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Abstract

Quantifying the serial correlation across time lags is a crucial step in the identification and diagnosis

of a time series model. Simple and partial autocorrelation functions of the time series are the

most widely used tools for this purpose with scalar time series. Nevertheless, there is a lack of

an established method for the identification of functional time series (FTS) models. Functional

versions of the autocorrelation and partial autocorrelation functions for FTS based on the L2

norm of the lagged autocovariance operators of the series are proposed. Diagnostic plots of these

functions coupled with prediction bounds derived from large sample results for the autocorrelation

and partial autocorrelation functions estimated from a strong functional white noise series are

proposed as fast and efficient tools for selecting the order and assessing the adequacy of functional

SARMAX models. These methods are studied in numerical simulations with both white noise and

serially correlated functional processes, which show that the structure of the processes can be well

identified using the proposed techniques. The applicability of the method is illustrated with two

real-world datasets: Eurodollar futures contracts and electricity price profiles.
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1. Introduction

Due to recent technological advances in science and industry, the collection and analysis of

high-dimensional data has become an important topic in the field of applied statistics. Many

of these observations arise from continuous processes observed, for example, over time, space or

frequency domains. These observations can be naturally expressed as functions, and thus the name

functional data is commonly given to such observations. The need for statistical methodologies to

explore and analyze the structure of these high-dimensional data has led to the development of

the Functional Data Analysis (FDA) framework. The monographs Ramsay and Silverman (2005),

Ramsay et al. (2009) and Kokoszka and Reimherr (2017) provide excellent introductions to the

key topics of functional data and its applications.

If these functional data are collected sequentially over time, it is natural to expect a time

dependence between functional observations. This motivates the consideration of functional time

series (FTS); see e.g. Bosq (2000); Mas and Pumo (2010). Due to its wide range of real world

applications, there has been growing research interest in the analysis and identification of such func-

tional processes, as presented in Horváth and Kokoszka (2012) where several tests are introduced

to measure the serial dependence structure and other properties of FTS.

To present the main ideas, let {Yt(u) ; t = 1, . . . , T, u ∈ [0, 1]} denote an observed stretch of

length T of a functional time series. Here we assume that each observation Yt(u) is a stochastic

process indexed by [0, 1] whose sample paths are in L2([0, 1]), which is the space of square integrable

functions defined on the unit interval. Since typically functional data are only observed at some

discrete collection of points, we are assuming that the elements of the FTS under consideration

have been obtained after a pre-processing step, such as linear interpolation or basis smoothing; see

e.g. Ramsay and Silverman (2005). We could consider instead FTS taking values in more general

function spaces, but proceed with L2([0, 1]) in this presentation given the data applications we

present below.

As with the majority of scalar and vector-valued time series models, most FTS models can be

expressed as

Yt = f(Yt−1, . . . , Yt−p, εt−1, . . . , εt−q) + εt, (1)

where {εt ; t ∈ Z} denotes a sequence of independent and identically distributed random functional

processes with zero mean, and f is an operator of the p past values of the time series and the q
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past values of the innovation processes. Functional models such as the functional autoregressive

model (Bosq, 2000; Aue et al., 2015; Mart́ınez-Hernández et al., 2019), the functional ARHX model

(Damon and Guillas, 2002, 2005), the functional moving average model (Turbillon et al., 2007),

the functional ARMA model (Klepsch et al., 2017),the SARMAHX model (Portela et al., 2018;

Mestre et al., 2020) and the functional ARCH model (Hörmann et al., 2013) all follow the general

equation (1).

Identifying relevant features of the time series such as serial correlation, trend or seasonality is of

utmost importance when identifying a time series model. Several methods have been proposed for

revealing these attributes. Graphical tools can be found in Hyndman and Shang (2010), where the

rainbow plot was proposed for visualizing large time indexed functional data sets and performing

outlier detection. Curves that exhibit an odd shape or magnitude can be identified with this

method. In addition, it provides some information about the trend of the series. Other tools

can be found in Canale and Vantini (2016), where the authors use visual representations of the

autocorrelation functions of the curves to obtain insights about the dependence across functions

observed at different times.

For example, Figures 1 and 2 illustrate these tools for a FTS composed of daily electricity price

profiles from the Spanish electricity market in 2014 (Portela et al., 2018). In particular, Figure 1

shows the rainbow plot for the price profiles time series. Increases or changes in trend of the daily

price profiles are clearly visible in the summer months, as well as in January (red curves). It is

however difficult to decipher from this plot the nature of the serial dependence between the curves.

Figure 2 illustrates the autocovariance surfaces, or kernels for different time lags; see equation (5)

below for a formal definition. It can be seen by analyzing these carefully that the electricity prices

for hours 12 to 18 are correlated with past curves, and that hours 19 to 22 are less influenced by

the former price curves. These graphical tools provide some insights on the trend and outliers of

the FTS, but in terms of describing the nature of serial dependence between the curves are lacking

in many respects, especcially in that they are difficult to interpret at a glance.

Moreover, once a model of the form (1) has been fitted to a given FTS, the plausibility of

the main assumptions made by the model should be investigated. In particular, the residuals of

the model should behave as independent, identically distributed curves. Several tests have been

proposed in order to check the validity of the serial independence assumption for functional data.
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Figure 1: Left: Rainbow plot of the FTS of daily electricity price profiles from the Spanish electricity market for the

year 2014. Color illustrates time, with the oldest curves in red and the most recent data in violet. Right: Rainbow

plot with time in a third axis. (The reader is referred to the web version of this article for interpretation of the

references to color in this figure).

A Functional Principal Component (FPCA)-based Portmanteau test is proposed in Gabrys and

Kokoszka (2007). In Gabrys et al. (2010), the authors project the residuals of the functional

linear model on an “optimal” finite dimensional subspace to test for model goodness-of-fit. The

white noise test proposed in Horváth et al. (2013) is based on the sum of the L2 norms of the

autocovariance operators of the FTS, rather than on summaries of the FPCA projections. Kokoszka

et al. (2017) also develop portmanteau tests and inferential procedures for the autocovariance

operators of a FTS that are valid in the presence of conditional heteroscedasticity. In addition,

frequency-domain tests have been proposed recently in Zhang (2016), Bagchi et al. (2018) and

Characiejus and Rice (2020), where the authors use the distance between the spectral density

operator of the series and its best L2−approximation by a spectral density operator corresponding

to a white noise process as a measure of the deviation of the time series from a white noise process.

The host of aforementioned tests would all benefit from the subsequent use of methods that

provide insightful information about the underlying dependence structure of the FTS. In the event
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Figure 2: First 5 lagged autocovariance functions for the FTS of daily electricity price profiles (top) and a three-

dimensional representation of the surfaces (bottom). These functions provide detailed, though perhaps difficult to

interpret, information on covariance structure between curves Yt and Yt−h.

that these tests suggest that the model errors do not plausibly form a white noise, one often hopes to

identify specific lags at which substantial correlation exists in order to fit an improved model to the

data. Classical identification methods for scalar time series, such as the Box-Jenkins methodology

(Box et al., 2008), use the sample autocorrelation and partial autocorrelation functions of the time

series in order to simultaneously test the white noise assumption and to identify the underlying

correlation structure of the time series. Identifying the rate of decay of the autocorrelation and

specific lags with strong autocorrelation can be used to select the appropriate autoregressive and

moving average orders in an ARIMA time series model.

While these kinds of identification methods have been well addressed in the literature of scalar

time series, the same cannot be said for FTS. An analog of the autocorrelation function for FTS was

proposed in Kokoszka et al. (2017) for the purpose of quantifying conditional heteroscedasticity

in functional data, but its use in FTS model selection has not been explored. Further, to our

knowledge, the notion of partial autocorrelation with functional data has not been explored to

date, nor how such summary information could be used in FTS model building.

