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When considering two or more time series of functional data objects, for instance those derived from densely observed intraday
stock price data of several companies, the empirical cross-covariance operator is of fundamental importance due to its role in
functional lagged regression and exploratory data analysis. Despite its relevance, statistical procedures for measuring the sig-
nificance of such estimators are currently undeveloped. We present methodology based on a functional central limit theorem for
conducting statistical inference for the cross-covariance operator estimated between two stationary, weakly dependent, func-
tional time series. Specifically, we consider testing the null hypothesis that the two series possess a specified cross-covariance
structure at a given lag. Since this test assumes that the series are jointly stationary, we also develop a change-point detection
procedure to validate this assumption of independent interest. The most imposing technical hurdle in implementing the pro-
posed tests involves estimating the spectrum of a high dimensional spectral density operator at frequency zero. We propose
a simple dimension reduction procedure based on functional principal component analysis to achieve this, which is shown to
perform well in a simulation study. We illustrate the proposed methodology with an application to densely observed intraday
price data of stocks listed on the New York stock exchange.
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1. INTRODUCTION

Functional time series analysis (FTSA) has grown substantially in the last decade and a half to provide method-
ology for functional data objects that are obtained sequentially over time. One way such data arise is when dense
records of continuous time processes are segmented into collections of curves in some natural way. For exam-
ple, high frequency records of pollution levels may be segmented to form daily pollution curves, or tick-by-tick
asset price data may be used to construct daily intraday price or return curves; see Aue et al. (2014) and Kargin
and Onatski (2008). Other examples include sequentially observed curves that describe physical phenomena, as
arise in functional magnetic resonance imaging or in the observation of dynamic biological systems; see Aston
and Kirch (2012), Tavakoli and Panaretos (2016), and Hywood et al. (2016). We refer the reader to Ramsay and
Silverman (2005), and Ferraty and Vieu (2006) for overviews of the field of functional data analysis, and to Bosq
(2000) and Hörmann and Kokoszka (2012) for an introduction to FTSA.

Most of the developments in these two fields focus on analyzing functional data obtained from a single source,
for example, intraday price curves derived from a single asset, or in comparing functional data from several inde-
pendent populations. To give a few examples that are related to this work, Panaretos et al. (2010), Paparoditis and
Sapatinas (2016), and Pigoli et al. (2014) develop methods for performing inference for the covariance operator of
functional data. Using a self-normalization approach, a two sample test for the second-order structure with func-
tional time series data that allows for some dependence across the populations is developed in Zhang and Shao
(2015).
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666 G. RICE AND M. SHUM

However, in many situations of interest, functional data are obtained simultaneously from two or more sources,
for example, intraday price curves derived from several assets. In such cases one often wishes to quantify the
second-order dependence relationships between such curves, and a way of achieving this is through the empirical
cross-covariance operator. Although the notion of the cross-covariance operator between random elements in a
Hilbert space was put forward over forty years ago in Baker (1973), and is discussed in chapter one of Ramsay and
Silverman (2005), statistical methodology for estimating and performing further inference for the cross-covariance
structure between collections of curves seems to be quite new.

Measuring the cross-covariance between collections of curves has received some attention in the context of
multi-variate longitudinal and functional data. Under the assumption that the given data is a simple random sample
of multi-variate longitudinal data, Dubin and Müller (2005), Serban et al. (2013), and Zhou et al. (2008) develop
measures of cross-covariance between longitudinal data sources, including measures based on canonical correla-
tion analysis and PCA. PCA of multi-variate functional data is also studied in Chiou et al. (2014) and Chiou and
Müller (2013), and in Petersen and Müller (2016) an analog of the covariance matrix for multi-variate functional
data using Fréchet integration is defined. In each of these cases, the potential effect of temporal dependence among
the functional units is not considered.

In the context of bivariate functional time series, the cross-covariance operator and its lagged versions are
arguably of greater importance. Methods for lagged functional time series regression, which have recently been put
forward in Hörmann et al. (2015b) and Pham and Panaretos (2017), are naturally based on the Fourier transform of
the lagged cross-covariance operators. Moreover, the initial exploratory analysis of any such series would typically
begin by considering the sequence of lagged cross-covariance operators to try to gain insight into the relationship
between the series.

Despite the apparent utility of the cross-covariance operator of functional time series, statistical inference for it
has not yet been considered, to the best of our knowledge. In Chapter 4 of the seminal monograph on functional
linear processes of Bosq (2000), a central limit theorem is given for the covariance and auto-covariance operators
of functional time series that may be represented as linear processes. A portmanteau-type test for independence
of two functional time series is developed in Horváth and Rice (2015) based on the norms of cross-covariance
operators at long lags, but their test assumes under the null hypothesis that the individual series are independent,
and is hence not suitable for quantifying the significance of estimates of the cross-covariance between curves.

Additionally, when the data are obtained as bivariate functional time series, it is of interest to know if the
cross-covariance structure changes during the observation period. Being able to test for such a feature (i) helps
validate the assumption of joint stationarity needed to apply inferential procedures for the cross-covariance oper-
ator, (ii) is of use for determining if the regression function changes in the functional lagged regression problem,
and (iii) may be of independent interest since the presence and location of such a change point may signify an
important event. This problem has also not been addressed, although several authors have considered analogous
problems in the context of finite dimensional time series; we refer the reader to Dette et al. (2015), Wied et al.
(2012a), Wied et al. (2012b), and Aue et al. (2009).

In this article, we consider two types of hypothesis testing problems: tests for a specified cross-covariance
structure between two functional time series, for example, that the two series are uncorrelated at a given lag, and
change point tests for the covariance structure within a given sample. Two varieties of test statistics are proposed
in each of these settings that are based on either the standard L2 distance or dimension reduction based methods
using a suitable principal component basis. These two classes of statistics possess complementary advantages,
which we detail by developing the asymptotic properties of each statistic under local alternatives. The asymptotic
properties of each test statistic are established assuming a general weak dependence condition similar to the one
introduced in Hörmann and Kokoszka (2010), which includes nonlinear time series, as well as the majority of
functional time series models studied to date, under mild regularity conditions. We also develop an application of
the presented results to visualizing the lagged dependence relationship between two functional time series with an
analog of a cross-correlation plot.

This methodology is primarily inspired by a basic observation of Brillinger (1975) that inference for the covari-
ance and/or cross-covariance of time series can be made by performing inference for the mean of a suitably

wileyonlinelibrary.com/journal/jtsa © 2019 John Wiley & Sons Ltd J. Time Ser. Anal. 40: 665–692 (2019)
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INFERENCE FOR LAGGED CROSS-COVARIANCE OPERATOR 667

constructed series. This idea was utilized in Himdi et al. (2003) to conduct non-parametric inference for the
cross-covariance matrix of finite dimensional time series. Estimation and inference for the mean function of a
functional time series was considered in Horváth et al. (2012).

The rest of the article is organized as follows. Section 2 contains the main assumptions and notation of the arti-
cle, as well as asymptotic results for cross-covariance function estimators under these assumptions. The results
developed in Section 2 are utilized to develop hypothesis tests in Section 3. Some details about the practical
implementation of the methods developed in Section 3 are provided in Section 4, which include methods for
overcoming the technical challenge of estimating the eigen-elements of a high-dimensional spectral density oper-
ator at frequency zero that arise in the limiting distribution of the test statistics, as well as the development of
cross-correlation plot analogs. These testing and estimation procedures were studied by means of Monte Carlo
simulation, the results of which we present in Section 5. We illustrate our methodology with an application to
cumulative intraday return curves derived from the 1-minute resolution price of Microsoft and Exxon Mobil stock
listed on the New York stock exchange from the year 2001 in Section 6. All technical derivations and proofs are
provided in the appendices at the end of the article.

2. ASYMPTOTIC PROPERTIES OF CROSS-COVARIANCE FUNCTION ESTIMATES

Before we proceed, we introduce a bit of notation. Let ⟨⋅, ⋅⟩d denote the standard inner product on the space
L2[0, 1]d of real valued square integrable functions defined on [0, 1]d, and let ‖ ⋅ ‖d = ⟨⋅, ⋅⟩1∕2

d . We write f for the

function f (t1,… , td) ∈ L2[0, 1]d when it does not cause confusion. We use the notation ∫ to denote ∫ 1
0 .

We suppose that {(Xi(t),Yi(s)), t, s ∈ [0, 1]}i∈ℤ is a jointly stationary sequence of real valued stochastic
processes whose sample paths are in L2[0, 1] from which we observe a sample of length T , {(X1(t),Y1(s)),
… , (XT (t),YT (s))}. For instance, {(Xi(t),Yi(s))} could denote the price of stock X and stock Y on day i at intraday
times t and s normalized to the unit interval. We let 𝜇X(t) = EX0(t), and 𝜇Y (s) = EY0(s), and define

CXY ,h(t, s) = cov(X0(t),Yh(s)) = E
[
(X0(t) − 𝜇X(t))(Yh(s) − 𝜇Y (s))

]
,

to be the cross-covariance function (or kernel) between {Xi} and {Yi} at lag h. CXY ,h defines the lag h
cross-covariance operator cXY ,h ∶ L2[0, 1] → L2[0, 1] via

cXY ,h(f )(t) = ∫ CXY ,h(t, s)f (s)ds.

