo statistics still exhibited marked size inflation. In none of these settings
did the residual-based methods perform well.
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F I G U R E 5 Power plots as a function of 𝛿 with nominal size 𝛼 = 0.05 when the change in the regression
parameters occurs at t* = ⌊T/2⌋; columns from left to right correspond to the sample sizes 250, 500, 750, and 1000
respectively, the first row is (HO-IID) and the second row is (HE1-IID). The power curves are displayed for the
proposed method ẐT ( ), Horváth et al. (2020) ( ), Ploberger and Krämer (1992) ( ) Andrews (1993)
( ), and Hidalgo and Seo (2013) ( ) [Colour figure can be viewed at wileyonlinelibrary.com]

3 DATA EXAMPLES

With the purpose of a demonstrating, and comparing to benchmarks, the proposed test with
real data, we consider two application to analyze structural changes in the context of oil prices’
relationship with the U.S. dollar, and asset price models surrounding the COVID-19 pandemic.

3.1 The changing relationship between crude oil price and the U.S.
dollar.

Commodities in general are priced in dollars, and thus commodity prices and exchange rates tend
to be related. Krugman (1980, 1983) presents theoretical models suggesting how exchange rates
interact with oil prices, giving conditions under which oil price increases will be associated either
with appreciation or depreciation of the U.S. dollar (see also Beckmann et al., 2017, for theoret-
ical results). Empirical work, such as Beckmann et al. (2017), Ji et al. (2019), and Arfaoui and
Rejeb (2017), also suggest a relationship between exchange rates and oil prices, with Beckmann
et al. (2017) observing that this relationship varies over time.

The datasets used in our example were obtained from the Federal Reserved Economic
Database (FRED), the oil price series has FRED code MCOILWTICO and the dollar strength index
has FRED code TWEXBPA. In Figures 6 and 7 we observe the inverse relationship between dollar
strength and oil prices as found in other empirical studies (see Arfaoui & Rejeb, 2017; Beckmann
et al., 2017; Ji et al., 2019). Additionally, we notice that at least one of the series (specifically, oil
prices) appears to be heteroscedastic, with volatility appearing to increase after the 1990s. Also,
there appears to be a change in the correlation between the series.

We consider (16) as a possible models for the data, where yt is the price of oil in month t and
xt, 2 is the strength of the dollar as measured by a trade weighted index, that is, d= 2, xt = (1, xt, 2)⊤
in (1). This is a simplified version of the model appearing in Arfaoui and Rejeb (2017).
We acknowledge here that this model is quite simplistic, and does not take into account
potential cointegration between the variables. Figures 6 and 7 suggest that the volatility is
time dependent and the model in (16) might be reasonable. We used Theorem 1 to test the
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HORVÁTH et al. 591

F I G U R E 6 The segmented crude oil
prices ( ) and the strength of the U.S.
dollar ( ) data where the vertical lines
show the estimated times of changes in the
coefficients. [Colour figure can be viewed at
wileyonlinelibrary.com]
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F I G U R E 7 Monthly oil prices (in
USD) are plotted against a trade-weighted
index measuring the strength of the U.S.
dollar. Months between January 1990 to
February 2000 are plotted as dots, while
months from March 2000 to January 2019
are plotted as crosses. Evident difference in
correlation and variability are apparent in
the two time periods 50

100

80 90 100 110
Dollar Index

O
il
Pr
ic
e
(U

SD
)

null hypothesis of no change in the change point regression model (16). The number of
observations is T = 354 and covers the period January 1990–June 2019 (monthly data) and
we chose a354 = b354 = 28.2. The Bartlett kernel was used to estimate the long-run covari-
ances. The null hypothesis is rejected at the 0.05 significance level. In order to estimate
the candidate change point, we used the location of the largest value of the test statistic,
that is,

t̂T = min
{

t ∈ [at,T − bT] ∶ ẐT =
(
(𝜷̂ t,1 − 𝜷̂ t,2)⊤Q̂−1

T,t(𝜷̂ t,1 − 𝜷̂ t,2)
)1∕2}

.

In our example t̂354 = 178 and corresponds to October 2004. Applying a binary segmentation
to detect/estimate further change points, at t̂354 = 178 we cut the sample into two subsets and test
each for further changes. We do not detect a change in the second subset (October 2004–June
2019). We do detect a change in the first subset (January 1990–September 2004) at t̂177 = 113,
which corresponds to May 1999. Due to small sample sizes we do not look for further changes in
the remaining subsets. Thus the original sample is segmented into three subsets and the vertical
lines in Figure 6 show the estimated times of changes. Our findings together with the estimates
for the 𝜷’s and the sample variances of the error terms computed from the residuals are provided
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592 HORVÁTH et al.

T A B L E 1 Segmentation of the data where a linear connection is assumed between crude oil prices and
the strength of the U.S. dollar

January 1990–April 1999 May 1999 – September 2004 October 2004 – June 2019
𝛾1 55.783 77.849 344.278

𝛾2 −0.398 −0.464 −2.962

𝜎2
𝜖 11.672 30.275 138.421

in Table 1. It is clear that not only the regression coefficients changed but the variances of the
errors are time varying.

To demonstrate that our method requires only a few observations before or after a change
point to detect it, and exhibits comparatively improved end-of-sample change point detection per-
formance, we consider applying change point tests to samples containing the estimated change
point t̂177 = 113, corresponding to May 1999, near the sample end point. We considered an ini-
tial sample of size 120 spanning the period from January 1990 to January, 2000, which contains
the point May 1999 near the end, and then calculated approximate p values for tests of H0 in the
aforementioned regression model based on the proposed test along with several benchmarks. This
process was then repeated after adding individual observations to the end point of the sample,
thereby producing a sequence of p values corresponding to the end point of the growing sam-
ple. The negative logarithm of these p values are plotted in Figure 8 as a function of the sample
end date. Crossing of the dotted line in Figure 8 for a particular test implies the rejection of the
null hypothesis of no change in the regression model at the significance level 5%. Here we see
that a change point is detected at the 5% level starting in the period January 1990–August, 2000
when ẐT is used to detect a change point. The CUSUM statistic of Ploberger and Krämer (1992)
is never able to reject the null hypothesis at this level. The statistics of Hidalgo and Seo (2013)
and Horváth et al. (2020) in this case appear to be exhibiting the same oversized effect that was
observed in the simulation study as a result of heteroscedasticity of the covariates; they reject
the null hypothesis initially, but as the number of observations start increasing they begin to
give contradictory and inconsistent results. Andrews’ statistic always rejects the null hypoth-
esis with miniscule p values and appears to be unreliable; we cannot even display it in the
figure.