This paper proposes methods based on the L2 norms of lagged covariance operators in order to
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quantify the autocorrelation structure of FTS. A functional version of the autocorrelation function

is studied in the context of time series model identification. In addition, a generalization of the

partial autocorrelation function is proposed, which allows the practitioner to identify functional

autoregressive and moving average processes of higher order. We show how these methods can be

used in order to identify autocorrelation and seasonality in FTS, which are useful in model selection

within the functional SARMAHX family of models introduced in Portela et al. (2018) and Mestre

et al. (2020). These models generalize the aforementioned functional linear models, allowing the

inclusion of both autoregresive and moving average effects as well as incorporating the seasonal

behavior present in the data. As such, identifying the serial correlation structure of the data is of

utmost importance to fitting the SARMAHX model.

The paper is organized as follows: Section 2 presents the main contributions and the practical

implementation of the proposed identification procedure. Section 3 contains the results of a Monte-

Carlo simulation study of the proposed methodology. Demonstrations and applications of these

model identification procedures are presented in 4, where two real-world datasets are explored.

Section 5 gives some concluding remarks, summarizes the results of the methodology developed

in the previous sections, and points to some directions for future research. Appendix A contains

details of the main technical results.

2. Functional Autocorrelation Measures

We begin by introducing some notation that will be used throughout this paper and state

the main assumptions of the proposed methodology. Throughout this paper, L2([0, 1]d) denotes

the Hilbert space of real valued square integrable functions defined on [0, 1]d with the usual inner

product 〈 . , . 〉 and the norm ‖.‖ it generates. The dimension is made clear based on the domain of

the input function.

2.1. Autocorrelation function for FTS

Here an FTS {Yt ; t = 1, . . . , T} is assumed to be a realization of length T of a given functional

stochastic process {Yt ; t ∈ Z}, where each random variable Yt is a square integrable function

{Yt(v) ; v ∈ [0, 1]}. For the rest of the section, it will be assumed that all the FTS are stationary.

The main interest of this work is to develop a statistical tool that can be used to identify the

underlying serial dependence structure of a given time series. In order to achieve this objective,
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the first step is to test the white noise assumption on a given sequence of functional observations.

The definition of functional white noise is given below:

Definition 1. The functional stochastic process {εt(v) ; t ∈ Z; v ∈ [0, 1]} is a (strong) functional

white noise process if the following assumptions are satisfied:

• A1: The functional random variables εt are independent and identically distributed.

• A2: E [εi(v)] = 0 for all i = 1, . . . , T and v ∈ [0, 1].

The first assumption implies that such a white noise series does not exhibit any degree of serial

dependence, differentiating such a process from others that exhibit serial dependence, such as the

functional linear process (Bosq, 2000).

Throughout this paper, it will be assumed that all the functional random variables have fi-

nite fourth order moments, which is to say that E‖Yt‖4 < ∞. This implies that the (lag zero)

autocovariance kernel C0(u, v), defined as

C0(u, v) = E [(Y1(u)− EY1(u)) (Y1(v)− EY1(v))] , (2)

is square integrable. Hence, there are real positive eigenvalues λ1 ≥ λ2 ≥ . . . and orthonormal

eigenfunctions φ1, φ2, . . . satisfying

λiφi(u) =

∫
C0(u, s)φi(s)ds, i = 1, 2, . . . (3)

The dependence structure of a given stationary FTS can be analyzed via its lagged autocovari-

ance kernels, defined as

Ch(u, v) = cov (Y1(u), Y1+h(v)) , (4)

where h = 1, . . . , T − 1 is a given lag parameter. Indeed fourth order moments are more than

what is required here to make the above quantities well defined, two would suffice, although we

require fourth order moments in order to establish large sample Gaussian approximations for

autocovariance operator estimates presented below.

Given Y1(v), . . . , YT (v) a realization of the FTS, the autocovariance kernel Ch(u, v) can be

estimated via the empirical lagged autocovariance kernels:

Ĉh(u, v) =
1

T

T−h∑
i=1

(Yi(u)− Y T (u))(Yi+h(v)− Y T (v)), (5)
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where

Y T (u) =
1

T

T∑
i=1

Yi(t) (6)

denotes the sample mean function. Using right integration as in (3), these kernels may be used

to define autocovariance and empirical autocovariance operators, and so we use the terms kernels

and operators interchangeably in this setting.

Due to the fact that a functional white noise process exhibits no serial correlation between its

terms, the norm of its lagged autocovariance operators should be close to zero for each positive lag

h. Horváth et al. (2013) for example thus propose to use the sums of the L2−norms of the lagged

autocovariance operators up to a user specified maximum lag H in order to obtain a white noise

test for functional data.

However, such a test does not provide the practitioner with specific information about the lagged

dependence structure of the FTS. This information may be summarized simply by considering the

magnitudes and plots of the empirical covariance operators as a function of the lag. Evaluating

whether the magnitudes ‖Ĉh‖ are consistent with the series following a white noise process, and

further identifying specific lags where strong correlation is present, is facilitated by comparing ‖Ĉh‖

to an estimate of its distribution assuming the data are indeed a white noise. The following result

describes the large sample behaviour of ‖Ĉh‖ under assuming the data follow a white noise; see

Kokoszka et al. (2017) for a proof.

Theorem 1. If the FTS {Yt : t ∈ Z} is independent and identically distributed with E‖Yt‖4 <∞,

then

Q̂T,h =

∫∫
TĈ2

h(u, v)dudv
D−→ Q =

∞∑
j=1

∞∑
l=1

λjλlχ
2
j,l(1), h = 1, 2, . . . (7)

as T →∞. The λ′is are the eigenvalues of the covariance operator of Yt and {χ2
j,l(1) , j, l ∈ N} are

independent random variables following a chi-squared distribution χ2(1).

Following Kokoszka et al. (2017), the functional autocorrelation coefficient at lag h can be

defined as

ρh =
‖Ch‖∫

C0(u, u)du
, ‖Ch‖2 =

∫∫
C2
h(u, v)dudv. (8)

It follows from the Cauchy-Schwarz inequality applied pointwise to Ch(u, v) = cov (Y1(u), Y1+h(v))

that 0 ≤ ρh ≤ 1, and gives a scale free measure of the serial correlation in the FTS at lag h. One
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could also define ρh as ‖Ch‖/‖C0‖, which would also give a scale free measure of the autocorrelation

structure of a given FTS. Both definitions are equally useful in identifying the lagged dependence

structure encoded by ‖Ch‖. Henceforth, in this paper the definition in (8) is used, as this definition

is more easily adapted to a functional version of a partial autocorrelation function, which we pursue

below.

ρh admits the plug in estimate

ρ̂h =
‖Ĉh‖∫

Ĉ0(u, u)du
=

√
QT,h√

T
∫
Ĉ0(u, u)du

. (9)

Based on Theorem 1, a procedure to produce a prediction bound for ρ̂h under the assumption that

the data are a white noise can be summarized as:

• Step 1: Estimate λ̂1, . . . , λ̂d from

Ĉ0(u, v) =
1

T

T∑
i=1

(Yi(u)− Y T (u))(Yi(v)− Y T (v)) (10)

for a fixed value of d selected by the practitioner, so that

λ̂iφ̂i(u) =

∫
Ĉ0(u, s)φ̂i(s)ds . (11)

• Step 2: Under the assumption of functional white noise, Theorem 1 provides an approximate

distribution for the sequence {
∫∫
TĈ2

h(t, s)dtds ; h = 1, . . . ,H}. This distribution can be

estimated as

Q̂(d) =

d∑
j=1

d∑
l=1

λ̂j λ̂lχ
2
j,l(1), (12)

where d is a large number (below we select d as the number of eigenvalues λ̂i of Ĉ0(u, v)

such that λ̂i/λ̂1 > 0.0001. This threshold was observed to give good results in the different

empirical tests performed). This distribution is a linear combination of independent chi-

squared random variables, and in practice it must be estimated. The method proposed in

Imhof (1961) provides a suitable method to do so, providing good approximations in the tails

of the distribution.