This relationship implies that we may conduct inference for cXY ,h by conducting inference for the function CXY ,h.
Based on the sample, we may estimate CXY ,h for h ≥ 0 by

ĈXY ,h(t, s, x) =
1
T

⌊Tx⌋∑
i=1

(Xi(t) − X̄(t))(Yi+h(s) − Ȳ(s)), x ∈
[
0,

T − h
T

]
,

which denotes the partial sample estimate of xCXY ,h based on the first x proportion of the sample, where

X̄(t) = 1
T

T∑
i=1

Xi(t), and Ȳ(t) = 1
T

T∑
i=1

Yi(t).

The estimator can be defined similarly for h < 0. Under mild regularity conditions on the process {(Xi(t),Yi(s))},
which are implied by Assumption 2.1, ĈXY ,h(t, s, 1) is a consistent estimator of CXY ,h(t, s) in L2[0, 1]2. The motiva-
tion for considering now the partial sample estimates of CXY ,h is due to our application to change point testing for

J. Time Ser. Anal. 40: 665–692 (2019) © 2019 John Wiley & Sons Ltd wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12447
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668 G. RICE AND M. SHUM

the cross-covariance developed below. For now for the sake of simplicity we focus our attention on CXY ,0 =∶ CXY

and ĈXY ,0 =∶ ĈXY , that is, we take the lag parameter to be zero, and similar results can be established for lags other
than 0.

To derive the asymptotic properties of ĈXY , we make use of the following assumption that imposes stationarity,
weak dependence, and moment conditions on the functional time series.

Assumption 2.1. (a) There exists a measurable function gXY ∶ S∞ → L2[0, 1]×L2[0, 1], where S is a measurable
space, and a sequence of i.i.d. innovations {𝜖i, ∶ i ∈ ℤ} taking values in S such that (Xi,Yi) = gXY (𝜖i, 𝜖i−1,…).

(b) For all m≥ 1, the m-dependent sequence (Xi,m,Yi,m) = g(𝜖i,… , 𝜖i−m+1, 𝜖
∗
i−m,m, 𝜖

∗
i−m−1,m,…) with 𝜖∗i,m being inde-

pendent copies of 𝜖i,0, and {𝜀∗i,m ∶ i ∈ ℤ} independent of {𝜖i ∶ i ∈ ℤ}, satisfies for some p > 4,

(
E‖Xi − Xi,m‖p

1

)1∕p = O(m−𝛼), and
(
E‖Yi − Yi,m‖p

1

)1∕p = O(m−𝛽)

where 𝛼, 𝛽 > 1.

Assumption 2.1(a) implies that {(Xi,Yi)} is a jointly stationary sequence of Bernoulli shifts in L2[0, 1]×L2[0, 1]
that is driven by an underlying i.i.d. innovation sequence. The space of functional time series models contained
within this class is quite large, including the functional ARMA and GARCH processes; see Bosq (2000) and Aue
et al. (2015). Condition (b) defines a type of Lp-m-approximability condition along the lines of Hörmann and
Kokoszka (2010), which can often be easily verified when a time series model for the observations is given. The
rate condition on the decay of these coefficients, which is somewhat stronger than the main condition studied in
Hörmann and Kokoszka (2010), is used to show that certain kernel lag-window type spectral density operator
estimates defined below are consistent. These assumptions could be replaced by mixing conditions and functional
versions of cummulant summability conditions as presented in Panaretos and Tavakoli (2013b) and Zhang (2016),
which are more comparable to the assumptions in Himdi et al. (2003).

Theorem 2.1. Under Assumption 2.1, there exists a sequence of Gaussian processes, {ΓT (t, s, x), t, s, x ∈
[0, 1]}T∈ℕ, defined on the same probability space as {(Xi,Yi)}, that satisfy

sup
0≤x≤1 ∫∫

(√
T

(
ĈXY (t, s, x) −

⌊Tx⌋
T

CXY (t, s)
)
− ΓT (t, s, x)

)2

dtds = oP(1), (2.1)

where EΓT (t, s, x) = 0, and

cov(ΓT (t, s, x),ΓT (u, v, y)) = min(x, y)D(t, s, u, v),

where D(t, s, u, v) is the long run covariance function of the sequence {(Xi(t) − 𝜇X(t))(Yi(s) − 𝜇Y (s))}, namely

D(t, s, u, v) =
∞∑

𝓁=−∞
cov((X0(t) − 𝜇X(t))(Y0(s) − 𝜇Y (s)), (X𝓁(u) − 𝜇X(u))(Y𝓁(v) − 𝜇Y (v)).

Theorem 2.1 provides a Skorokhod–Dudley–Wichura type characterization of an invariance principle for ĈXY

that can be utilized to establish the asymptotic properties of continuous functionals of ĈXY , and we consider several
such statistics in Section 3 to carry out hypothesis testing for CXY . The proof of Theorem 2.1 is given in Appendix A.
This result is related to Theorem 2.1 of Horváth et al. (2012). The function D describes the asymptotic covariance

function of
√

TĈXY (t, s, 1). D naturally defines a Hilbert-Schmidt integral operator, 𝔡 ∶ L2[0, 1]2 → L2[0, 1]2,
given by

wileyonlinelibrary.com/journal/jtsa © 2019 John Wiley & Sons Ltd J. Time Ser. Anal. 40: 665–692 (2019)
DOI: 10.1111/jtsa.12447
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INFERENCE FOR LAGGED CROSS-COVARIANCE OPERATOR 669

𝔡(f )(t, s) = ∫∫ D(t, s, u, v)f (u, v)dudv,

which is symmetric and positive definite. 𝔡 defines eigenfunctions 𝜑i in L2[0, 1]2, and a non-negative sequence of
eigenvalues 𝜆1 ≥ 𝜆2 ≥ · · · ≥ 0 satisfying

𝔡(𝜑i)(t, s) = 𝜆i𝜑i(t, s). (2.2)

We define these quantities here as they appear in the limiting distributions and definitions for the test statistics
considered below.

3. INFERENCE FOR THE CROSS-COVARIANCE FUNCTION

Theorem 2.1 points to asymptotically validated methods to measure the significance of estimates of CXY . For
instance, we may wish to test based on the estimate ĈXY (⋅, ⋅, 1)

H0,1∶ CXY = C0 versus HA,1∶CXY ≠ C0,

where equality is understood in the L2[0, 1]2 sense, and C0 is a given function of interest. This null function might
be determined from historical data, or taken to be zero to test for zero cross-covariance between Xi and Yi at a given
lag. Since the hypothesis H0,1 is well posed only when the sequence {(Xi,Yi)} is, at least weakly, jointly stationary,
it is also of interest to determine whether or not this assumption is valid. We frame this as a second hypothesis test
of the time homogeneity of the cross-covariance against the ‘at most one’ change point in the cross-covariance
alternative:

H0,2 ∶ C(1)
XY = C(2)

XY = · · · = C(T)
XY , versus

HA,2 ∶ C1 = C(1)
XY = · · · = C(k∗)

XY ≠ C(k∗+1)
XY = · · · = C(T)

XY = C2, for a k∗ = ⌊T𝜃⌋, 𝜃 ∈ (0, 1),

where C(i)
XY (t, s) = cov(Xi(t),Yi(s)). We proceed by developing test statistics for each of these hypotheses. To test

H0,1, we first consider a statistic based on the normalized squared L2 distance of ĈXY to C0:

FT = T‖ĈXY (⋅, ⋅, 1) − C0‖2
2.

Corollary 3.1. Under Assumption 2.1 and H0,1,

FT


−→

∞∑
i=1

𝜆i 2
i , as T → ∞, (3.1)

where {𝜆i, i ≥ 1} are defined in (2.2), and {i, i ≥ 1} are independent standard normal random variables.

Corollary 3.1 shows that a test of asymptotic size 𝛼 of H0,1 may be obtained by comparing FT to the 1 − 𝛼
quantile of the limit distribution given in (3.1), which depends on the unknown eigenvalues of the operator 𝔡. To
estimate these quantiles, one can estimate a suitably large number of eigenvalues 𝜆i using an estimate of 𝔡, and
then continue by using these estimates to approximate the limiting distribution via Monte Carlo simulation. The
details of this implementation are discussed in Section 4, including how to obtain consistent estimates of a finite
number of the 𝜆′is.