We performed an additional simulation experiment to study the behavior of the statistics
studied in this paper in contexts tailored to what we observed in this oil price versus U.S. dollar
data. To simulate similar data using model (16), we let T = 130, xt, 2 be an ARMA(1, 1) sequence
with autocorrelation parameter 𝜙 = 0.2 and moving average parameter 𝜃 = 0.4, with the inno-
vations as i.i.d. normal random variables with mean zero and variance 1.323. We modelled the
errors 𝜖t being i.i.d. normal random variables N

(
0, 𝜏2

t
)
, with 𝜏2

t = 9 when t ≤ 108 and 𝜏2
t = 144

for t > 108, i.e. t1 = 108. We let the time of change in the simulations occur at t* = 114. Let 𝜷(1) =
(55.783,−0.398)⊤, and after the change be 𝜷(T) = 𝜷 (1) + 𝛿((77.849,−0.464)⊤ − (55.783,−0.398)⊤),
where 𝛿 ∈ [0, 2]. Note that 𝛿 = 0 corresponds to the null hypothesis of no change. When comput-
ing the LRV we used the Bartlett kernel and set the bandwidth parameter to 1.3T1/2. The trimming
parameters were set to aT = bT = 1.5T1/2 in the definition of ẐT and in the Rényi-type statistic
of Horváth et al. (2020). Figure 9 shows that all tests are over sized except ẐT . Due to the size
inflation those tests, not surprisingly, have higher power. Even if the sample size T is increased,
the size inflation will remain but ẐT stays correctly sized under the null hypothesis and gains
power.
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F I G U R E 8 −log10(p)-values for ẐT ( ), Horváth et al. (2020) ( ), Ploberger and Krämer (1992) ( ),
and Hidalgo and Seo (2013) ( ). The vertical direction can be interpreted as the number of zeros before the
first significant digit of the p value. Andrews’ statistic is not displayed as it always rejected the null hypothesis
with very small p values [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 9 Empirical power of the statistic
Ẑ130 ( ), Horváth et al. (2020) ( ), Ploberger
and Krämer (1992) ( ) Andrews (1993) ( ),
and Hidalgo and Seo (2013) ( ). The dotted line
corresponds to 𝛼 = 0.05, the significance level of the
test [Colour figure can be viewed at
wileyonlinelibrary.com]
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3.2 The COVID-19 panedemic’s effect on factor-based asset pricing
models

In the first quarter of 2020 a global coronavirus pandemic emerged, with massive economic impli-
cations strongly affecting people’s day-to-day lives. The result was massive economic disruption
due to the direct health effects of the virus and also the response to the virus, including quaran-
tines and social distancing policies closing businesses and keeping people in their homes. Setting
aside the public health consequences of the pandemic, financial markets witnessed turmoil
perhaps even exceeding the 2008 financial crisis. Markets declined in record amounts.

Due to social distancing measures, many adopted video conferencing technology to allow for
remote communication. Many chose to use the platform Zoom, provided by Zoom Video Com-
munications. Zoom debuted for public trading only about a year before the crisis Novet (2019)
under ticker symbol ZM, but Zoom’s popularity yielded excellent performance by ZM near the
beginning of the crisis in contrast to general market trends.
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F I G U R E 10 The return of SPY ( )
and ZM ( ) on an investment made on
April 21, 2019, as a percentage. [Colour figure
can be viewed at wileyonlinelibrary.com]

In this paper we consider the one-factor model:

Rt − RFt = 𝛼 + 𝛽(RMt − RFt) + 𝜖t, (17)

where Rt is the return of the security on day t, RMt is the market return, and RFt is the risk-free
rate of return. The parameters 𝛼 and 𝛽 correspond to the risk/return metrics commonly quoted in
the finance industry, with 𝛼 being excess return over the market and 𝛽 a measure of the security’s
sensitivity to market movements. Here the security is ZM, the market return is measured using
the return on the ETF SPY, which is intended to mirror the S & P 500, and the risk-free rate is
proxied using the return of three month U.S. Treasury bills. We downloaded the ZM and SPY data
from the NASDAQ website and the daily interest rate of the Treasury bills from the U.S. Treasury
website. The time frame extends from April 21, 2019, to March 26, 2020. We show the behavior
of SPY and ZM over this period in Figure 10.

We believe that the crisis prompted a change in the relationship between ZM and the market.
Furthermore, we believe that the two metrics 𝛼 and 𝛽 moved in different directions due to the
crisis, with 𝛼 increasing and 𝛽 dropping below zero. While we cannot necessarily a priori identify
a day and a single specific event that would prompt the change due to the rolling nature of the
crisis, a change should occur sometime in February or March as the virus spread to more countries
and concern surrounding it grew.

We applied the tests in this paper to this dataset as they were used in the simulations. The
trimming parameter for the new statistic is the square root function. When applied to the whole
dataset, the statistic takes its maximal value at February 21, 2020. The null hypothesis of no change
was rejected with a minuscule p value. Prior to this day, we estimate that 𝛼 = 0.001 and 𝛽 = 1.680;
after the change, these parameters shifted to 𝛼 = 0.010 and 𝛽 = −0.380. (Note that the prechange
sample size is 220 days and the postchange sample size is just 14 days. We cannot be confident on
the actual parameter values, just on the existence of a change.) Prior to this date our method did
not detect a change point at the 0.05 significance level, so we believe this is the only change point
in the dataset.