• Step 3: For a given confidence level α ∈ (0, 1), and under the white noise assumption, an

upper prediction bound for the sequence {ρ̂h ; h = 1, . . . ,H} can be set at√
Q̂(d)(1−α)

√
T
∫
Ĉ0(u, u)du

, (13)

9



where Q̂(d)(1−α) denotes the (1− α) critical value of the distribution of Q̂(d).

For small α, significant deviations of {ρ̂h ; h = 1, . . . ,H} beyond the boundary (13) can be used

to identify structural dependence in the FTS, and also for rejecting the white noise hypothesis at

a given lag.

2.2. Partial autocorrelation function for FTS

In classical time series analysis, the autocorrelation function is often accompanied by the par-

tial autocorrelation function, which measures the correlation between two lags of the time series

after removing the influence of the intermediate terms. By plotting these two functions together,

autoregressive and moving average processes of any order can be identified by comparing them to

the theoretical behavior of these plots when the order of the process is known. This section is

devoted to developing the notion of a partial autocorrelation function for functional data, which

can be used in conjunction with the proposed FACF to identify the correlation structure of a given

FTS. There are a number of challenges in extending the notion of partial autocorrelation to a FTS

{Yt : t = 1, ..., T}, although here we propose and establish some of the large sample properties of

such a quantity that is calculated analogously to the functional autocorrelation function defined in

Section 2.1. It is similarly simple to interpret and calculate, and is useful in FTS model selection

and diagnostic checking.

In plain language, the partial autocovariance between Yt and Yt+h is the autocovariance of

the residuals of Yt and Yt+h produced by “regressing” them linearly on the intermediate variables

Yt+1, ..., Yt+h−1. Towards a more formal definition of such a regression operation, first let Yt,h =

(Yt+1, ..., Yt+h−1) denote the collection of these intermediary variables. Linear regression in this

context can be carried out by selecting or estimating appropriate linear operators that relate Yt,h to

both Yt and Yt+h. Let Kh denote the collection of Hilbert Schmidt kernel integral (linear) operators

mapping (L2([0, 1]))⊗h to L2([0, 1]). More precisely, if Ψh ∈ Kh, and if fh ∈ (L2([0, 1]))⊗h with fh

having component functions fh = (f1,h, ..., fh,h), then for almost every s ∈ [0, 1]

Ψh(fh)(s) =

h∑
j=1

∫
ψ
(j)
h (v, s)fj,h(v)dv,

for some component kernel functions ψ
(j)
h , j = 1, ..., h− 1 satisfying ‖ψ(j)

h ‖ <∞. The collection of

such operators may be made into its own Hilbert space endowed with the Hilbert-Schmidt norm

10



‖Ψh‖HS =

 h∑
j=1

‖ψ(j)
h ‖

2

1/2

.

For example, {Yt : t ∈ Z} follows a functional autoregressive model of order p, denoted

ARH(p), if there exists an operator Ψp ∈ Kp and an innovation sequence {εt : t ∈ Z} so that

Yt(u) = Ψp(Yt,p+1)(u) + εt(u) =

p∑
j=1

∫
ψ(j)(v, u)Yt−j(v)dv + εt(u).

In this case the kernels ψ(j) j = 1, ..., p are referred to as the autoregressive kernels. Now let

Proj(X,Yt,h) = Ψ(Yt,h), (14)

where Ψ satisfies

E‖X −Ψ(Yt,h)‖2 = inf
Ψ′∈Kh−1

E‖X −Ψ′(Yt,h)‖2. (15)

With this defined an intuitive definition of the partial autocovariance kernel at lag h of the

series is

Ch,h(u, v) = Cov[Yt(u)− Proj(Yt,Yt,h)(u), Yt+h(v)− Proj(Yt,Yt,h)(v)].

The functional partial autocorrelation function (FPACF) may then be defined as

ρh,h =
‖Ch,h‖
γ1,hγ2,h

,

where

γ1,h =

(∫
E{[Yt(u)− Proj(Yt,Yt,h)(u)]}2du

)1/2

,

and

γ2,h =

(∫
E{[Yt+h(u)− Proj(Yt+h,Yt,h)(u)]}2du

)1/2

.

It follows by the Cauchy-Schwarz inequality that 0 ≤ ρh,h ≤ 1.

Although this may serve as a logical analog to the scalar PACF, a number of theoretical and

practical challenges are faced here stemming from the fact that estimating the projections of Yt

and Yt+h onto Yt,h, or equivalently estimating the operators Ψ1 and Ψ2 so that

11



E‖Yt −Ψ1,h(Yt,h)‖2 = inf
Ψ′∈Kh−1

E‖Yt −Ψ′(Yt,h)‖2,

and

E‖Yt+h −Ψ2,h(Yt,h)‖2 = inf
Ψ′∈Kh−1

E‖Yt −Ψ′(Yt,h)‖2, (16)

in general presents an ill-posed inverse problem. Nonetheless, these operators may still be estimated

in practice using standard regularization techniques, see e.g. Chapter 9 of Bosq (2000). For

any fixed h, let Ψ̂1,h denote the operator obtained by performing a regularized functional linear

regression of Yt on Yt,h, and let Ψ̂2,h denote the operator obtained by performing a regularized

functional linear regression of Yt+h on Yt,h. We note that in the second case this may be viewed

as fitting a functional autoregressive model of order h− 1 to the series. Define

Ĉh,h(u, v) =
1

T − h

T−h∑
t=1

[Yt(u)− Ψ̂h,1(Yt,h)(u)][Yt+h(v)− Ψ̂h,2(Yt,h)(v)],

γ̂1,h =

(∫
1

T − h

T−h∑
t=1

[Yt(u)− Ψ̂h,1(Yt,h)(u)]2du

)1/2

,

and

γ̂2,h =

(∫
1

T − h

T−h∑
t=1

[Yt+h(u)− Ψ̂h,2(Yt,h)(u)]2du

)1/2

.

Then, the empirical partial autocorrelation may then be defined as

ρ̂h,h =
‖Ĉh,h‖
γ̂1,hγ̂2,h

.

It may be shown that under mild conditions on the estimators Ψ̂1,h and Ψ̂2,h that ρ̂h,h has the

same large sample properties as ρ̂h when the data are a white noise, as described in the following

theorem.

Theorem 2. If {Yt : t ∈ Z} is independent and identically distributed with E‖Yt‖4 < ∞,

‖Ψ̂h,1‖HS = oP (T−1/4), and ‖Ψ̂h,2‖HS = oP (T−1/4), then

Q̂h,h = T‖Ĉh,h‖2
D→ Q =

∞∑
j=1

∞∑
l=1

λjλlχ
2
j,l(1), h = 1, 2, . . .

as T →∞. The λ′is are the eigenvalues of the covariance operator of Yi. Additionally

12



γ̂1,h
P→
[∫

C0(u, u)du

]1/2
, and γ̂2,h

P→
[∫

C0(u, u)du

]1/2
.

Remark 2.1. Most standard regularized estimators in this setting would satisfy ‖Ψ̂h,1‖HS =

oP (T−1/4), and ‖Ψ̂h,2‖HS = oP (T−1/4) under mild conditions, including those derived from prin-

cipal component regression and Tychonoff regularization. We elaborate on the PCA case, see e.g.

Didericksen et al. (2012), Bosq (2000) and Zhang (2016). In case of Tychonoff regularization we

refer to Kargin and Onatski (2008). In the case of PCA regression Ψ̂h,2, and similarly Ψ̂h,1, is

estimated so that

Ψ̂h,2(fh) =

h−1∑
j=1

∫
ψ̂
(j)
h,2(v, s)fj,h(v)dv.