J. Time Ser. Anal. 40: 665–692 (2019) © 2019 John Wiley & Sons Ltd wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12447
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670 G. RICE AND M. SHUM

The fact that the limiting distribution of FT is non-pivotal though encourages one to consider alternative test
statistics based on projecting ĈXY into finite dimensional subspaces of L2[0, 1]2. A natural choice of the finite
dimensional space is the one spanned by the eigenbasis generated by 𝔡. In fact, it is a fairly straightforward
calculation to show that for any positive integer p, under Assumption 2.1, the inner products⟨√

T(ĈXY (⋅, ⋅, 1) − CXY ), 𝜑i

⟩
2
, 1 ≤ i ≤ p

are asymptotically independent, and hence projecting into the directions of 𝜑i has the effect of partitioning the
centered estimator ĈXY into approximately mean zero and independent components. This is similar to the motiva-
tion provided for dynamical PCA of Brillinger (1975), which has been studied in the context of functional time
series data in Hörmann et al. (2015a), and Panaretos and Tavakoli (2013a).

In this direction, let

FT ,p =
p∑

i=1

⟨√
T(ĈXY (⋅, ⋅, 1) − C0), �̂�i

⟩2

2

�̂�i

,

where p is a user selected fixed positive integer, �̂�i, and �̂�i, 1 ≤ i ≤ p are consistent estimates of 𝜑i and 𝜆i,
1 ≤ i ≤ p, that is, they satisfy

max
1≤i≤p

‖�̂�i − ĉi𝜑i‖2 = oP(1), and max
1≤i≤p

|�̂�i − 𝜆i| = oP(1), (3.2)

where ĉi = sign(⟨𝜑i, �̂�i⟩). We discuss in Section 4 how to obtain such estimates of 𝜆i and 𝜑i(t, s) under the
assumption that these eigenvalues are distinct, and give some advice on how to choose p.

Corollary 3.2. Under Assumption 2.1, 𝜆p > 0, and H0,1,

FT ,p


−→ 𝜒2(p), as T → ∞,

where 𝜒2(p) denotes a Chi-squared random variable with p degrees of freedom.

We now turn to the consistency and power properties of FT and FT ,p. The following result shows that both
statistics diverge at rate T under HA,1. This holds generally for FT , and also for FT ,p so long as the difference
CXY − C0 is not orthogonal to the first p elements of the principal component basis {𝜑i, i ≥ 1}.

Theorem 3.1. Under Assumption 2.1, 𝜆p > 0, and HA,1,

FT

T

P
−→ ‖CXY − C0‖2

2, and
FT ,p

T

P
−→

p∑
i=1

⟨CXY − C0, 𝜑i⟩22
𝜆i

.

Moreover, if C0 = C0,T satisfies ‖‖‖√T(CXY − C0) − CA
‖‖‖2

→ 0 as T → ∞ for some element CA of L2[0, 1]2, then

FT


−→ ‖CA‖2

2 + 2
∞∑

i=1

𝜆
1∕2
i ⟨CA, 𝜑i⟩i +

∞∑
i=1

𝜆i 2
i , (3.3)

wileyonlinelibrary.com/journal/jtsa © 2019 John Wiley & Sons Ltd J. Time Ser. Anal. 40: 665–692 (2019)
DOI: 10.1111/jtsa.12447
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INFERENCE FOR LAGGED CROSS-COVARIANCE OPERATOR 671

and

FT ,p


−→

p∑
i=1

⟨CA, 𝜑i⟩22
𝜆i

+ 2
p∑

i=1

⟨CA, 𝜑i⟩2i

𝜆
1∕2
i

+
p∑

i=1

 2
i .

This ‘local-alternative’ result provides some insight into the complementary strengths and weaknesses of both
the norm based and dimension reduction based test statistics. Obviously if CXY − C0 is orthogonal to the first
p principal components of 𝔡, then the test statistic FT ,p is not expected to have more than trivial power. In
contrast the norm based test statistic FT is expected to have improved power over other alternatives in which
CXY − C0 is of the same magnitude, since the second term on the right-hand side (3.3), which has mean zero,
will have a smaller variance in this case. Conversely, if CXY − C0 is contained in the subspace spanned by the
first p principal components of 𝔡, then FT ,p is expected to be more powerful, since then this statistic effectively
defines the likelihood ratio test of H0,1 assuming the data is Gaussian in the p-dimensional subspace spanned by
𝜑1,… , 𝜑p.

To test H0,2 versus HA,2, we define analogously to FT and FT ,p,

ZT = T sup
0≤x≤1

‖ĈXY (⋅, ⋅, x) − xĈXY (⋅, ⋅, 1)‖2
2.

and

ZT ,p = T sup
0≤x≤1

p∑
i=1

⟨ĈXY (⋅, ⋅, x) − xĈXY (⋅, ⋅, 1), �̂�i⟩22
�̂�i

.

ZT and ZT ,p are each maximally selected CUSUM type statistics based on comparing the partial sample estimates
of CXY to the estimator from the whole sample. These statistics are similar to those considered in Aue et al. (2018),
Aston and Kirch (2012), and Sharipov et al. (2016). The following corollaries of Theorem 2.1 quantify the large
sample behavior of these statistics under H0,2.

Corollary 3.3. Under Assumption 2.1 and H0,2,

ZT


−→ sup

0≤x≤1

∞∑
i=1

𝜆iB
2
i (x), as T → ∞,

where {𝜆i, i ≥ 1} are defined in (2.2), and {Bi(x), i ≥ 1, x ∈ [0, 1]} are i.i.d. standard Brownian bridges on [0, 1].
If in addition (3.2) holds, then

ZT ,p


−→ sup

0≤x≤1

p∑
i=1

B2
i (x), as T → ∞,

It follows then that a test of H0,2 with asymptotic level 𝛼 is obtained by rejecting if ZT or ZT ,p are larger than
the 1 − 𝛼 quantiles of their limiting distributions detailed in Corollary 3.3. These limiting distributions may again
be approximated using Monte simulation. The statistics ZT and ZT ,p diverge under HA,2 in conjunction with some
further regularity conditions. Notably, no orthogonality condition is needed in order for the test statistic ZT ,p to
diverge, as compared to the consistency result for FT ,p. This is due to the way the estimates defined below for 𝜑i

behave as the sample size increases under HA,2. We address these consistency results in more detail Section A.3
in the appendix.

J. Time Ser. Anal. 40: 665–692 (2019) © 2019 John Wiley & Sons Ltd wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12447
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672 G. RICE AND M. SHUM

3.1. Application to Cross-Correlation Plots Between Functional Time Series

When the assumption of joint stationarity is thought to be valid, as can be tested using ZT or ZT ,p, Corollary 3.1
can be used to further investigate the lagged dependence relationship between Xi and Yi through an analog of a
cross-correlation plot. The functional cross-correlation coefficient at lag h, 𝜌XY ,h, may be defined as

𝜌XY ,h =
‖CXY ,h‖2‖[E(X0(t) − 𝜇X(t))2]1∕2‖1‖[E(Y0(t) − 𝜇Y (t))2]1∕2‖1

.

A simple application of the Cauchy-Schwarz inequality shows that 0 ≤ 𝜌XY ,h ≤ 1. With

�̂�X,𝓁(t, s) =
1
T

T−𝓁∑
i=1

(Xi(t) − X̄(t))(Xi+𝓁(s) − X̄(s)),

for 𝓁 ≥ 0, and

�̂�X,𝓁(t, s) =
1
T

T∑
i=1−𝓁

(Xi(t) − X̄(t))(Xi+𝓁(s) − X̄(s)),

for 𝓁 < 0, and �̂�Y (t, s) similarly defined, 𝜌XY ,h can be estimated by

�̂�XY ,h =
‖ĈXY ,h(⋅, ⋅, 1)‖2(

∫ �̂�2
X,0(t, t)dt ∫ �̂�2

Y ,0(t, t)dt

)1∕2
.

Assuming that the sequence {Xi} is independent of {Yi}, one has by Corollary 3.1 that for each fixed h,

T‖ĈXY ,h(⋅, ⋅, 1)‖2
2


→

∞∑
j=1

𝜆ind
j j, (3.4)

where the 𝜆ind
j ’s are the eigenvalues of the covariance operator with kernel

Dind(t, s, u, v) =
∞∑

𝓁=−∞
𝛾X,𝓁(t, u)𝛾Y ,𝓁(s, v)

where 𝛾X,𝓁(t, u) = E(X0(t) − 𝜇X(t))(X𝓁(u) − 𝜇X(u)), and 𝛾Y is similarly defined. Dind may be estimated using an
estimator of the form

D̂ind(t, s, u, v) =
∞∑

𝓁=−∞
Wb

(
𝓁
B

)
�̂�X,𝓁(t, u)�̂�Y ,𝓁(s, v).