We compared our test’s behavior to that of other tests applied to this dataset. As our test is
intended to detect changes occurring near the ends of the sample well, we use the procedure
described in Horváth et al. (2020), where we expand the window of days over which the statistics
are computed at the right end point of the sample while plotting the −log10(p)-values of the tests,
noting when tests start rejecting the null hypothesis. We show these results in Figure 11.
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F I G U R E 11 −log10(p)-values of test statistics on an expanding window of data. The y-axis can be
interpreted as counting the number of zeros before the first significant digit of the p value. The statistics plotted
are ẐT ( ), Horváth et al. (2020) ( ), Ploberger and Krämer (1992) ( ) Andrews (1993) ( ), and
Hidalgo and Seo (2013) ( ) [Colour figure can be viewed at wileyonlinelibrary.com]

Three statistics clearly detect the change: the statistic introduced in this paper and the statis-
tics proposed in Andrews (1993) and Hidalgo and Seo (2013), all of which are essentially using
the regression coefficients rather than the residuals for detecting a change. The CUSUM and
residual-based Rényi-type statistic struggle and do not seem to detect a change when one clearly
occurred. While the Hidalgo–Seo and Andrews’ statistics are able to detect a change quite early,
it is unclear whether this is too early, as these tests have rather poor size under heteroscedasticity.
The proposed statistic appears to not only not reject the null hypothesis when it should not, but
also clearly rejects the null hypothesis, when it should.

4 PRELIMINARY RESULTS

We assume that H0 holds and the common regression parameter is denoted by 𝜷. It is easy to see
that

𝜷̂ t,1 = 𝜷 + (X⊤
t,1Xt,1)−1X⊤

t,1Et,1 and 𝜷̂ t,2 = 𝜷 + (X⊤
t,2Xt,2)−1X⊤

t,2Et,2,

where Et,1 = (𝜖1, 𝜖2, … , 𝜖t)⊤ and Et,2 = (𝜖t+1, 𝜖t+2, … , 𝜖T)⊤.

Lemma 1. If Assumptions 1, 2, and 3 are satisfied, we have that

max
t1≤t≤T
||(X⊤

t,1Xt,1)−1|| = OP(1∕T), (18)

max
1≤t≤tM

||(X⊤
t,2Xt,2)−1|| = OP(1∕T), (19)

and
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596 HORVÁTH et al.

max
1≤t≤t1
||X⊤

t,1Xt,1 − tA1||∕t1∕2+𝛿 = OP(1), (20)

max
tM≤t<T

||X⊤
t,2Xt,2 − (T − t)AM+1||∕(T − t)1∕2+𝛿 = OP(1) (21)

for any 𝛿 > 0, as T →∞.

Proof. Writing gi = (gi, 1, gi, 2, … , gi, d)⊤, we have that xt(r) = gi,r(𝜂t, 𝜂t−1, …) and xt(𝓁) =
gi,𝓁(𝜂t, 𝜂t−1, …), if ti− 1 < t ≤ ti. Let

x∗t (j,m) = gi,j(𝜂t, 𝜂t−1, … , 𝜂t−m, 𝜂
∗
t,t−m−1, 𝜂

∗
t,t−m−2, …), if ti−1 < t ≤ ti.

By the Cauchy–Schwartz inequality we have with 𝜅 = 𝜅1 − 4 that

E|xt(r)xt(𝓁) − x∗t (r,m)x∗t (𝓁,m)|2+𝜅∕2

≤ 22+𝜅∕2(E(|xt(r) − x∗t (r,m)||x∗t (𝓁,m)|)2+𝜅∕2 + E(|xt(𝓁) − x∗t (𝓁,m)||xt(r)|)2+𝜅∕2)
≤ 22+𝜅∕2((E|xt(r) − x∗t (r,m)|4+𝜅)1∕2(E|x∗t (𝓁,m)|4+𝜅)1∕2

+ (E|xt(𝓁) − x∗t (𝓁,m)|4+𝜅)1∕2(E|xt(r)|4+𝜅)1∕2)

so by Assumption 3 for all t and 1≤ r,𝓁 ≤ d

∞∑
m=1

E|xt(r)xt(𝓁) − x∗t (r,m)x∗t (𝓁,m)|2+𝜅∕2 < ∞. (22)

We write Ai = {ai(r,𝓁), 1≤ r,𝓁 ≤ d}. Using Aue et al. (2014) we can define Gaussian pro-
cesses Γi,r,𝓁(u) = ΓT,i,r,𝓁(u) and constants 𝜎2

i,r,𝓁 , 1≤ k,𝓁 ≤ d, 1≤ i≤M + 1 such that EΓi,r,𝓁(u) = 0,
Γi,r,𝓁(u)Γi,r,𝓁(v) = 𝜎2

i,r,𝓁 min(u, v) and

max
1≤u≤ti−ti−1

u−1∕2+𝜁
||||||

ti−1+u∑
s=ti−1+1

(xs(r)xs(𝓁) − ai(r,𝓁)) − Γi,r,𝓁(u)
|||||| = OP(1), (23)

with some 𝜁 > 0. Since Γi,r,𝓁(u)∕𝜎i,r,𝓁 is a Wiener process, by the scale transformation of the
Wiener process we have that

max
1≤i≤M+1

T−1∕2 max
1≤u≤ti−ti−1

|Γi,r,𝓁(u)| = OP(1).

Thus we conclude

X⊤
t,1Xt,1 = (t1 − t0)A1 + (t2 − t1)A2 + … + (t − ti−1)Ai + Rt, if ti−1 < t ≤ ti,

and

max
1≤t≤T
||Rt|| = OP(T1∕2).