The kernels ψ̂
(j)
h are constructed so that

ψ̂
(j)
h,2(v, s) =

κ∑
r,`=1

ψ̂
(j)
h,2[r, `]φ̂r(v)φ̂`(v),

and the coefficient matrix ψ̂
(j)
h,2[·, ·] is estimated to minimize the least squares criterion (16). For

example, when h = 2, so that regression is performed on a single intermediary variable, this

amounts to taking

ψ̂
(1)
h,2[r, `] =

λ̂−1`
T − 1

T−1∑
t=1

〈Yt, φ̂`〉〈Yt+1, φ̂r〉,

where the λ̂′`s and φ̂′`s are the empirical eigenvalues and eigenvectors of the covariance operator

defined in (5). κ in this case serves as a truncation level for the number of principal components

employed. When κ is a fixed integer, then under the assumption that the data follow a strong

white noise and standard eigenvalue spacing conditions ‖Ψ̂h,2‖HS = OP (T−1/2), and even satisfies

the Central Limit Theorem when normalized by multiplying by T 1/2. In order that the regression

operator would be consistently estimated assuming that the underlying subspace on which the

functional data take their values in L2([0, 1]) is infinite dimensional, it is often allowed that κ = κT

is a function of the sample size that increases slowly as T increases. In this case under sufficient

decay conditions on the eigenvalues of the covariance operator defined in (5), it still holds that

‖Ψ̂h,2‖HS = oP (T−1/4), see Chapter 9 of Bosq (2000) and Zhang (2016). Below all such regressions

are carried out using FPCA where κ is chosen to explain more than 95% of the total variation of

the data.

13



Theorem 2 shows that under the hypothesis that the series of interest is a strong white noise

having fourth order moments, then the exact same prediction intervals for {ρ̂h, h = 1, ...,H}

are asymptotically valid for {ρ̂h,h, h = 1, ...,H}. Hence comparing {ρ̂h,h, h = 1, ...,H} to the

threshold √
Q̂(d)(1−α)

√
T
∫
Ĉ0(u, u)du

for a user specified confidence level (1 − α) provides a further way of evaluating the whiteness of

the series or residuals under study.

Similarly to the standard scalar PACF, the functional PACF (FPACF) will tend to zero at lags

larger than the autoregressive order when applied to consistently estimated ARH(p) models. In

order to make this statement precise, we assume that {Yt : t ∈ Z} follows an ARH(p) model

Yt(u) = ΨARH
p (Yt,p+1)(u) + εt(u) =

p∑
j=1

∫
ψARH,jp (v, u)Yt−j(v)dv + εt(u), (17)

for some ΨARH
p ∈ Kp with components ψARH,jp . So that we may discuss the approximation of this

operator as performed in evaluating the FPACF coefficient at lags larger than p, let ΨARH
h,p denote

the operator in Kh with component kernels ψARH,jh satisfying

ψARH,jh =


ψARH,jp j ≤ p,

0, j > p.

(18)

Theorem 3. Suppose that {Yt : t ∈ Z} satisfies the ARH(p) model in equation (18) with

0 < E‖ε0‖4 < ∞, and further suppose that the model admits a stationary and causal solution.

If h > p, ‖Ψ̂2,h −ΨARH
h,p ‖HS = oP (1), and there exists an operator Ψ1,h ∈ Kh−1 so that ‖Ψ̂1,h −

Ψ1,h‖HS = oP (1), then ρ̂h,h
P→ 0 as T →∞.

Theorem 3 implies that asymptotically the FPACF coefficients cutoff after lag p when estimated

based on data following an ARH(p) model, which aligns with the traditional properties of the

PACF. Necessary and sufficient conditions for the existence of a stationary and causal solution to

a ARH(p) model are discussed in Chapter 5 of Bosq (2000).

3. Simulation study

Methods for estimating the proposed autocorrelation and partial autocorrelation functions for

functional data have been implemented in the R package fdaACF, available in CRAN (http:

14
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//cran.r-project.org/package=fdaACF), which we use in the following simulation study.

3.1. Application to Strong White Noise Processes

The FACF and FPACF introduced above can be used to evaluate the whiteness of a given

FTS. In order to validate the proposed method, we consider several synthetic functional white

noise processes. This section investigates the finite-sample properties of the method when applied

to such processes.

Each functional observation has been discretized in a grid of 100 equi-spaced points in the

interval [0, 1]. Four different white noise processes have been simulated, and the methods employed

to generate each process are described below.

The first 3 series were generated by selecting a functional basis φk(v) and i.i.d. coefficients bt,k,

thus obtaining the elements of the process as

εt(v) =
K∑
k=1

bt,kφk(v) , t = 1, . . . , T. (19)

As the coefficients of the series are i.i.d with respect to t, the FTS should not exhibit any kind

of serial correlation. By varying the functional basis φk and the distributions of the coefficients

bt,k, different processes have been generated:

• ε(1)t is obtained using the first 7 elements of the Fourier basis, due to the fact that this basis is

often used when dealing with periodic functional data. The coefficients bt,k follow a standard

normal distribution N(0, 1).

• ε(2)t is obtained using the first 7 elements of the B-spline basis, due to the fact that this basis

is often used when dealing with non-periodic functional data. The coefficients are drawn

from a Beta(2, 5) distribution.

• ε(3)t is obtained selecting 3 functions and applying the Gram-Schmidt method to obtain 3

orthonormal functions that will be used as a basis in (19). In this case, the functions selected

were θ1(v) = sin(v), θ2(v) = exp v and θ3(v) = cos(v). In this case, the coefficients of (19)

follow a Exp(1) distribution.

The last white noise process has been obtained simulating a brownian bridge random process,

where each innovation function is defined as

εt(v) = Wt(v)− vWt(1),

15
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Figure 3: Simulated white noise processes and FACF/FPACF of each series. The dotted line denotes the 99% critical

value of the distribution obtained by the proposed method.

where Wt(v) is a Wiener processes defined on the domain [0, 1].

• ε(4)t is generated by a brownian bridge process where the variance of the Wiener process is 1.

Figure 3 shows a representative example of the first 50 values of the FACF of each white noise

process, including the 99% prediction bound provided by Theorem 1 that has been obtained using

the obtain FACF function of the R package fdaACF. The value of d was selected as the number of

eigenvalues λ̂i of Ĉ0(u, v) such that λ̂i/λ̂1 > 0.0001. Evidently most of the coefficients of the FACF

fall below this limit, which is consistent with the white noise hypothesis.

In order to test the empirical properties of the proposed statistic for different confidence values,

all 4 white noise series described in this section have been simulated, using different configurations of

the length of the time series (T = 100, 250, 500, 1000, 2000) and using different lags when obtaining

the limit value for the lagged autocorrelations. 50 repetitions of each configuration has been

obtained, and Table 1 shows the percentage of out-of-bounds autocorrelations obtained in the

previous analysis for the confidence levels α = 0.1, 0.05, 0.01. Although it has been observed that

the empirical out-of-bound rate seems to be quite conservative for significance level 10% when
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increasing the number of lags considered, the overall performance of the test agrees with the

selected confidence level α. Similar results are obtained when using the FPACF instead of the

FACF, and so we omit those results due to space considerations.

3.2. Application to Serially Correlated Processes

This section present several simulations of functional dependent processes, each one exhibiting

some kind of serial correlation. The proposed identification method based on the FACF and the

FPACF will be used in order to identify the underlying structure of the simulated FTS; fit a model

using that information and check that the residuals of the fitted model plausibly correspond to a

white noise process, validating the model.

A crucial step in the modeling of scalar time series is the identification of the structure of the

underlying stochastic process. The Box-Jenkins methodology (Box et al., 2008) proposes a standard

model identification procedure for scalar time series. Once the stationarity and seasonality of the

series has been addressed, the next step is to identify the seasonal and regular order of the AR and

MA component of the transformed time series. The main tools used in this identification procedure

are the autocorrelation and partial autocorrelation functions, whose plots can be used to obtain

useful information about the underlying structure of the stochastic process that has generated the

series. These tools can also be used in the diagnosis of the model in order to check the white noise

assumption of the residuals.