We consider such estimators in more detail in Section 4, as well as definitions of Wb and B. Furthermore, the
𝜆ind

i can be estimated as in (4.4), and one can estimate the limiting 𝛼 quantile of T‖ĈXY ,h(⋅, ⋅, 1)‖2, Ξ̂ind(𝛼), from
(3.4). An approximate size 𝛼 upper confidence bound for 𝜌XY ,h assuming that the {Xi} and {Yi} sequences are
independent is then given by

wileyonlinelibrary.com/journal/jtsa © 2019 John Wiley & Sons Ltd J. Time Ser. Anal. 40: 665–692 (2019)
DOI: 10.1111/jtsa.12447
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INFERENCE FOR LAGGED CROSS-COVARIANCE OPERATOR 673

Îind(𝛼) =

√
Ξ̂ind(𝛼)√

T

(
∫ �̂�2

X,0(t, t)dt ∫ �̂�2
Y ,0(t, t)dt

)1∕2
.

Comparisons of �̂�XY ,h and Îind(𝛼) can be used to help identify lags at which {Xi} and {Yi} are dependent. We
illustrate this in the data application in Section 6 (see Figure 1).

4. IMPLEMENTATION

Implementing the testing procedures outlined above requires the estimation of the eigenvalues, and, in case of the
dimension reduction based test statistics FT ,p and ZT ,p, the eigenfunctions of 𝔡. We first develop methodology for
estimating 𝔡 and its spectrum, and then describe some numerical methods for carrying out this estimation.

4.1. Estimation of D, 𝔡, 𝜑i, and 𝜆i

As 𝔡 is simply a scalar multiple of the spectral density operator at frequency zero of the stationary sequence
{(Xi(t) − 𝜇X(t))(Yi(s) − 𝜇Y (s))} in L2[0, 1]2, as defined in Panaretos and Tavakoli (2013a,b), it may be naturally
estimated with a kernel lag-window type estimator. Let

D̂T (t, s, u, v) =
∞∑

𝓁=−∞
Wb

(
𝓁
B

)
�̂�𝓁(t, s, u, v), (4.1)

where B is a bandwidth parameter satisfying,

B = B(T) → ∞,
B

T1∕2
→ 0 as T → ∞, (4.2)

and, with X̄j(t) = Xj(t) − X̄(t) and Ȳj(s) similarly defined,

�̂�𝓁(t, s, u, v) =
⎧⎪⎨⎪⎩

1

T

∑T−𝓁
j=1

(
X̄j(t)Ȳj(s) − ĈXY (t, s, 1)

) (
X̄j+𝓁(u)Ȳj+𝓁(v) − ĈXY (u, v, 1)

)
, 𝓁 ≥ 0

1

T

∑T
j=1−𝓁

(
X̄j(t)Ȳj(s) − ĈXY (t, s, 1)

) (
X̄j+𝓁(u)Ȳj+𝓁(v) − ĈXY (u, v, 1)

)
, 𝓁 < 0.

We take the function Wb to be a symmetric and continuous weight function with bounded support of order b;
see Chapter 7 of Priestley (1981). D̂T then defines an estimator of 𝔡 by

�̂�T (f )(t, s) = ∫∫ D̂T (t, s, u, v)f (u, v)dudv, (4.3)

which further defines estimates of the eigenvalues and eigenfunctions of 𝔡 satisfying

�̂�T (�̂�i)(t, s) = �̂�i�̂�i(t, s). (4.4)

In the simulations and application below, we consider the Bartlett weight function, W1(x) = (1− |x|)𝟙(|x| < 1),
which is of order one. We also repeated all simulations using the Parzen weight function, which is of order two,
and found that changing the weight function had relatively limited effect relative to the differences in changing
the bandwidth; see Andrews (1991) for the definition of the Parzen weight function. To select the bandwidth

J. Time Ser. Anal. 40: 665–692 (2019) © 2019 John Wiley & Sons Ltd wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12447
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674 G. RICE AND M. SHUM

B, one could employ any of a number of methods, for example using the criteria discussed in Hörmann and
Kokoszka (2010) or by adapting the data driven procedure in Rice and Shang (2017). We study below the choice
of B = T1∕(2b+1) where b = 1 and b = 2, which diverge at an optimal rate in terms of minimizing the asymptotic
mean squared normed error of the estimator D̂ when the weight function is of order b. The choice of B = T1∕5

is suggested as a heuristic choice for this reason (see Brillinger, 1975), and was also considered in the context
of spectral density operator estimation of functional time series in Panaretos and Tavakoli (2013b). We have the
following result.

Theorem 4.1. Under Assumption 2.1, ‖D − D̂T‖4 = oP(1).

To obtain consistent estimates of the first p elements of the spectrum of 𝔡, we assume for the sake of simplic-
ity that the first p eigenvalues of 𝔡 are distinct, which implies that the corresponding eigenspaces of the first p
eigenvalues are one dimensional.

Assumption 4.1. We assume that there exists an integer p ≥ 1 satisfying that

𝜆1 > · · · > 𝜆p > 𝜆p+1 ≥ 0

where {𝜆i, i ≥ 1} are defined in (2.2).

Assumption 4.1 could be relaxed by utilizing some of the ideas presented in Reimherr (2015), but we do not
pursue those here. Under this assumption, the following result is implied by Theorem 4.1 and the results in Section
6.1 of Gohberg et al. (1990).

Corollary 4.1. Under Assumption 2.1 and 4.1, (3.2) holds.

4.2. Numerical Implementation

Although so far we have presented results as if the functional data at hand were observed on their entire domains,
in practice the data will consist of only discrete observations of the underlying functions. Let Xi(tj) and Yi(tj),
1 ≤ j ≤ R, denote the observed values of the functions Xi(t) and Yi(t), observed at the common points {t1,… , tR}.
We assume here that each functional observation Xi(t) and Yi(s) are observed at common points in their domains,
as this matches our simulations and data example below, although this could be relaxed.

It is straightforward to estimate the test statistics FT , FT ,p, ZT , and ZT ,p from the discrete data and simple
Riemann sum approximations to the inner products and norms, so long as the eigenvalue and eigenfunction esti-
mates �̂�i and �̂�i are given. However it is less clear how to estimate the eigen-elements satisfying (4.4) from
the discrete data. One could in principle estimate the eigenvalues and eigenfunctions (𝜆i, 𝜑i(t, s)), 1 ≤ i ≤ p
of 𝔡 by calculating the spectrum of the four-way tensor D̂T (ti, tj, tk, t𝓁), 1 ≤ i, j, k,𝓁 ≤ R of dimension R4, and
employing linear interpolation to complete the eigenfunction estimates, but this becomes computationally infea-
sible for even moderate values of R due to the dimension of the tensor, and the fact that this tensor is typically
dense.

What we propose instead is a dimension reduction based approach involving the functional principal compo-
nents (fPC’s) of the individual series {Xi} and {Yi}. Let

ĉX ∶=

[
1
T

T∑
𝓁=1

(X𝓁(ti) − X̄(ti))(X𝓁(tj) − X̄(tj)) ∶ 1 ≤ i, j ≤ R

]

be the sample covariance matrix of the discretized observations of the X sample, and define ĉY similarly. Calculat-
ing the spectra of ĉX and ĉY yields eigenvalues {𝜈X,1,… , 𝜈X,R}, {𝜈Y ,1,… , 𝜈Y ,R} and eigenvectors, {𝜃X,1,… , 𝜃X,R},

wileyonlinelibrary.com/journal/jtsa © 2019 John Wiley & Sons Ltd J. Time Ser. Anal. 40: 665–692 (2019)
DOI: 10.1111/jtsa.12447
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INFERENCE FOR LAGGED CROSS-COVARIANCE OPERATOR 675

{𝜃Y ,1,… , 𝜃Y ,R}, the latter of which, when multiplied by
√

R, yield discrete approximations to the fPC’s of the
sequences {Xi} and {Yi}, 𝜃X,i(tj), 𝜃Y ,i(tj), 1 ≤ i, j ≤ R respectively. They can be completed to the rest of the unit
interval by linear interpolation, which we employ.

We then use the product basis of L2[0, 1]4 generated by these functions to reduce the dimension of D̂T . The
projections of D̂T onto the product basis of the first qX elements of 𝜃X,i(t) and qY elements 𝜃Y ,i(t) may be stored in
a 4-way tensor with q2

Xq2
Y elements, , via

ijkr = ∫ · · ·∫ D̂T (t, s, u, v)𝜃X,i(t)𝜃Y ,j(s)𝜃X,k(u)𝜃Y ,r(v)dtdsdudv.