Using now Assumptions 1 and 2 we obtain (18). By the law of the iterated logarithms we have that
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HORVÁTH et al. 597

max
1≤u<∞

|Γi,r,𝓁(u)|∕(u log log(u + 5))1∕2 = OP(1),

hence (20) follows from (23). The proof of lemma 5.4 in Aue et al. (2014) (cf. also their Theorem
B.1) is based on a blocking argument and therefore we can define Gaussian processes Γi,r,𝓁(u) =
ΓT,i,r,𝓁(u), 1≤ k,𝓁 ≤ d, 1≤ i≤M + 1 such that EΓi,r,𝓁(u) = 0, Γi,r,𝓁(u)Γi,r,𝓁(v) = 𝜎2

i,r,𝓁 min(u, v)
and

max
1≤u≤ti−ti−1

u−1∕2+𝜁
||||||

ti∑
s=ti−1+u

(xs(r)xs(𝓁) − ai(r,𝓁)) − Γi,r,𝓁(u)
|||||| = OP(1), (24)

with some 𝜁 > 0. Replacing (23) with (24), the results in (20) and (21) can be derived along the
lines of (18) and (19). ▪

Let 𝜖∗t,m = fi(𝜂t, 𝜂t−1, … , 𝜂t−m, 𝜂
∗
t,t−m−1, 𝜂

∗
t,t−m−2, …), e∗

t,m = x∗
t,m𝜖

∗
t,m and

x∗
t,m = (x∗t (1,m), x∗t (2,m), … , x∗t (d,m))⊤, ti−1 < t ≤ ti, 1 ≤ i ≤ M + 1,

where the xt(r, m)’s are defined in Lemma 1.

Lemma 2. If Assumptions 1,2,3 are satisfied, we have that

max
1≤t≤T

‖‖‖‖‖‖
t∑

s=1
es

‖‖‖‖‖‖ = OP(T1∕2). (25)

For each T there are two independent Gaussian processes 𝚪(1)
T and 𝚪(2)

T , E𝚪(1)
T (u) = 0,

E𝚪(1)
T (u)𝚪(1)(v) = D1 min(u, v), E𝚪(2)

T (u) = 0, E𝚪(2)
T (u)𝚪(2)(v) = DM+1 min(u, v), and

max
1≤t≤t1

t−1∕2+𝜁
‖‖‖‖‖‖

t∑
s=1

es − 𝚪(1)
T (t)
‖‖‖‖‖‖ = OP(1), (26)

max
1≤t≤kM+1

t−1∕2+𝜁
‖‖‖‖‖‖

T∑
s=T−t

es − 𝚪(2)
T (t)
‖‖‖‖‖‖ = OP(1). (27)

with some 𝜁 > 0.

Proof. Following the proof of Lemma 1 one can easily show that

∞∑
m=1

E||et − e∗
t,m||2+𝜅∕2 < ∞.

So using again Aue et al. (2014) we obtain immediately (25). The approximations in
(26) and (27) follow from lemma 5.4 in Aue et al. (2014). The independence of the
approximating Gaussian processes is a consequence of the blocking method used in their
proof. ▪
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598 HORVÁTH et al.

5 PROPERTIES OF Q̂t(1) AND Q̂t(2)

The asymptotic properties of Q̂T,t will be derived from Lemma 3. To state the result we need to
introduce further notation.

Assumption 8. Let

𝛼i = j(𝜂i, 𝜂i−1, 𝜂i−2, …), if tj−1 < i ≤ tj, 1 ≤ j ≤ M + 1,

and

𝛽i = j(𝜂i, 𝜂i−1, 𝜂i−2, …), if tj−1 < t ≤ tj, 1 ≤ j ≤ M + 1,

wherej andj are nonrandom functionals defined on∞ with values in R and is a measurable
space. Also, 𝜂i = 𝜂i(s, 𝜔) is jointly measurable in (s, 𝜔),−∞ < i < ∞. The sequences 𝛼i, 𝛽i,−∞ <

i < ∞ can be approximated with m-dependent sequences 𝛼i,m and 𝛽i,m in the sense that with some
𝜅1 > 4, 𝜅2 > 2 and c> 0 E|𝛼i|𝜅1 < ∞,E|𝛽i|𝜅1 < ∞,

(E|𝛼i − 𝛼i,m|𝜅1)1∕𝜅1 ≤ cm−𝜅2 , (28)

and

(E|𝛽i − 𝛽i,m|𝜅1)1∕𝜅1 ≤ cm−𝜅2 , (29)

where 𝛼i,m = j(𝜂i, 𝜂i−1, 𝜂i−2, … , 𝜂i−m+1, 𝜼
∗
i,m), 𝛽i,m = j(𝜂i, 𝜂i−1, 𝜂i−2, … , 𝜂i−m+1, 𝜼

∗
i,m), tj−1 < i ≤

tj, 1 ≤ j ≤ M + 1, 𝜼∗i,m =
(
𝜂∗i,m,i−m, 𝜂

∗
i,m,i−m−1, 𝜂

∗
i,m,i−m−2, …

)
and the 𝜂∗i,m,n’s are independent copies

of 𝜂0, independent of {𝜂i,−∞ < i < ∞}.

Let

Ut =
1
t

t∑
s=1

𝛼s𝛽s and Vt =
t−1∑
u=1

K
(

u
ht

)
1

t − u

t−u∑
s=1

𝛼s𝛽s+u,

and similarly

U∗
t = 1

T − t

T∑
s=t+1

𝛼s𝛽s and V∗
t =

T∑
u=t+1

K
(

u
hT−t

)
1

T − t − u

T−u∑
s=t+1

𝛼s𝛽s+u.