The purpose of this section is to apply the proposed method in order to obtain a similar tool

for FTS. Regarding the identification of FTS models, there has been several attempts to obtain

the optimum order of some functional processes. In Kokoszka and Reimherr (2013), a test statistic

is derived in order to check if a ARH(p) model fits the data better than a ARH(p− 1) model, by

checking if the operator φp of the formulation of the ARH(p) is significantly different from the null

operator. However, up to the authors’ knowledge, no general identification procedure analogous

to the Box-Jenkins methodology for scalar time series has been proposed for FTS. This section

is aimed at showing that the FACF and FPACF proposed in Section 2 can be considered as a

first step in this direction, offering a useful tool for the identification of certain patterns in the

structure of the residuals of a fitted functional model that should be included in the model in order

to increase its accuracy.

In order to illustrate the applicability of this method as a diagnosis tool, several functional
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Significance level Significance level

T H 10% 5% 1% T H 10% 5% 1%

ε
(1)
t 100 10 7.11% 3.65% 0.58% ε

(3)
t 100 10 5.77% 3.46% 1.15%

20 3.84% 1.73% 0.38% 20 6.92% 2.98% 0.57%

30 3.01% 1.08% 0.12% 30 5.7% 2.88% 0.51%

250 10 8.46% 3.07% 0.57% 250 10 9.03% 4.23% 1.15%

20 6.53% 3.26% 0.48% 20 6.82% 3.65% 0.48%

30 5.7% 2.75% 0.32% 30 6.98% 3.14% 0.32%

500 25 7.36% 3.28% 0.88% 500 25 10.48% 5.04% 1.12%

50 6.88% 2.92% 0.56% 50 8.4% 4.12% 0.88%

100 3.88% 1.92% 0.12% 100 6.96% 3.36% 0.68%

1000 25 10.08% 4.88% 0.88% 1000 25 9.76% 4.16% 0.56%

50 7.84% 3.72% 0.96% 50 8.96% 4.44% 0.8%

100 6.56% 2.98% 0.56% 100 7.66% 3.8% 0.74%

2000 25 7.76% 3.84% 0.56% 2000 25 11.52% 5.12% 0.8%

50 9.28% 4.56% 0.88% 50 9.08% 4.64% 1.04%

100 8.26% 4.1% 0.68% 100 8.74% 4.24% 0.92%

ε
(2)
t 100 10 7.69% 3.27% 0.57% ε

(4)
t 100 10 8.46% 4.42% 0.38%

20 6.53% 3.56% 0.77% 20 6.82% 2.98% 0.46%

30 5.06% 2.43% 0.44% 30 6.21% 2.75% 0.51%

250 10 9.23% 4.42% 0.96% 250 10 10.77% 4.42% 0.76%

20 9.13% 4.32% 0.86% 20 8.46% 3.94% 0.29%

30 8.78% 4.23% 0.89% 30 8.84% 4.42% 0.06%

500 25 9.28% 4.32% 0.4% 500 25 9.2% 5.12% 1.28%

50 7.72% 3.72% 0.64% 50 7.6% 3.88% 0.72%

100 6.42% 2.9% 0.4% 100 7.58% 3.38% 0.62%

1000 25 9.28% 4.56% 1.2% 1000 25 12.08% 5.92% 1.36%

50 9.2% 4.72% 1.04% 50 9.68% 4.6% 0.92%

100 8.12% 3.84% 0.6% 100 8.38% 3.64% 0.58%

2000 25 9.04% 4.32% 1.04% 2000 25 10.4% 6.24% 1.44%

50 10.08% 4.88% 1.16% 50 9.6% 4.36% 0.78%

100 8.66% 4.1% 0.8% 100 9.26% 4.58% 0.98%

Table 1: Empirical rate of out-of bounds FACF coefficients obtained for several simulated functional white noise

processes.
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series have been simulated including some specific patterns of temporal dependence. A functional

SARMAHX model (Portela et al., 2018; Mestre et al., 2020) will be fitted to each time series, and

the method proposed in this paper will be used to test the white noise assumption on the residuals

of the fitted model. The SARMAHX model is an extension of the standard seasonal ARMA model

to the functional framework by means of functional operators, accounting for autoregressive and

moving average effects as well as allowing the inclusion of exogenous variables to the model. Given

a stationary and centered FTS {Yt (v) ; t = 1, 2, ..., T ; v ∈ V } and a set {Xz
t (uz) ; z ∈ Z ; t =

1, 2, . . . , T ; uz ∈ Vz} of Z, potentially functional covariates, the expression for the SARMAHX

(p, q)× (P,Q)s model is defined as:

(I −Ψ1B − · · · −ΨpB
p)
(
I − Φ1B

s − · · · − ΦPB
P ·s)Yt =

(I −Θ1B − · · · −ΘqB
q)
(
I −Υ1B

s − · · · −ΥQB
Q·s) εt

+ Γ1(X
1
t ) + · · ·+ ΓZ(XZ

t ),

(20)

where Ψi and Φi are the regular and seasonal autoregressive operators, Θi and Υi the regular and

seasonal moving average operators, and Γi the operators related to the Z explanatory variables.

Bn is the lag operator which is defined as BnYt = Yt−n where n ∈ N. Finally, I is the identity

operator.

Each function of the series will be discretized in a grid of 100 equi-spaced points in the interval

[0, 1]. The length of the simulated processes will be 1500 functional observations, after leaving 500

observations as a burn-in period in order to stabilize the series.

The first simulated process Y
(1)
t is an ARH(1) model, given by the equation

Y
(1)
t (v) = Ψ(Y

(1)
t−1(v)) + εt(v) =

∫
ψ(u, v)Y

(1)
t−1(u)du+ εt(v), (21)

where Ψ(.) is an integral operator that defines the process, ψ(u, v) denotes the kernel of said integral

operator and εt(v) denotes the white noise innovations of the process. This process, studied in Bosq

(2000), is stationary if ‖Ψ‖ < 1, so the simulated series will use the Gaussian kernel

ψ(u, v) = 0.6 exp

(
u2 + v2

2

)
, (u, v) ∈ [0, 1]× [0, 1], (22)

so ‖Ψ‖ ≈ 0.7, ensuring that the resulting series will be stationary. The brownian bridges simulated

in the last section will be used as the innovations of the process. The top panels of Figure 4 show

the FACF and FPACF of the process Y
(1)
t for H = 20 lags, together with the 99% i.i.d. bounds
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Figure 4: Top: FACF and FPACF for a simulated ARH(1) process. Bottom: FACF and FPACF of the residuals of a

fitted ARMAH(1, 0) model. The dotted line represents the 99% white noise prediction bounds for the FACF/FPACF

coefficients under the assumption of white noise.

provided by Theorem 1. The coefficients of the FACF exhibit an exponential decay that agrees

with the expected behavior of the ARH(1) process.

However, the FACF alone is not enough to identify the order of the autoregressive process–

an ARH process of higher order could produce a similar FACF structure. Similarly to the scalar

case, the FPACF can be used to better identify the order of autoregressive process, as it aims to

remove the influence of the intermediate terms of the series at a given lag. This is illustrated in

the top FPACF of Figure 4, where only the first coefficient is significant, which is consistent with

the dependence structure of an ARH(1) process.

As most coefficients of the FACF fall above the critical value, the white noise assumption is

rejected. The test proposed in Horváth et al. (2013) (referred to as the HHR hereafter) also rejects

the white noise hypothesis at levels α = 0.1, 0.05 and 0.01. Because of this, a ARMAHX(1, 0)

model has been fitted to this FTS, and both FACF and FPACF of the residuals of the model are
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Figure 5: Top: FACF and FPACF for the simulated MAH(1)7 process. Bottom: FACF and FPACF and the residuals

of a fitted SARMAHX(0, 0) × (0, 1)7 model. The dotted line represents the 99% white noise prediction bounds for

the FACF/FPACF coefficients under the assumption of white noise.

plotted on the bottom panels of Figure 4. As shown in the image, no pattern can be found in the

residuals of the model, and all the coefficients fall below the critical value, suggesting the residuals

of the model can be treated as a functional white noise. This is corroborated by the HHR test,

which does not reject the white noise hypothesis for confidence level α = 0.1, 0.05 and 0.01.