Each of these elements can be estimated with a simple Riemann sum approximation. The cutoffs qX and qY must
be selected by the user. We suggest using the total variance explained approach for this: we take qX and qY so that
𝜃X,i(t) 1 ≤ i ≤ qX and 𝜃Y ,i(t), 1 ≤ i ≤ qY , explain at least v% of the variation in each series, where v is close to but
strictly smaller than 1; see Chapter 6 of Ramsay and Silverman (2005). This also motivates a natural method to
select the integer p in the statistics FT ,p and ZT ,p, for example to take p = max{qX , qY}.

The eigenvalues {�̂�i, 1 ≤ i ≤ qXqY} and eigen-arrays {�̂�i ∈ ℝqX×qY , 1 ≤ i ≤ qXqY} of  satisfy

�̂�𝓁 = �̂�𝓁�̂�𝓁 , 1 ≤ 𝓁 ≤ qXqY , where �̂�𝓁[i, j] =
qX∑

k=1

qY∑
r=1

ijkr�̂�𝓁[k, r].

This eigenvalue problem may be solved numerically by solving for the eigenvalues/vectors of a qXqY by
qXqY square matrix that is ‘tiled’ with the cross-sections of , as is implemented in svd.tensor func-
tion in the package tensorA in R; see van den Boogaart (2010). The eigenfunctions 𝜑i(t, s) may then be
estimated with

�̂�i(t, s) =
qX∑
j=1

qY∑
k=1

�̂�i[j, k]𝜃X,j(t)𝜃Y ,k(s).

We use these estimates for the �̂�′i s and �̂�′
i s in the simulations and applications below. Beyond that the functions

𝜃X,i(t) and 𝜃Y ,j(s) may be used to effectively represent the original X and Y series, we also desire that the discrete

approximation of the operator �̂� given by  is accurate. We may therefore also employ that

�̂�1 + · · · + �̂�qXqY

∫∫ D̂T (t, s, t, s)dtds
≥ vd,

where again vd is a large percentage. In other words, this condition imposes that the traces of the operators defined
by  and D̂T agree up to some tolerance defined by vd. This criterion may be met by increasing qX and qY when
necessary.

5. SIMULATION STUDY

5.1. Outline

We now present the results of a small simulation experiment that aimed to study the finite sample properties of
the test statistics introduced above. All of the simulations reported below were done using the R language (R
Development Core Team, 2015). The number of potential experimental settings that could be considered to study
Theorem 2.1 and Corollaries 3.1–3.3 is enormous. For the sake of brevity, we mainly focused on demonstrating
that for a somewhat rich class of data generating processes (DGP’s) exhibiting serial correlation, the tests based

J. Time Ser. Anal. 40: 665–692 (2019) © 2019 John Wiley & Sons Ltd wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12447
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676 G. RICE AND M. SHUM

on FT , FT ,p, ZT , and ZT ,p hold their size well, and that the eigenvalue and eigenfunction estimation procedure
explained in Section 4.2 is adequate for such hypothesis testing problems. Towards this goal, we considered the
following basic structure for generating synthetic data depending on the parameter 𝛼 ∈ [0, 1]:

Xi(t) = 𝛼𝜀c,i(t) + (1 − 𝛼)𝜀x,i(t), Yi(t) = 𝛼𝜀c,i(t) + (1 − 𝛼)𝜀y,i(t), 1 ≤ i ≤ T (5.1)

where 𝜀c,i(t), 𝜀x,i(t), and 𝜀y,i(t) are mutually independent sequences that satisfy either of two models given below.
In this case, the functional series Xi(t) and Yi(t) are correlated through their common dependence on 𝜀c,i(t), with
the strength of this dependence controlled by 𝛼. If 𝛼 = 0 for instance, then the two sequences Xi and Yi are
independent. We took the error sequences to satisfy either:

IID-BM: 𝜀c,i(t) = Wc,i(t), 𝜀x,i(t) = Wx,i(t), and 𝜀y,i(t) = Wy,i(t), where {Wc,i(t)}, {Wx,i(t)}, {Wy,i(t)} are mutually
independent sequences of IID standard Brownian motions.

IID-EXP: 𝜀c,i(t) = Ec,i(t), 𝜀x,i(t) = Ex,i(t), and 𝜀y,i(t) = Ey,i(t), where

Ei,c(t) =
3∑

j=1

ei,j𝜙j(t),

ei,j are i.i.d. centered exponential random variable with parameter one, and {𝜙i(t)} is the standard Fourier basis.
Ei,x and Ei,y are similarly defined.

FAR(1): 𝜀c,i(t) = ∫ Φ(t, s)𝜀c,i(s)ds+Wc,i(t), 𝜀x,i(t) = ∫ Φ(t, s)𝜀x,i(s)ds+Wx,i(t), and 𝜀y,i(t) = ∫ Φ(t, s)𝜀y,i(s)ds+
Wy,i(t), where {Wc,i(t)}, {Wx,i(t)}, and {Wy,i(t)} are defined above, and Φ(t, s) = min(t, s).
FMA(1): 𝜀c,i(t) = Wc,i(t)+Wc,i−1(t), 𝜀x,i(t) = Wx,i(t)+Wx,i−1(t), and 𝜀y,i(t) = Wy,i(t)+Wy,i−1(t), where {Wc,i(t)},
{Wx,i(t)}, and {Wy,i(t)} are defined above.

The sequence {(Xi,Yi)} satisfying (5.1) with error sequences satisfying either of the above models satisfy
Assumption 2.1. The choice of the Brownian motions for the innovation sequences in the FAR and FMA pro-
cesses is partially motivated by our application to intraday returns data below, see Figure 2. The process IID-EXP
is meant to both study an example in which the underlying process is not Gaussian, and to also consider a process
of finite dimension to evaluate whether the projection based test statistics perform better than their norm based
counterparts in this case. For each setting of T and 𝛼, the data was generated on an equally spaced grid on [0, 1]
with R = 100 points, and the simulation was repeated 1000 times for each setting to calculate the empirical size
and power curves presented below. We chose qX = qY = 3 in the estimation of procedure for the eigenvalues and
eigenfunctions in Section 4, which in the vernacular of fPCA corresponds to a total variance explained of around
93% on average for each sequence Xi and Yi in case of the IID-BM, FAR(1) and FMA(1) processes. We considered
larger values of qX and qY , and found that it did not have much of an effect on the results, although the computa-
tional time increases substantially as these parameters increase. We similarly took p = 3 in the definition of FT ,p

and ZT ,p.
To study the size of the test of H0,1 based on FT and FT ,3, we generated data according to (5.1) for each setting

of the error sequence with 𝛼 = 0, and performed tests with nominal levels of 5%, and 1% of H0,1 ∶ CXY = 0. The
rejection rates from 1000 simulations from each statistic are reported in Table I. One thing that was clear based on
these simulations was that the tests based on either statistic tended to be somewhat oversized. This issue improves
as T increases, as predicted by Corollaries 3.1 and 3.2, and all tests achieved quite good size once T ≥ 300. The
presence of serial correlation increases the size inflation of the tests, however this is fairly well controlled by the
simple kernel lag-window estimator of the operator 𝔡. This could be improved further by increasing the bandwidth
at the cost of increased computational time, according to unreported simulations. The fact that the empirical levels
are quite close to nominal and improve with increasing T is indicative that the eigenvalue/eigenfunction estimation
described in Section 4.2 is performing adequately for this application.

wileyonlinelibrary.com/journal/jtsa © 2019 John Wiley & Sons Ltd J. Time Ser. Anal. 40: 665–692 (2019)
DOI: 10.1111/jtsa.12447
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INFERENCE FOR LAGGED CROSS-COVARIANCE OPERATOR 677

Table I. Empirical sizes with nominal levels of 5%, and 1% for a test of H0,1 ∶ CXY = 0 where the data was generated according
to (5.1) with 𝛼 = 0

Statistic: FT

IID-BM IID-EXP FAR(1) FMA(1)

B T 5% 1% 5% 1% 5% 1% 5% 1%

T1∕5 50 0.061 0.019 0.044 0.003 0.091 0.019 0.101 0.032
100 0.052 0.010 0.039 0.004 0.069 0.017 0.094 0.033
300 0.062 0.010 0.057 0.005 0.061 0.018 0.074 0.020

T1∕3 50 0.086 0.024 0.048 0.011 0.099 0.023 0.104 0.027
100 0.072 0.014 0.040 0.005 0.095 0.032 0.083 0.026
300 0.062 0.016 0.056 0.016 0.065 0.015 0.067 0.021

Statistic: FT ,3

IID-BM IID-EXP FAR(1) FMA(1)

B T 5% 1% 5% 1% 5% 1% 5% 1%

T1∕5 50 0.061 0.019 0.042 0.006 0.077 0.023 0.070 0.012
100 0.052 0.010 0.035 0.006 0.065 0.013 0.071 0.015
300 0.062 0.010 0.043 0.011 0.057 0.017 0.057 0.016

T1∕3 50 0.091 0.022 0.041 0.004 0.098 0.030 0.089 0.025
100 0.069 0.020 0.035 0.007 0.101 0.027 0.070 0.015
300 0.060 0.016 0.048 0.013 0.061 0.013 0.059 0.018

We also studied the empirical power of FT and FT ,3 by testing H0,1 ∶ CXY = 0 with data following (5.1), both
with FAR(1) and IID-EXP errors, and 𝛼 increasing from 0 to 1. The results of this simulation are reported as power
curves in Figure 3. We observed that both tests were powerful for large enough values of 𝛼. Interestingly, the
simple norm based test FT possessed better power than FT ,3 in all the examples that we considered, including the
IID-EXP case, in which the dimension of the {Xi} and {Yi} series is equal to qX and qY respectively. The only way
that we can think to explain this is that the difference stems mostly from the way estimation error of the eigenvalues
𝜆i of 𝔡 affects each test statistic. In the case of the norm based test, errors in estimating small eigenvalues have a
negligible effect, since they manifest as small changes in the estimated limiting distribution, while the projection
based tests can be greatly affected by small estimation errors of the eigenvalues. A similar observation is made in
the context of change point analysis in Aue et al. (2018).