Lemma 3. If Assumptions 5, 6, 7, and 8 hold, then we have that

max
aT≤t≤T

||||||Ut −
1
t

t∑
s=1

E𝛼s𝛽s

|||||| = oP(1), (30)

max
1≤t≤T−bT

||||||U∗
t − 1

T − t

T∑
s=t+1

E𝛼s𝛽s

|||||| = oP(1), (31)

max
aT≤t≤T

|Vt − EVt| = oP(1), (32)
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HORVÁTH et al. 599

and

max
1≤t≤T−bT

|V∗
t − EV∗

t | = oP(1). (33)

Proof. We note

var

( t2∑
s=t1

𝛼s𝛽s

)
=

t2∑
s=t1

t2∑
z=t1

E{(𝛼s𝛽s − E𝛼s𝛽s)(𝛼z𝛽z − E𝛼z𝛽z)}.

Using Assumption 8 there is a constant C1 such that for all s

∞∑
z=1
|E{(𝛼s𝛽s − E𝛼s𝛽s)(𝛼z𝛽z − E𝛼z𝛽z)| ≤ C1,

and therefore

var

( t2∑
s=t1

𝛼s𝛽s

)
≤ C1(t2 − t1 + 1). (34)

Hence for all 𝛿 > 0 we have by Menshov’s inequality (Billingsley, 1968, p. 102) that

P
{

max
aT≤t≤T

|Ut − EUt)| ≥ 𝛿

}
≤ P
{

max
log(aT )≤i≤log T

max
ei≤t≤ei+1

|Ut − EUt)| ≥ 𝛿

}
≤

∞∑
i=log(aT )

P
{

max
ei≤t≤ei+1

|Ut − EUt| ≥ 𝛿

}
≤

∞∑
i=log(aT )

P

{
max

1≤t≤ei+1

||||||
t∑

s=1
𝛼s𝛽s − tEUt

|||||| ≥ 𝛿ei

}

≤

∞∑
i=log(aT )

1
𝛿2 e−2iE max

1≤t≤ei+1

||||||
t∑

s=1
𝛼s𝛽s − tEUt

||||||
2

≤ C2

∞∑
i=log(aT )

1
𝛿2 e−2ieii2, (35)

with some constant C2. Hence the proof of (30) is complete. Since the proof of (30) was based on
bounds for moments, and the proof of theorem B.1 in Aue et al. (2014) is based on a blocking
argument, we can obtain the result in (31) similarly, although now we are working backwards in
time. Let

Vt,1 =
t−1∑
u=1

K
(

u
ht

)
1
t

t−u∑
s=1

𝛼s𝛽s+u.

It is easy to see that by Assumption 5 there is a constant C3 such that
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600 HORVÁTH et al.

var(Vt − Vt,1)

=
t−1∑
u=1

t−1∑
v=1

K
(

u
ht

)
K
(

v
ht

)
u

t(t − u)
v

t(t − v)

t−u∑
s=1

t−v∑
z=1

E[(𝛼s𝛽s+u − E𝛼s𝛽s+u)(𝛼z𝛽z+v − E𝛼z𝛽z+v)]

≤ C3
h2

t

t4

cht∑
u=1

cht∑
v=1

||||||
t−u∑
s=1

t−v∑
z=1

E[(𝛼s𝛽s+u − E𝛼s𝛽s+u)(𝛼z𝛽z+v − E𝛼z𝛽z+v)]
|||||| .

Using again Assumption 8 there is a constant C4 such that for all t, u, and v

∞∑
z=1
|E[(𝛼s𝛽s+u − E𝛼s𝛽s+u)(𝛼z𝛽z+v − E𝛼z𝛽z+v)]| ≤ C4,

and therefore

var(Vt − Vt,1) ≤ C5
h4

t

t3 ,

with some constant C5. For all 𝛿 > 0, we have by the Chebyshev inequality and Assumption 6 that

P
{

max
aT≤t≤T

|Vt − EVt − (Vt,1 − EVt,1)| ≥ 𝛿

}
≤

∞∑
t=aT

P
{|Vt − EVt − (Vt,1 − EVt,1)| ≥ 𝛿

}
≤

C5

𝛿2

∞∑
t=aT

h4
t

t3

≤
C6

𝛿2

∞∑
t=aT

(t1∕2(log t)−(3+𝜁))4

t3 → 0, as T → ∞,

with some C6. Let

Vt,2 =
t−1∑
u=1

K
(

u
ht

)
1
t

t∑
s=1

𝛼s𝛽s+u.

Using the previous arguments one can show that with some constant C7

var(Vt,1 − Vt,2) ≤ C7
h2

t

t2 ,

and therefore by Assumption 6

max
at≤t≤T

|Vt,1 − EVt,1 − (Vt,2 − EVt,2)| P
→ 0, as t → ∞.

Next we write

Vt,2 − EVt,2 = 1
t

t∑
s=1

cht∑
u=1

K
(

u
ht

)
(𝛼s𝛽s+u − E𝛼s𝛽s+u).
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HORVÁTH et al. 601

Using again Assumptions 5 and 8 we conclude that for every constant h*

var

( t2∑
s=t1

ch∗∑
u=1

K
(

u
h∗

)
(𝛼s𝛽s+u − E𝛼s𝛽s+u)

)

=
t2∑

s=t1

t2∑
z=t1

ch∗∑
u=1

ch∗∑
v=1

K
(

u
h∗

)
K
(

v
h∗

)
E[(𝛼s𝛽s+u − E𝛼s𝛽s+u)(𝛼z𝛽z+v − E𝛼z𝛽z+v)]

≤ C8h2
∗(t2 − t1 + 1). (36)

Proceeding along the lines of (35) we get for all 𝛿 > 0

P
{

max
aT≤t≤T

|Vt,2 − EVt,2)| ≥ 𝛿

}
≤ P
{

max
log𝜌(aT )≤i≤log𝜌T

max
𝜌i≤t<𝜌i+1

|Vt,2 − EVt,2)| ≥ 𝛿

}
≤

∞∑
i=log𝜌(aT )

P
{

max
𝜌i≤t<𝜌i+1

|Vt,2 − EVt,2| ≥ 𝛿

}
≤

∞∑
i=log𝜌(aT )

P

{
max

𝜌i≤t<𝜌i+1

||||||
t∑

s=1

cht∑
u=1

K
(

u
ht

)
(𝛼s𝛽s+u − E𝛼s𝛽s+u)

|||||| ≥ 𝛿𝜌i

}
.