The next simulated process Y
(2)
t will have the structure of a seasonal MAH(1)7 (Aue et al.,

2015), where each observation depends on the 7th lagged term of the series Y
(2)
t−7, following the

equation

Y
(2)
t (v) = Θ(εt−7(v)) + εt(v) =

∫
θ(u, v)εt−7(u)du+ εt(v), (23)

where Θ(.) denotes an integral operator with kernel θ(u, v), and εt(v) denotes white noise variables.

As in the previous series, the innovations will be independent brownian bridges, and the kernel used

to define the integral operator will be the Gaussian kernel defined in (22), so ‖Θ‖ ≈ 0.7, resulting

in a stationary series. The FACF and FPACF of the simulated series are shown in the top panels of
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Figure 5. Due to the innovations being uncorrelated, the FACF plot only shows dependence of the

lag 7, whereas the FPACF plot shows a certain, approximately geometric, decay for the seasonal

lags 7 and 14. These plots exhibit the shape of a moving average process with seasonality 7. When

applied to this data, the HHR test rejects the null hypothesis of functional white noise at levels

α = 0.1, 0.05 and 0.01.

Once the process has been identified, a ARMAHX(0, 0)× (0, 1)7 model is fitted to the data. In

order to validate the model, the main hypotheses of the model have to be checked. The values of

the lagged autocorrelations of the residuals are obtained as well as the 99% limit distribution of

the statistic to test the white noise assumption on the residuals. The HHR test does not reject the

null hypothesis of functional white noise at level α = 0.1, and when using the method proposed

in this paper, similar results were obtained: as shown in the bottom panels of Figure 5; none of

the autocorrelation values surpasses the 99% limit, hence the assumption of white noise can not

be rejected, and the residuals of the fitted model can be regarded as functional white noise.

These results show the applicability of the proposed method in the diagnosis of FTS models,

providing the practitioner with a graphical tool to visualize the structure of the FTS and identify

possible deterministic components in the residuals of a model that have not been explained. Figure

6 shows the FACF and FPACF of several functional autoregressive and moving average processes

that can be used to identify seasonality, the dependence structure of FTS and the order of the

process: an exponential decay on the FACF is associated with an autoregressive process, and

significant values of the FPACF indicate the order of the process. On the other hand, moving

average processes are associated with a FPACF that exhibits an exponential decay and a FACF

that has only a reduced number of values above the i.i.d. upper bound, where the number of

significant coefficients of the FACF indicate the order of the moving average process. In the

simulations of this section, both the proposed method and the HHR test have proven to provide

similar results and rejection rates for FTS that exhibited some kind of time dependency between

its terms. Next section will apply this identification and diagnosis method to several real-world

datasets, in order to test the usefulness when dealing with real data.
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Figure 6: FACF and FPACF of four different simulated functional autoregressive and moving average processes. The

shape exhibited by the autocorrelation function of each process can be used to identify each process. The dotted line

represents the 99% white noise prediction bounds for the FACF/FPACF coefficients under the assumption of white

noise.
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4. Application to real-world datasets

To illustrate the applicability of the proposed method, two widely studied real-world datasets

will be analyzed. Firstly, the FACF and FPACF will be obtained to quantify the correlation

structure of the FTS in order to check the white-noise assumption on the original time series and

to identify AR and MA trends. Secondly, a functional linear model will be fitted to each series

and the test will be applied to the residuals of the models, in order to diagnose the models. If

the white noise assumption is not rejected on the residuals, it will indicate that the model has

extracted all the information of the original time series. In order to validate the proposed test, the

results obtained will be compared with the HHR test.

4.1. Eurodollar futures contracts
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Figure 7: Top: FACF and FPACF of the Eurodollar dataset. Bottom: FACF and FPACF of residuals of a fitted

ARMAHX(1, 0) model. The dotted line represents the 95% white noise prediction bounds for the FACF/FPACF

coefficients under the assumption of white noise.

The first real-world dataset to be analyzed consists of Eurodollar future rates (Kargin and
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Onatski, 2008; Horváth et al., 2013). As stated in those works, each Eurodollar futures contract is

an obligation to deliver a 3-month deposit of $1,000,000 to a bank account outside of the United

States at a specified time. Given v a scalar value, if one defines Y E
t (v) as the price of a contract

with closing date v months from day t, data from this dataset can be regarded as a FTS. The

Eurodollar dataset construct those curves using 114 points for each day, and in order to replicate

the results of the HHR test (Horváth et al., 2013), the sample considered in this analysis consists

of 100 days of data taken from January 24 to June 17,1997.

An ARH(1) model was identified in Kargin and Onatski (2008), where the authors develop a

technique to estimate the autoregression operator of the model, and illustrate this technique to

the Eurodollar dataset. However, no identification procedure was used to check if the data can be

modeled as an ARH(1). The top panels of Figure 7 show the FACF and FPACF of the Eurodollar

series. The shape of the FACF plot shows an exponential decay, whereas only the first coefficient

of the FPACF is significant. The shape exhibited by the correlogram is similar to the simulated

ARH(1) process shown in Figure 4; hence validating the selection of an autoregressive model to

model the data. The presence of structural dependence between the data is also confirmed by the

95% critical line displayed in the plot: all of the coefficients of the FACF fall above of the critical

bound, hence the assumption of functional white noise must be dropped. This was also observed

in Horváth et al. (2013), where the authors applied the HHR test to the same data and rejected

the white noise hypothesis at 99% confidence level.

Once the structure of the process has been identified, an ARMAHX(1, 0) model has been fitted

to the data, and the FACF and FPACF of the model’s residuals are displayed on the bottom panels

of Figure 7. The HHR test does not reject the white noise hypothesis at confidence level α = 0.1.

This result is consistent with the outcome of the diagnosis methodology developed in this paper:

most of the coefficients of the FACF and FPACF obtained for the residuals fall below the 95%

critical bound and no structure can be identified in the plots, hence assuming that the residuals of

the model are white noise, validating the selected model.
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4.2. Spanish electricity daily price profiles

The second dataset was studied in Portela et al. (2018), where the authors analyze the series of

hourly Spanish electricity spot prices provided by the Spanish electricity Market Operator (www.

omie.es). As explained in the paper, the spot price series {yt,h} is transformed into a FTS

{Y P
t (v) ; t = 1, . . . , T ; v ∈ [1, 24]} where each function Yt is observed at discrete hours vi ∈

{1, . . . , 24}, thus Y P
t (vi) = yt,vi . Hence each observation is a daily price profile. In order to

replicate the results of that work, the sample considered in this analysis consists of 1 year of data

taken from January 1, 2014 to December 31, 2014. The daily price profiles are shown in Figure 1.

We here note that all below functional regressions models fitted to obtain the FPACF are estimated

using FPCA regularization with level chosen by so that 95% of the total variance is explained by

the selected number of FPC’s.

In order to model the electricity price series, Portela et al. (2018) proposed a SARMAHX(1, 0)×

(0, 1)7 model, using the daily demand XD
t and wind profiles XW

t as exogenous functional variables.

However, the authors relied on FPCA reduction techniques and testing different configurations in

order to identify the structure of the model. Besides, no white noise identification test was applied

on the residuals. The purpose of this section is to illustrate the application of the autocorrelation

functions in the identification and diagnosis of a model, by testing the white noise hypothesis on

the residuals.