For testing H0,2 based on ZT and ZT ,3, we briefly present the results of another empirical size and power study.
In this case we applied each statistic to data generated according to (5.1) with 𝛼 ranging from zero to one, and for
T = 100, 300, and 1000. As expected in this case the value of 𝛼 made little difference, and the empirical size from
1000 independent simulations for 𝛼 = 0 each two values of the bandwidth are presented Table II. We saw that in
general the change point tests based on ZT and ZT ,3 tended to be undersized, with this being more pronounced for
the statistic ZT ,3, but this improved with increasing sample size.

To study the power of the change point tests under HA,2, we considered two DGP exhibiting a change point in
the cross-covariance structure at lag zero. We generated observations (Xi,Yi) for 1 ≤ i ≤ ⌊T∕2⌋ from model (5.1),
and then generated (Xi,Yi), ⌊T∕2⌋ + 1 ≤ i ≤ T from either

• Scenario 1, Change in direction of relationship:

Xi(t) = −𝛼𝜀c,i(t) + (1 − 𝛼)𝜀x,i(t), Yi(t) = 𝛼𝜀c,i(t) + (1 − 𝛼)𝜀y,i(t), ⌊T∕2⌋ + 1 ≤ i ≤ T

• Scenario 2, Change in strength of relationship:

Xi(t) = (1 − 𝛼)𝜀c,i(t) + 𝛼𝜀x,i(t), Yi(t) = (1 − 𝛼)𝜀c,i(t) + 𝛼𝜀y,i(t), ⌊T∕2⌋ + 1 ≤ i ≤ T

J. Time Ser. Anal. 40: 665–692 (2019) © 2019 John Wiley & Sons Ltd wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12447
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678 G. RICE AND M. SHUM

Table II. Empirical sizes with nominal levels of 5%, and 1% for a test of H0,2 ∶ C(1)
XY = … = C(T)

XY where the data was generated
according to (5.1) with 𝛼 = 0

Statistic: ZT

IID-BM IID-EXP FAR(1) FMA(1)

B T 5% 1% 5% 1% 5% 1% 5% 1%

T1∕5 50 0.026 0.001 0.015 0.000 0.023 0.001 0.034 0.003
100 0.040 0.006 0.016 0.003 0.046 0.004 0.045 0.003
300 0.050 0.007 0.033 0.006 0.052 0.011 0.067 0.018
1000 0.064 0.017 0.049 0.007 0.072 0.012 0.080 0.012

T1∕3 50 0.024 0.000 0.004 0.000 0.034 0.003 0.027 0.000
100 0.035 0.002 0.010 0.000 0.048 0.005 0.041 0.003
300 0.059 0.013 0.037 0.003 0.078 0.010 0.059 0.009
1000 0.078 0.018 0.047 0.007 0.067 0.022 0.058 0.011

Statistic: ZT ,3

IID-BM IID-EXP FAR(1) FMA(1)

B T 5% 1% 5% 1% 5% 1% 5% 1%

T1∕5 50 0.003 0.000 0.000 0.000 0.006 0.000 0.000 0.000
100 0.017 0.002 0.018 0.001 0.028 0.003 0.002 0.000
300 0.043 0.002 0.043 0.001 0.046 0.005 0.024 0.002
1000 0.073 0.009 0.038 0.008 0.068 0.011 0.070 0.017

T1∕3 50 0.000 0.000 0.002 0.000 0.003 0.000 0.001 0.000
100 0.008 0.000 0.012 0.000 0.011 0.000 0.009 0.000
300 0.028 0.002 0.028 0.003 0.032 0.003 0.038 0.006
1000 0.059 0.007 0.057 0.011 0.055 0.006 0.042 0.008

Table III. Empirical power for change point tests with nominal levels of 5%, and 1% where the data was generated according
to Scenarios 1 and 2 with errors following FAR(1) and IID-EXP. In each case B = T1∕3

DGP: FAR(1)

ZT ZT ,3

Scenario T 5% 1% 5% 1%

1 50 0.040 0.005 0.009 0.000
100 0.086 0.015 0.043 0.007
300 0.155 0.040 0.089 0.011
1000 0.349 0.164 0.218 0.086

2 50 0.058 0.005 0.014 0.001
100 0.100 0.020 0.041 0.003
300 0.212 0.074 0.112 0.029
1000 0.494 0.284 0.345 0.148

DGP: IID-EXP

ZT ZT ,3

Scenario T 5% 1% 5% 1%

1 50 0.008 0.000 0.002 0.000
100 0.022 0.000 0.014 0.007
300 0.125 0.032 0.084 0.011
1000 0.447 0.207 0.346 0.086

2 50 0.007 0.000 0.000 0.000
100 0.025 0.003 0.016 0.000
300 0.102 0.016 0.075 0.008
1000 0.344 0.133 0.330 0.121

wileyonlinelibrary.com/journal/jtsa © 2019 John Wiley & Sons Ltd J. Time Ser. Anal. 40: 665–692 (2019)
DOI: 10.1111/jtsa.12447
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INFERENCE FOR LAGGED CROSS-COVARIANCE OPERATOR 679

In Scenario 1 we set 𝛼 = 0.2 and Scenario 2 we set 𝛼 = 0.46 so that in both cases ‖C(1)
XY − C(T)

XY ‖ are
approximately equal for the purpose of comparison. The empirical power for several values of T and errors
following the FAR(1) and IID-EXP DGP are given in Table III. We did not notice much of a difference in
power between Scenarios 1 and 2. Again we noticed that the norm based methods out-performed the projec-
tion based methods when the errors followed an FAR(1) model, but the methods were more comparable for
IID-EXP errors.

6. APPLICATION TO CUMULATIVE INTRADAY RETURNS

A natural example of functional time series data are those derived from densely recorded asset price data, such
as intraday stock price data. Recently there has been an upsurge in quantitative research focused on analyzing
the information contained within curves constructed from such data; we refer the reader to Barndorff-Nielsen and
Shephard (2004), Wang and Zou (2010), Gabrys et al. (2010), Müller et al. (2011), and Kokoszka and Reimherr
(2013). Price curves associated with popular companies are commonly displayed at websites and applications like
yahoo.com/finance.

The specific data that we consider was obtained from www.nasdaq.com, and consists of 1 minute resolution
closing prices of a single share of Microsoft (ticker MSFT), and Exxon Mobil (ticker XOM) stocks from 2 January
to 31 December 2001, which comprises data from 248 trading days (T = 248) with R = 389 observations per
day. We applied the methods introduced in Sections 3 to study the cross-covariance structure between these two
companies stock prices on the intraday scale. Let PM,i(tj), and PX,i(tj) i = 1,… ,T , j = 1,… ,R, denote the prices
of Microsoft and Exxon Mobil stock on day i at intraday time tj respectively. The first three price curves of each
series constructed from the raw price data and linear interpolation are displayed in the left hand panel of Figure 2.
The functional time series of price curves are evidently non-stationary due to frequent level shifts and volatility,
and hence we considered the following transformation of these curves akin to taking the log returns for scalar
price data:

Figure 1. The left and right hand panels show plots of �̂�XY ,h for −5 ≤ h ≤ 5 versus Îind(0.95) (blue line) before and after the
date 22 March 2001 respectively. The plots indicate the cross-covariance at lags other than zero are not significantly different

from zero [Color figure can be viewed at wileyonlinelibrary.com]

J. Time Ser. Anal. 40: 665–692 (2019) © 2019 John Wiley & Sons Ltd wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12447
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Figure 2. The left hand panel displays three intraday price curves derived from the one-minute resolution closing prices of a
single share of XOM and MSFT. The right hand panel displays the corresponding CIDR curves [Color figure can be viewed at

wileyonlinelibrary.com]