Using (36) and the assumption that ht is constant on [𝜌i−1, 𝜌i), we get

max
𝜌i≤t<𝜌i+1

||||||
t∑

s=1

cht∑
u=1

K
(

u
ht

)
(𝛼s𝛽s+u − E𝛼s𝛽s+u)

||||||
= max

𝜌i≤t<𝜌i+1

||||||
t∑

s=1

ch
𝜌i−1∑

u=1
K
(

u
h𝜌i−1

)
(𝛼s𝛽s+u − E𝛼s𝛽s+u)

||||||
≤ max

1≤t<𝜌i+1

||||||
t∑

s=1

ch
𝜌i−1∑

u=1
K
(

u
h𝜌i−1

)
(𝛼s𝛽s+u − E𝛼s𝛽s+u)

|||||| .
By (36) and Menshov’s inequality (Billingsley, 1968, p. 102) we conclude that with some

constant C9

E
⎛⎜⎜⎝ max

1≤t<𝜌i+1

||||||
t∑

s=1

ch
𝜌i−1∑

u=1
K
(

u
h𝜌i−1

)
(𝛼s𝛽s+u − E𝛼s𝛽s+u)

||||||
⎞⎟⎟⎠

2

≤ C9h2
𝜌i−1𝜌

ii2,

and therefore by Assumption 6
∞∑

i=log𝜌(aT )
P

{
max

𝜌i≤t<𝜌i+1

||||||
t∑

s=1

cht∑
u=1

K
(

u
ht

)
(𝛼s𝛽s+u − E𝛼s𝛽s+u)

|||||| ≥ 𝛿𝜌i

}

≤

∞∑
i=log𝜌(aT )

1
𝛿2 𝜌

−2iC8h2
𝜌i−1𝜌

ii2
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602 HORVÁTH et al.

= C8

𝛿2

∞∑
i=log𝜌(aT )

h2
𝜌i−1𝜌

−ii2

≤
C10

𝛿2

∞∑
i=log𝜌(aT )

𝜌i(log 𝜌i)−(3+𝜁)𝜌−ii2 → 0, as T → ∞.

Hence the proof of (32) is complete. Similar arguments give (33). ▪

We recall that et = xt𝜖t and define

Qt,1 = 1
t

t∑
s=1

ese⊤
s +

t−1∑
u=1

K
(

u
ht

)
1

t − u

( t−u∑
s=1

ese⊤
s+u +

t−u∑
s=1

es+ue⊤
s

)
,

and

Qt,2 = 1
T − t

T∑
s=t+1

ese⊤
s +

T−t−1∑
u=1

K
(

u
hT−t

)
1

T − t + u

( T−u∑
s=t+1

ese⊤
s+u +

T−u∑
s=t+1

es+ue⊤
s

)
.

Lemma 4. If Assumptions 1, 2, 3, 4, 5, and 6 are satisfied we have that

max
d≤t≤T
||Q̂t(1) − Qt,1|| = oP(1), (37)

and

max
1≤t≤T−d

||Q̂t(2) − Qt,2|| = oP(1). (38)

Proof. It is easy to see that

𝜖t = x⊤
t (𝜷0 − 𝜷̂T,1) + 𝜖t, 1 ≤ t ≤ T,

where 𝜷0 denotes the common value of the regression parameter under H0 and

êt = xtx⊤
t (𝜷0 − 𝜷̂T,1) + et, 1 ≤ t ≤ T.

It follows from Lemmas 1 and 2 that

||𝜷0 − 𝜷̂T,1|| = OP(T−1∕2),

and therefore ‖‖‖‖‖‖
t∑

s=1
xsx⊤

s (𝜷0 − 𝜷̂T,1)(𝜷0 − 𝜷̂T,1)⊤x⊤
s xs

‖‖‖‖‖‖ = OP

( 1
T

) t∑
s=1
||xs||4.

Assumption 3 yields (cf. lemma 5.4 in Aue et al., 2014) that

max
1≤t≤T

1
t

t∑
s=1
||xs||4 = OP(1),
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HORVÁTH et al. 603

and therefore

max
1≤t≤T

1
t

‖‖‖‖‖‖
t∑

s=1
xsx⊤

s (𝜷0 − 𝜷̂T,1)(𝜷0 − 𝜷̂T,1)⊤x⊤
s xs

‖‖‖‖‖‖ = OP

( 1
T

)
.

Similarly, Assumption 3 yields

max
1≤t≤T

1
t

‖‖‖‖‖‖
t∑

s=1
ese⊤

s

‖‖‖‖‖‖ = OP(1).

Hence

max
1≤t≤T

1
t

‖‖‖‖‖‖
t∑

s=1
xsx⊤

s (𝜷0 − 𝜷̂T,1)e⊤
s

‖‖‖‖‖‖
≤ max

1≤t≤1

1
t

‖‖‖‖‖‖
t∑

s=1
xsx⊤

s (𝜷0 − 𝜷̂T,1)(xsx⊤
s (𝜷0 − 𝜷̂T,1))⊤

‖‖‖‖‖‖
‖‖‖‖‖‖

t∑
s=1

ese⊤
s

‖‖‖‖‖‖
≤ max

1≤t≤T

‖‖‖‖‖‖1
t

t∑
s=1

xsx⊤
s (𝜷0 − 𝜷̂T,1)(xsx⊤

s (𝜷0 − 𝜷̂T,1))⊤
‖‖‖‖‖‖max

1≤t≤T

‖‖‖‖‖‖1
t

t∑
s=1

ese⊤
s

‖‖‖‖‖‖
= OP(T−1∕2).