The top panels of Figure 8 show the FACF and FPACF for the first 30 lags of the price functional

time series. This diagnostic tool provides useful information about the correlation structure of the

series: firstly, all the coefficients of the FACF lie above the 99% critical bound, so the white

noise assumption is strongly rejected. The HHR test provides the same conclusion. Secondly, the

diagnostic plot exhibits a seasonal dependency with period 7, which can be explained by the daily

nature of the series. Moreover, a slow decrease in the values of the FACF is observed, which might

imply that the series should be differenced. The bottom panels of Figure 8 show the FACF and

FPACF of the price series after being seasonally differenced at lag 7. As can be seen the slow

decrease of the coefficients in the FACF is no longer observed. Hence, the differenced series are
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used, which are be denoted as

ZPt = Y P
t − Y P

t−7 (24)

UDt = XD
t −XD

t−7 (25)

UWt = XW
t −XW

t−7, (26)

where ZPt denotes the series of seasonally differenced daily electricity price profiles and UDt and

UWt denote the demand and wind production series after the seasonal differentiation.

In order to model the price time series, an initial SARMAHX regression model is estimated using

the differenced demand and wind production series as inputs. The expression of this regression

model is as follows:

ZPt = ΓW (UWt ) + ΓD(UDt ) + εt, (27)

where ΓW and ΓD are the integral operators related to the differenced demand and wind exogenous

variables. The top panels of Figure 9 show the FACF and FPACF of the regression model residuals,

which can be used to extract information about the correlation structure of the underlying process

that generated the series. Most of the values of the FACF fall below the critical limit, however

there seems to be a strong correlation on the first lags, and the white noise assumption is rejected

at the 99% confidence level using the HHR test. Consequently, using the exogenous variables is not

enough for modeling the series. When compared with Figures 4 and 5, the FACF and FPACF plots

seems to have two components: a regular autoregressive behavior (identified by the first coefficient

of the FPACF) and a moving average effect on lag 7.

The next step in this analysis is to fit a SARMAHX(0, 0) × (0, 1)7 model to the differenced

series, in order to capture this seasonal moving average effect. The expression for this models is:

ZPt = ΓW (UWt ) + ΓD(UDt )−Θ(εt−7) + εt. (28)

The correlation structure of the residuals of that model is shown in the bottom panels of Figure 9.

As can be seen, the moving average effect has been removed. However, the first lags of the FACF

function lie above the critical limit and exhibit a certain exponential decay pattern in the FACF,

whereas the FPACF still has one significant value at lag 1. This causes both the proposed test and

the HHR test to reject the white noise hypothesis at 99% confidence level.
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Figure 8: Top: FACF and FPACF of the daily price profiles series Y P
t . Bottom: FACF and FPACF of the seasonally

differenced series ZP
t . The dotted line represents the 99% white noise prediction bounds for the FACF/FPACF

coefficients under the assumption of white noise.

Finally, a SARMAHX(1, 0)×(0, 1)7 model has been fitted to the differenced series of daily price

profiles. The expression for this model is:

ZPt = ΓW (UWt ) + ΓD(UDt ) + Ψ(ZPt−1)−Θ(εt−7) + εt. (29)

The autocorrelation plot of the residuals of the model is shown in Figure 10. All the values of both

the FACF and FPACF fall below the critical limit, hence the white noise assumption cannot be

rejected. This is validated by the HHR test.

This process illustrates the proposed identification and diagnosis procedure that has been de-

veloped for FTS linear models. For models within the SARMAHX family of models, this tool

is useful to select the optimum configuration of its parameters. This enables the practitioner to

capture the dynamics of the underlying process, obtaining more accurate forecasts of the FTS.
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Figure 9: Top: FACF and FPACF of the residuals of the regression model. Bottom: FACF and FPACF of the

residuals of the fitted SARMAHX(0, 0) × (0, 1)7 model. The dotted line represents the 99% white noise prediction

bounds for the FACF/FPACF coefficients under the assumption of white noise.
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Figure 10: FACF and FPACF of the residuals of the SARMAHX(1, 0) × (0, 1)7 model. The dotted line represents

the 99% white noise prediction bounds for the FACF/FPACF coefficients under the assumption of white noise.

5. Conclusions

This paper presents statistical tools that can be used to identify the serial dependence structure

of a given FTS and identify suitable FTS models. The motivation for these tools was to define
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versions of the autocorrelation and partial autocorrelation functions for FTS, with similar proper-

ties as their scalar counterpart. The statistical tool proposed in this paper differs from other white

noise testing procedures found in the literature in several aspects: where most testing methods rely

on FPCA to reduce the dimension of the curves of the series, the proposed methods use the correla-

tion structure of the FTS to capture the structure of the data. Hence, no dimensionality reduction

is applied, avoiding the need of choosing functional principal components and approximating the

functional series with a finite number of terms, thus losing some information in this process. In

addition, while existing functional white noise tests can be used to evaluate whether a given series

or sequence of residuals is plausibly a white noise, the use of FACF and FPACF plots are helpful

in identifying the specific serial correlation structure, providing some insight when fitting a linear

model to that series. This is particularly useful in identifying the order of functional autoregressive

and moving average processes.

The performance of the method has been validated both numerically and empirically, identifying

the correlation structure of both Eurodollar future contracts and spanish electricity price profiles

FTS and characterizing the residuals of the fitted models as functional white noise. It has been

shown that the white noise identification has a similar performance to other white noise tests. The

proposed methods have been implemented and are currently available in the R package fdaACF.

Although the proposed FACF and FPACF can be used in a similar way as their scalar coun-

terparts to identify and diagnose FTS models, the fact that these functions are based on the L2

norm of the lagged covariance operators makes it difficult to identify whether the correlation ex-

hibited by the series is “positive” or “negative” in nature; only the magnitude is measured. The

development of a signed version of the proposed autocorrelation functions could overcome these

problems, providing the practitioner with a useful tool to model FTS. We leave this topic as an

area for future research.
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Portela, J., Muñoz, A., Alonso, E., 2018. Forecasting Functional Time Series with a New Hilbertian ARMAX Model:

Application to Electricity Price Forecasting. IEEE Transactions on Power Systems 33, 545–556. doi:10.1109/

TPWRS.2017.2700287.

Ramsay, J., Hooker, G., Graves, S., 2009. Functional Data Analysis with R and MATLAB. Springer New York, New

York, NY.

Ramsay, J., Silverman, B.W., 2005. Functional Data Analysis. Springer Series in Statistics, Springer-Verlag New

York.

Turbillon, C., Marion, J.M., Pumo, B., 2007. Estimation of the moving-average operator in a Hilbert space, in:

Recent Advances in Stochastic Modeling and Data Analysis, World Scientific Publications, Chania, Greece. pp.

597–604.

Zhang, X., 2016. White noise testing and model diagnostic checking for functional time series. Journal of Econometrics

194, 76–95. doi:10.1016/j.jeconom.2016.04.004.

Appendix A. Proofs of the results of Section 2

Proof of Theorem 2. We begin by showing that

Q̂h,h = T‖Ĉh,h‖2
D→ Q =

∞∑
j=1

∞∑
l=1

λjλlχ
2
j,l(1). (A.1)

This follows from the continuous mapping theorem upon establishing that
√
TĈh,h converges weakly in

L2([0, 1]2) to a Gaussian element in L2([0, 1]2) with mean zero and covariance kernel

E[Γ(u, v)Γ(u′, v′)] = C0(u, u′)C0(v, v′). (A.2)
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It follows from elementary arguments that

√
T‖Ĉh,h − C̃h,h‖ = oP (1), (A.3)

where

C̃h,h(t, s) =
1

T

T∑
i=1

[Yi(t)− Ψ̂h,1(Yi,h)(t)][Yi+h(s)− Ψ̂h,2(Yi,h)(s)].