Figure 3. Power curves as a function of 𝛼 ranging from 0 to 0.8 at increments of 0.1, for a test H0,1 ∶ CXY = 0 with level of
5% with B = T1∕5 applied to (Xi,Yi) following (5.1) with FAR(1) errors (top) and IID-EXP errors (bottom) using FT (left), and

FT ,3 (right) [Color figure can be viewed at wileyonlinelibrary.com]

wileyonlinelibrary.com/journal/jtsa © 2019 John Wiley & Sons Ltd J. Time Ser. Anal. 40: 665–692 (2019)
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INFERENCE FOR LAGGED CROSS-COVARIANCE OPERATOR 681

Figure 4. The top panel displays a ‘CUSUM chart’ of ‖ĈXY (⋅, ⋅, t∕T)−(t∕T)ĈXY (⋅, ⋅, 1)‖2
2 versus t calculated from the XOM and

MSFT price data from 2001. The maximum value ZT is significant to the 0.01 level, and is achieved at the value t corresponding
to 22 March. The lower left and lower right panels show similar CUSUM charts for the sub samples of data before and after

this point respectively [Color figure can be viewed at wileyonlinelibrary.com]

Definition 1. Suppose Pi(tj), i = 1,… ,T , j = 1,… ,R, is the price of a financial asset at time tj on day i. The
functions

ri(tj) = 100[ln Pi(tj) − ln Pi(t1)], j = 1, 2,… ,R, i = 1,… ,T ,

are called the cumulative intraday returns (CIDR’s).

Since the logarithm is increasing, the CIDR curves have nearly the same shape as the original daily price curves,
but the assumption of stationarity is much more plausible for these curves. According to their definition, the
CIDR’s always start from zero, so level stationarity is enforced, and taking the logarithm helps reduce potential
scale inflation. The stationarity of CIDR curves derived from intraday stock price data was argued empirically in
Horváth et al. (2014).

J. Time Ser. Anal. 40: 665–692 (2019) © 2019 John Wiley & Sons Ltd wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12447
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682 G. RICE AND M. SHUM

Figure 5. The left and right hand panels display the estimator ĈXY before and after the date 22 March 2001 respectively. Both
of these surface estimates were measured to be significantly different from zero, as the test of H0,1 ∶ CXY = 0 based on FT

yielded p-values less than 0.000 in both cases [Color figure can be viewed at wileyonlinelibrary.com]

Let Xi(t) = rM,i(t) and Yi(t) = rX,i(t), 1 ≤ i ≤ T , denote the CIDR curves derived from the Microsoft and Exxon
Mobil stock price data and linear interpolation respectively. The first three CIDR curves of each series are plotted
in the right hand panel of Figure 2.

Before estimating and measuring the significance of the cross-covariance between these functional time series
of CIDR’s, we first tested for its homogeneity within the sample, a test of H0,2, using the test statistic ZT . For this
analysis, we took qX = qM = 3 for the method outline in Section 4.2, which corresponded to approximately 94%
variance explained in each series. A ‘CUSUM chart’ of c(t) = T‖ĈXY (⋅, ⋅, t∕T) − (t∕T)ĈXY (⋅, ⋅, 1)‖2

2 versus t is
given in Figure 4 with the corresponding 10%, 5% and 1% significance levels of the estimated limiting distribution
in Corollary 3.1. The statistic ZT far exceeded the 1% level, which indicates that there is strong evidence that
the covariance relationship is heterogenous within the sample. Also apparent in the plot, the largest difference
between the partial sample cross-covariance estimate occurs on 22 March 2001. We segmented the data into two
subsamples before and after this point of lengths T1 = 56 and T2 = 192 respectively, and again tested for the
homogeneity of the cross-covariance within each sub-sample. In both sub-samples the homogeneity could not be
rejected with any significance. Interestingly, the sample including the intraday XOM and MSFT returns data before
and after the terrorist attacks on 11 September 2001 did not seem to exhibit a change point in the cross-covariance
relationship. The date 22 March 2001 does however seem to be in the proximity of some fairly important events
relating to the world oil market. On 17 March, OPEC had announced that they were cutting oil production by 4%,
and just three days later the largest off shore oil rig in the world, Petrobras 36, sank off of the coast of Brazil.

To measure the significance of the estimates of the cross-covariance before and after the change point, we
applied a test of H0,1 ∶ CXY = 0 to each sub-sample. The null hypothesis was strongly rejected in both cases with
p-values equal to zero out to three decimal places. The cross-covariance surfaces are displayed in Figure 5, from
which we can see that the shape of the cross-covariance is quite different before and after the initial change point:
the surface goes from being negative to predominantly positive. Plots of �̂�XY ,h versus Îind(0.95) in Figure 1 indicate
that the cross-covariance between these curves at other lags is not significant at any reasonable level.
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APPENDIX A. PROOFS OF TECHNICAL RESULTS

A.1. Proof of Theorem 2.1

To prove Theorem 2.1, we may assume without loss of generality that 𝜇X = 𝜇Y = 0. Let

C̃XY (t, s, x) =
1
T

⌊Tx⌋∑
i=1

Xi(t)Yi(s).

wileyonlinelibrary.com/journal/jtsa © 2019 John Wiley & Sons Ltd J. Time Ser. Anal. 40: 665–692 (2019)
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Lemma A.1. Under Assumption 2.1,

sup
0≤x≤1

‖ĈXY (⋅, ⋅, x) − C̃XY (⋅, ⋅, x)‖2 = OP

( 1
T

)
.

Proof. According to the definitions of ĈXY and C̃XY and the triangle inequality,

‖ĈXY (⋅, ⋅, x) − C̃XY (⋅, ⋅, x)‖2 =
1
T

‖‖‖‖‖
⌊Tx⌋∑
i=1

(Xi − X̄)(Yi − Ȳ) − XiYi

‖‖‖‖‖2

(A1)

= 1
T

‖‖‖‖‖
⌊Tx⌋∑
i=1

−X̄Yi − XiȲ + X̄Ȳ
‖‖‖‖‖2

≤ 1
T

‖‖‖‖‖
⌊Tx⌋∑
i=1

X̄Yi

‖‖‖‖‖2

+ 1
T

‖‖‖‖‖
⌊Tx⌋∑
i=1

XiȲ
‖‖‖‖‖2

+ 1
T

‖‖‖‖‖
⌊Tx⌋∑
i=1

X̄Ȳ
‖‖‖‖‖2

= G1(x) + G2(x) + G3(x).

For the term G1(x), we have that

G1(x) =
1
T

‖‖‖‖‖
⌊Tx⌋∑
i=1

X̄Yi

‖‖‖‖‖2

= 1
T
‖X̄‖1

‖‖‖‖‖
⌊Tx⌋∑
i=1

Yi

‖‖‖‖‖1

. (A2)

Assumption 2.1 implies that both the series Xi and Yi satisfy the conditions of Theorem 3.3 of Berkes et al.
(2013), from which it follows that

‖X̄‖1 = OP

(
1√
T

)
, and sup

0≤x≤1

‖‖‖‖‖
⌊Tx⌋∑
i=1

Yi

‖‖‖‖‖1

= OP

(√
T
)
.

This combined with (A2) implies that sup0≤x≤1 G1(x) = OP(1∕T). Parallel arguments show that sup0≤x≤1 G2(x) =
OP(1∕T) and sup0≤x≤1 G3(x) = OP(1∕T), from which the result follows in light of (A1).

Lemma A.2. Under Assumption 2.1 and if q = p∕2 with p defined in Assumption 2.1, then

(E‖XiYi − Xi,mYi,m‖q
2)

1∕q = O(m−𝛾 ),

where 𝛾 = min(𝛼, 𝛽), and Xi,m and Yi,m are defined in Assumption 2.1.

Proof. We have according to the triangle inequalities in L2[0, 1]2 and for (E(⋅)q)1∕q that(
E‖XiYi − Xi,mYi,m‖q

2

)1∕q =
(
E‖XiYi − XiYi,m + Xi,mYi − Xi,mYi,m‖q

2

)1∕q
(A3)

≤ (E(‖XiYi − XiYi,m‖2 + ‖Xi,mYi − Xi,mYi,m‖2

)q)1∕q

≤ (E‖XiYi − XiYi,m‖q
2

)1∕q +
(
E‖Xi,mYi − Xi,mYi,m‖q

2

)1∕q

=
(
E‖Xi‖q

1‖Yi − Yi,m‖q
1

)1∕q +
(
E‖Yi‖q

1‖Xi − Xi,m‖q
1

)1∕q
.