The result in (37) is now proven by Assumptions 5 and 6. Similar arguments give (38). ▪

Lemma 5. If Assumptions 1, 2, 3, 4, 5, 6, and 7 are satisfied we have that

max
t1≤t≤T
||Q̂t(1)−1|| = OP(1)

max
1≤t≤tM

||Q̂t(2)−1|| = OP(1).

Proof. According to Lemma 4 we need to prove only that

max
t1≤t≤T
||Q−1

t,1 || = OP(1), (39)

and
max

1≤t≤tM
||Q−1

t,2 || = OP(1). (40)

We prove only (39) since similar arguments give (40). Using Lemma 3 for each coordinate of the
matrix Qt, 1 we get that

max
aT≤t≤T

||Qt,1 − EQt,1|| = oP(1).

Let

Ut,1 =
i−1∑
j=1

(𝜃j − 𝜃j−1)Dj +
t − ti−1

T
Di, ti−1 < t ≤ ti, 1 ≤ i ≤ M + 1.
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604 HORVÁTH et al.

(∑
∅ = 0
)
. Assumptions 5 and 6 yield that

max
aT≤t≤T

||EQt,1 − Ut,1||→ 0.

If v ∈ Rd is an eigenvector of D1, then v⊤Ut,1v ≥ 𝜃1v⊤D1v for all t1 ≤ t ≤T. This completes the
proof of (39). ▪

Lemma 6. If Assumptions 1, 2, 3, 4, 5, 6, and 7 are satisfied, then we have that

max
aT≤t≤t1

||Q̂t(1)−1 − D−1
1 || = oP(1),

and

max
tM≤t≤T−bT

||Q̂t(2)−1 − D−1
M+1|| = oP(1).

Proof. Following the proof of Lemma 5 one can verify that

max
aT≤t≤t1

||Q̂t(1) − D1|| = oP(1),

and

max
tM≤t≤T−bT

||Q̂t(2) − DM+1|| = oP(1),

which imply Lemma 6. ▪

6 PROOFS OF THEOREMS 1, 2, AND REMARK 1

Proof of Theorem 1. We write

Ẑ2
T = max

1≤i≤5
ẐT,i,

where

ẐT,1 = max
aT≤t≤cT

(𝜷̂ t,1 − 𝜷̂ t,2)⊤Q̂−1
T,t(𝜷̂ t,1 − 𝜷̂ t,2),

ẐT,2 = max
cT≤t≤t1

(𝜷̂ t,1 − 𝜷̂ t,2)⊤Q̂−1
T,t(𝜷̂ t,1 − 𝜷̂ t,2),

ẐT,3 = max
t1≤t≤tM

(𝜷̂ t,1 − 𝜷̂ t,2)⊤Q̂−1
T,t(𝜷̂ t,1 − 𝜷̂ t,2),

ẐT,4 = max
tM≤t≤T−dT

(𝜷̂ t,1 − 𝜷̂ t,2)⊤Q̂−1
T,t(𝜷̂ t,1 − 𝜷̂ t,2),

ẐT,5 = max
T−dT≤t≤T−bT

(𝜷̂ t,1 − 𝜷̂ t,2)⊤Q̂−1
T,t(𝜷̂ t,1 − 𝜷̂ t,2),

cT∕aT → ∞, cT∕T → 0; and dT∕bT → ∞, dT∕T → 0.
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HORVÁTH et al. 605

Using Lemmas 1 and 5 we conclude

ẐT,3 = OP(1) max
t1≤t≤tM

||𝜷̂ t,1 − 𝜷̂ t,2||2.
Lemma 2 yields that

max
t1≤t≤tM

‖‖‖‖‖‖1
t

t∑
s=1

es

‖‖‖‖‖‖ = OP(T−1∕2) and max
t1≤t≤tM

‖‖‖‖‖‖ 1
T − t

T∑
s=t+1

es

‖‖‖‖‖‖ = OP(T−1∕2),

so by Lemma 1 we have

max
t1≤t≤tM

||𝜷̂ t,1 − 𝜷0|| = OP(T−1∕2),

and

max
t1≤t≤tM

||𝜷̂ t,2 − 𝜷0|| = OP(T−1∕2),

where 𝜷0 denotes the common value of the regression coefficient under H0. Hence

rTẐT,3 = oP(rT∕T) = oP(1), (41)

on account of Assumption 7. We note that by (20)

max
cT≤t≤t1

||𝜷̂ t,1 − 𝜷0|| = OP(1) max
cT≤t≤t1

‖‖‖‖‖‖1
t

t∑
s=1

es

‖‖‖‖‖‖ ,
and by (26) we obtain that

max
cT≤t≤t1

‖‖‖‖‖‖1
t

t∑
s−1

es

‖‖‖‖‖‖ = OP

(
1∕c1∕2

T

)
,

resulting in

max
cT≤t≤t1

||𝜷̂ t,1 − 𝜷0|| = OP

(
1∕c1∕2

T

)
. (42)

Similarly,

max
cT≤t≤t1

||𝜷̂ t,2 − 𝜷0|| = OP

(
1∕c1∕2

T

)
. (43)

Thus the first part of Lemma 6 yields

rTẐT,2 = OP(rT∕cT) = oP(1). (44)

Similar arguments give that
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rTẐT,4 = oP(1). (45)

Next we show that ||||ẐT,1 − max
aT≤u≤cT

1
u2 (𝚪

(1)(u))⊤D−1
1 𝚪(1)(u)

|||| = oP(1∕aT). (46)

According to Assumption 7 and Lemma 2 we need to show only that

||||| max
aT≤t≤cT

(𝜷̂ t,1 − 𝜷0)⊤
X⊤

t,1Xt,1

t
Q̂−1

t,1
X⊤

t,1Xt,1

t
(𝜷̂ t,1 − 𝜷0) − max

aT≤u≤cT

1
u2 (𝚪

(1)(u))⊤D−1
1 𝚪(1)(u)

||||| .
= oP(1∕aT).