Expanding the product in C̃h,h we obtain that

√
TC̃h,h(t, s) =

1√
T

T∑
i=1

Yi(t)Yi+h(s)− 1√
T

T∑
i=1

Ψ̂h,1(Yi,h)(t)Yi+h(s) (A.4)

− 1√
T

T∑
i=1

Yi(t)Ψ̂h,2(Yi,h)(s) +
1√
T

T∑
i=1

Ψ̂h,1(Yi,h)(t)Ψ̂h,2(Yi,h)(s) (A.5)

=:
4∑

i=1

Ai,T (t, s). (A.6)

It follows from Theorem 2.1 of Kokoszka et al. (2017) that A1,T converges weakly in L2([0, 1]2) to a

mean zero Gaussian element with covariance determined by (A.2), and hence the Theorem follows upon

showing that ‖Ai,T ‖ = oP (1) for i = 2, 3 and 4. We have according to the definition of Ψ̂1,h that

−A2,T (t, s) =
1√
T

T∑
i=1

Ψ̂h,1(Yi,h)(t)Yi+h(s)

=
1√
T

T∑
i=1

h−1∑
j=1

∫
ψ̂
(j)
h,1(v, t)Yi+j(v)Yi+h(s)dv

=
h−1∑
j=1

∫
ψ̂
(j)
h,1(v, t)

1√
T

T∑
i=1

Yi+j(v)Yi+h(s)dv.

By the triangle and Cauchy-Schwarz inequalities it follows that

‖A2,T ‖ ≤
h−1∑
j=1

‖ψ̂(j)
h,1‖‖

√
TĈ∗j,h‖, (A.7)
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where

Ĉ∗j,h(t, s) =
1

T

T∑
i=1

Yi+j(t)Yi+h(s).

Since ‖
√
TĈ∗j,h‖ = OP (1), and ‖ψ̂(j)

h,1‖ = oP (1), it follows that ‖A2,T ‖ = oP (1). A similar argument may

be used to establish that ‖A3,T ‖ = oP (1). Regarding A4,T , we have again by applying the definitions of the

operators Ψ̂h,1 and Ψ̂h,2 that

A4,T (t, s) =
h−1∑
j1=1

h−1∑
j2=1

∫∫
ψ̂
(j1)
h,1 (v1, t)ψ̂

(j2)
h,2 (v2, s)

√
TĈ∗j1,j2(v1, v2)dv1dv2.

Using the Cauchy-Schwarz inequality it follows that(∫∫ ∣∣∣∣∫∫ ψ̂
(j1)
h,1 (v1, t)ψ̂

(j2)
h,2 (v2, s)

√
TĈ∗j1,j2(v1, v2)dv1dv2

∣∣∣∣2 dtds
)1/2

≤
√
T‖ψ̂(j1)

h,1 ‖‖ψ̂
(j2)
h,2 ‖‖Ĉ

∗
j1,j2‖.

By Theorem 4.7 of Bosq (2000), ‖Ĉ∗j1,j2‖ = OP (1) for all 1 ≤ j1, j2 ≤ h− 1. Since ‖ψ̂(j1)
h,1 ‖ = oP (T−1/4) and

‖ψ̂(j2)
h,2 ‖ = oP (T−1/4) by assumption, we have by the triangle inequality that

‖A4,T ‖ ≤
√
T

h−1∑
j1=1

h−1∑
j2=1

√
T‖ψ̂(j1)

h,1 ‖‖ψ̂
(j2)
h,2 ‖‖Ĉ

∗
j1,j2‖ =

√
ToP (T−1/2) = oP (1).

These bounds along with (A.3) and the weak convergence of A1,T establish (A.1). We now show that

γ̂1,h
P→
[∫

C0(u, u)du

]1/2
,

and the result for γ̂2,h follows similarly. It follows from elementary arguments that

|γ̂1,h − γ̃1,h| = oP (1), (A.8)

where

γ̃1,h =

(∫
1

T

T∑
i=1

[Yi(t)− Ψ̂h,1(Yi,h)(t)]2dt

)1/2

.

Expanding the square inside the integrand gives that
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γ̃21,h =

∫
1

T

T∑
i=1

Y 2
i (t)dt− 2

∫
1

T

T∑
i=1

Yi(t)Ψ̂h,1(Yi,h)(t)dt+

∫
1

T

T∑
i=1

[Ψ̂h,1(Yi,h)(t)]2dt =:
3∑

j=1

Bj,T .

According to Corollary 4.1 of Bosq (2000), B1,T
P→
∫
C0(u, u)du. It follows similarly to the proof that

‖A2,T ‖ = oP (1) and ‖A4,T ‖ = oP (1) that B2,T = oP (1) and B3,T = oP (1). Therefore γ̃21,h
P→
∫
C0(u, u)du,

which proves the result with (A.8).

Proof of Theorem 3. It follows again from elementary arguments that
√
T‖Ĉh,h − C̃h,h‖ = oP (1).. In this

case, since we suppose that {Yi : i ∈ Z} is a causal solution to (17), we write

C̃h,h(t, s) =
1

T

T∑
i=1

[Yi(t)− Ψ̂h,1(Yi,h)(t)][εi+h(s) + {ΨARH
h,p − Ψ̂h,2}(Yi,h)(s)] (A.9)

=
1

T

T∑
i=1

Yi(t)εi+h(s)− 1

T

T∑
i=1

Ψ̂h,1(Yi,h)(t)εi+h(s)

− 1

T

T∑
i=1

Yi(t){ΨARH
h,p − Ψ̂h,2}(Yi,h)(s) +

1

T

T∑
i=1

Ψ̂h,1(Yi,h)(t){ΨARH
h,p − Ψ̂h,2}(Yi,h)(s)

=:

4∑
i=1

Di,T (t, s).

It follows readily by the causality of {Yi : i ∈ Z} that EYi(t)εi+h(s) = 0 for almost every t, s ∈ [0, 1], and

that Yi ⊗ εi+h is an uncorrelated sequence in L2([0, 1]2). Hence by Chebyshev’s inequality, ‖D1,T ‖ = oP (1).

It follows similarly as the argument to establish the bound in (A.7) that

‖D2,T ‖ ≤ ‖Ψ̂h,1‖HS max
1≤j≤h−1

∫ ∫ [ 1

T

T∑
i=1

Yi+j(t)εi+h(s)

]2
dtds

1/2

= oP (1),

since once again for all 1 ≤ j ≤ h,
∥∥∥ 1
T

∑T
i=1 Yi+j ⊗ εi+h

∥∥∥ = oP (1) and ‖Ψ̂h,1‖ = OP (1) by assumption. In

order to handle D3,T , it follows from similar arguments as those used to establish (A.7) that

‖D3,T ‖ ≤ ‖ΨARH
h,p − Ψ̂h,2‖HS max

1≤j≤h−1

∫ ∫ [ 1

T

T∑
i=1

Yi(t)Yi+j(s)

]2
dtds

1/2

= oP (1),
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since for a stationary and causal ARH(p) process with E‖ε0‖4 <∞, for each 1 ≤ j ≤ h− 1

∫ ∫ [ 1

T

T∑
i=1

Yi(t)Yi+j(s)

]2
dtds

1/2

= OP (1),

see Theorem 4.8 of Bosq (2000). Similarly we have that

‖D4,T ‖ ≤ ‖Ψ̂h,1‖HS‖ΨARH
h,p − Ψ̂h,2‖HS max

1≤j1,j2≤h−1

∫ ∫ [ 1

T

T∑
i=1

Yi+j1(t)Yi+j2(s)

]2
dtds

1/2

= oP (1).

Therefore,

‖C̃h,h‖ = oP (1).

It follows similarly that

γ̂21,h
P→
∫
E{Y0(t)−Ψh,1(Y0,h)(t)}2dt, γ̂22,h

P→
∫
Eε20(t)dt.

By the assumption that E‖ε0‖4 > 0,
∫
Eε20(t)dt > 0. The existence of Ψh,1 so that

∫
E{Y0(t) −

Ψh,1(Y0,h)(t)}2dt = 0 contradicts E‖ε0‖4 > 0, and so
∫
E{Y0(t)−Ψh,1(Y0,h)(t)}2dt > 0 as well. It follows

then that

ρ̂h,h =
Ĉh,h

γ̂1,hγ̂2,h

P→ 0,

completing the proof.
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