It follows from the definition of 𝜷̂ t,1 that

(𝜷̂ t,1 − 𝜷0)⊤
X⊤

t,1Xt,1

t
Q̂−1

t,1
X⊤

t,1Xt,1

t
(𝜷̂ t,1 − 𝜷0) =

(
1
t

t∑
s=1

es

)⊤

Q̂−1
t,1

(
1
t

t∑
s=1

es

)
,

and Lemma 6 yields

max
aT≤t≤cT

(
1
t

t∑
s=1

es

)⊤

Q̂−1
t,1

(
1
t

t∑
s=1

es

)

= max
aT≤t≤cT

(
1
t

t∑
s=1

es

)⊤

D−1
1

(
1
t

t∑
s=1

es

)
+ oP(1) max

aT≤t≤cT

‖‖‖‖‖‖1
t

t∑
s=1

es

‖‖‖‖‖‖
2

.

Using Lemma 2 we conclude that

aT max
aT≤t≤cT

‖‖‖‖‖‖1
t

t∑
s=1

es

‖‖‖‖‖‖
2

= aT max
aT≤u≤cT

‖‖‖‖ 1
u
𝚪(1)(u)

‖‖‖‖2
(1 + oP(1)).

Using the calculations presented in the proof of lemma B.2 on p. 20 of the supplementary materials
to Horvath et al. (2020), we obtain that

aT max
aT≤u≤cT

‖‖‖‖ 1
u
𝚪(1)(u)

‖‖‖‖2
= OP(1),

and therefore

max
aT≤t≤cT

(𝜷̂ t,1 − 𝜷0)⊤
X⊤

t,1Xt,1

t
Q̂−1

t,1
X⊤

t,1Xt,1

t
(𝜷̂ t,1 − 𝜷0)

= max
aT≤t≤cT

(
1
t

t∑
s=1

es

)⊤

D−1
1

(
1
t

t∑
s=1

es

)
+ oP(1∕aT).

Applying again Lemma 2 we get that
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aT max
aT≤t≤cT

(
1
t

t∑
s=1

es

)⊤

D−1
1

(
1
t

t∑
s=1

es

)
= aT max

aT≤u≤cT

( 1
u
𝚪(1)

T (u)
)⊤

D−1
1

( 1
u
𝚪(1)

T (u)
)
+ oP(1),

completing the proof of (46). Similar arguments give

||||ẐT,5 − max
bT≤u≤dT

( 1
u
𝚪(2)(u)

)⊤
D−1

M+1

( 1
u
𝚪(2)(u)

)|||| = oP(1∕bT). (47)

Observing that(
aT max

aT≤u≤cT

( 1
u
𝚪(1)

T (u)
)⊤

D−1
1

( 1
u
𝚪(1)

T (u)
)
, max

bT≤u≤dT

( 1
u
𝚪(2)(u)

)⊤
D−1

M+1

( 1
u
𝚪(2)(u)

))

=
(

aT max
aT≤u≤cT

‖‖‖‖ 1
u

W(1)(u)
‖‖‖‖2
, bT max

bT≤u≤dT

‖‖‖‖ 1
u

W(2)(u)
‖‖‖‖2)

,

where {W(1)(u), u≥ 0} and {W(2)(u), u≥ 0} are independent Wiener processes in Rd, the result now
follows as in lemma B.2 of the supplementary materials to Horvath et al. (2020). ▪

Proof. The proof goes along the lines of Theorem 1 but the arguments are simpler since QT,t only
contains the first term of Q̂T,t. Hence the details are omitted. ▪

Proof of Theorem 2. First we assume that aT ≤ t*. We note that

𝜷̂ t∗,1 = 𝜷 (1) + (X⊤
t∗,1Xt∗,1)−1X⊤

t∗,1Et∗,1 and 𝜷̂ t∗,2 = 𝜷(T) + (X⊤
t∗,2Xt∗,2)−1X⊤

t∗,2Et∗,2.

According to the proof of Theorem 1

r1∕2
T ||(X⊤

t∗,1Xt∗,1)−1X⊤
t∗,1Et∗,1|| = OP(1),

and
r1∕2

T ||(X⊤
t∗,2Xt∗,2)−1X⊤

t∗,2Et∗,2|| = OP(1).

Next we note that by the arguments used in Section 5

||Q̂−1
T,t∗ || = OP(1).

Hence the first part of Theorem 2 is proven.
Next we assume that t* < aT . By the definition of 𝜷̂aT ,1 and

𝜷̂aT ,1 = (X⊤
aT ,1

XaT ,1)
−1

( t∗∑
s=1

xsx⊤
s 𝜷

(1) +
aT∑

s=t∗+1
xsx⊤

s 𝜷
(T)

)
+ (X⊤

aT ,1
XaT ,1)

−1X⊤
aT ,1

EaT ,1,

and
𝜷̂aT ,2 = 𝜷 (T) + (X⊤

aT ,2
XaT ,2)

−1X⊤
aT ,2

EaT ,2.
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According to Theorem 1

r1∕2
T ||(X⊤

aT ,1
XaT ,1)

−1X⊤
aT ,1

EaT ,1|| = OP(1),

and

r1∕2
T ||(X⊤

aT ,2
XaT ,2)

−1X⊤
aT ,2

EaT ,2|| = OP(1).

Using the results of Section 4 we conclude that

‖‖‖‖‖‖(X⊤
aT ,1

XaT ,1)
−1

( t∗∑
s=1

xsx⊤
s 𝜷1 +

aT∑
s=t∗+1

xsx⊤
s 𝜷2

)
−
(

t∗
aT

𝜷(1) + aT − t∗

aT
𝜷(T)
)‖‖‖‖‖‖

= oP

(
t∗
aT

)
+ oP

(
aT − t∗

aT

)
= oP

(
t∗
aT

)
,

on account of (10). Since by the results in Section 4 we have that

||Q̂−1
T,aT
|| = OP(1),

the result is proven when t* < aT . ▪
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