According to the Cauchy–Schwarz inequality and stationarity, we have that

E‖Xi‖q
1‖Yi − Yi,m‖q

1 ≤ (E‖Xi‖2q
1

)1∕2
E
(‖Yi − Yi,m‖2q

1

)1∕2 =
(
E‖X0‖2q

1

)1∕2
E
(‖Y0 − Y0,m‖2q

1

)1∕2
. (A4)

J. Time Ser. Anal. 40: 665–692 (2019) © 2019 John Wiley & Sons Ltd wileyonlinelibrary.com/journal/jtsa
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686 G. RICE AND M. SHUM

One obtains a similar bound with the roles of X and Y swapped, which combined with the last line of (A3) we
get that (with p = 2q)(

E‖XiYi − Xi,mYi,m‖q
2

)1∕q ≤ (E‖X0‖p
1

)1∕p(
E‖Y0 − Y0,m‖p

1

)1∕p +
(
E‖Y0‖p

1

)1∕p(
E‖X0 − X0,m‖p

1

)1∕p
.

Since both (E‖X0‖p
1)

1∕p and (E‖Y0‖p
1)

1∕p are finite, and according to Assumption 2.1 (E‖Xi − Xi,m‖p
)1∕p =

O(m−𝛼), and (E‖Yi − Yi,m‖p
)1∕p = O(m−𝛽), we obtain that(

E‖XiYi − Xi,mYi,m‖q
2

)1∕q = O(m−𝛾 ),

where 𝛾 = min(𝛼, 𝛽) as needed.

To complete the proof of Theorem 2.1, we employ Theorem 1.1 of Berkes et al. (2013) (cf. Theorem 1.2 in
Jirak, 2013) applied to stochastic process with sample paths in L2[0, 1]2. The original Theorem 1.1 in Berkes et al.
(2013) is given for random functions with sample paths in L2[0, 1] and the following extension is simple to obtain
from this. We present this result here for ease of reference:

Theorem 1.1 of Berkes et al. (2013) in L2[0, 1]2 Consider a mean zero strictly stationary sequence of stochastic
processes {𝜉i(t, s), t, s ∈ [0, 1], i ∈ ℤ}. Suppose there exists a function f ∶ S∞ → L2[0, 1]2, and i.i.d. innovations
{𝜖i, ∶ i ∈ ℤ} taking values in S such that 𝜉i = f (𝜖i, 𝜖i−1,…). Suppose 𝜉i,m is defined as in Assumption 2.1(b), and
let 𝜈(p,q)m = (E‖𝜉0 − 𝜉0,m‖q

2)
1∕p. If there exists q > p > 2 so that

∞∑
m=1

𝜈(p,q)m < ∞,

then with

ST (t, s, x) =
1√
T

⌊Tx⌋∑
i=1

𝜉i(t, s), t, s, x ∈ [0, 1],

there exists a sequence of Gaussian processes {ΓT (t, s, x), t, s, x ∈ [0, 1], T ∈ ℕ}, (defined on the same but
perhaps enlarged probability space) such that

sup
x∈[0,1]∫∫ [ST (t, s, x) − ΓT (t, s, x)]2dtds = oP(1),

where for all T , ΓT (t, s, x) has mean zero, and covariance function

E[ΓT (t, s, x)ΓT (u, v, y)] = min{x, y}
∞∑

𝓁=−∞
E[𝜉0(t, s)𝜉𝓁(u, v)].

Proof of Theorem 2.1. According to Lemma A.1, it is enough to prove Theorem 2.1 for the process C̃XY (t, s, x).
C̃XY (t, s, x) − (⌊Tx⌋∕T)CXY (t, s) is the partial sum of the random functions 𝜉i(t, s) = Xi(t)Yi(s) − EX0(t)Y0(s) which
form a mean zero and stationary sequence in L2[0, 1]2. Let 𝜉i,m(t, s) = Xi,m(t)Yi,m(s) − EX0(t)Y0(s), denote an
m-dependent approximation to 𝜉i. It follows directly from A.2 that(

E‖𝜉i − 𝜉i,m‖q
2

)1∕q = O(m−𝛾 ),

where 𝛾 > 1, hence for some p < q, (
E‖𝜉i − 𝜉i,m‖q

2

)1∕p = O(m−𝜁 ),

wileyonlinelibrary.com/journal/jtsa © 2019 John Wiley & Sons Ltd J. Time Ser. Anal. 40: 665–692 (2019)
DOI: 10.1111/jtsa.12447
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INFERENCE FOR LAGGED CROSS-COVARIANCE OPERATOR 687

where 𝜁 > 1. This gives that
∞∑

m=1

(
E‖𝜉i − 𝜉i,m‖q

2

)1∕p
< ∞.

Therefore the sequence {𝜉i} satisfies the conditions of Theorem 1.1 of Berkes et al. (2013), and hence with

ΞT (t, s, x) ∶=
√

T

(
C̃XY (t, s, x) −

⌊Tx⌋
T

CXY (t, s)
)

= 1√
T

⌊Tx⌋∑
i=1

𝜉i(t, s),

then

sup
0≤x≤1 ∫∫

(
ΞT (t, s, x) − ΓT (t, s, x)

)2
dtds = oP(1), (A5)

where ΓT has the properties attributed in Theorem 2.1, which establishes the result.

To see how Corollaries 3.1–3.3 follow from this result, we note that for all T ,

{ΓT (t, s, x) ∶ t, s, x ∈ [0, 1]}
D
= {Γ0(t, s, x) ∶ t, s, x ∈ [0, 1]},

where

Γ0(t, s, x) =
∞∑
𝓁=1

𝜆
1∕2
𝓁 W𝓁(x)𝜑𝓁(t, s),

with {W𝓁(t), t ∈ [0, 1], 𝓁 ∈ ℕ} being i.i.d. standard Brownian motions, and (𝜆𝓁 𝜑𝓁) being the eigenvalues and
eigenfunctions of the operator 𝔡. This follows from simply calculating the mean and covariance function of Γ0

and using Mercer’s theorem.

Proof of Theorem 3.1. The first part of the theorem follows directly from the ergodic theorem in Hilbert spaces;
see for example Appendix A of Horváth et al. (2013). To get the second result, we have using the assumption that√

T(CXY − C0)
L2[0,1]2
→ CA and Theorem 2.1 that, in case of FT ,

FT = T‖ĈXY (⋅, ⋅, 1) − CXY + CXY − C0‖2
2

= T⟨(ĈXY (⋅, ⋅, 1) − CXY ) + (CXY − C0), (ĈXY (⋅, ⋅, 1) − CXY ) + (CXY − C0)⟩2
= T‖ĈXY (⋅, ⋅, 1) − CXY‖2

2 + 2⟨√T(ĈXY (⋅, ⋅, 1) − CXY ),
√

T(CXY − C0)⟩2 + T‖CXY − C0‖2
2


→

∞∑
i=1

𝜆i 2
i + 2

∞∑
i=1

𝜆
1∕2
i ⟨CA, 𝜑i⟩i + ‖CA‖2

2, (T → ∞),

as needed. The result for FT ,p follows similarly.

A.2. Proof of Theorem 4.1

Let

D̃T (t, s, u, v) =
∞∑

𝓁=−∞
Wb

(
𝓁
B

)
�̃�𝓁(t, s, u, v), (A6)

J. Time Ser. Anal. 40: 665–692 (2019) © 2019 John Wiley & Sons Ltd wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12447

 14679892, 2019, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jtsa.12447 by U

niversity O
f W

aterloo D
ana Porter L

ibrary, W
iley O

nline L
ibrary on [11/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



688 G. RICE AND M. SHUM

with B defined in (4.2), Wb being a bounded, symmetric, and continuous weight function of order b, and

�̃�𝓁(t, s, u, v) =
⎧⎪⎨⎪⎩

1

T

∑T−𝓁
j=1

(
Xj(t)Yj(s) − EX0(t)Y0(s)

) (
Xj+𝓁(u)Yj+𝓁(v) − EX0(u)Y0(v)

)
, 𝓁 ≥ 0

1

T

∑T
j=1−𝓁

(
Xj(t)Yj(s) − EX0(u)Y0(v)

) (
Xj+𝓁(t)Yj+𝓁(s) − EX0(u)Y0(v)

)
, 𝓁 < 0.

Lemma A.3. Under Assumption 2.1,

‖D̂ − D̃‖4 = oP(1).

Proof. According to the definition of �̂�𝓁 , when 𝓁 ≥ 0, we have that

�̂�𝓁(t, s, u, v) =
1
T

T−𝓁∑
j=1

(X̄j(t)Ȳj(s) − ĈXY (t, s, 1))(X̄j+𝓁(u)Ȳj+𝓁(v) − ĈXY (u, v, 1)) (A7)

= 1
T

T−𝓁∑
j=1

(
(Xj(t)Yj(s) − EX0(t)Y0(s)) − X̄(t)Yj(s) + X̄(t)Ȳ(s) − Xj(t)Ȳ(s)

+ (EX0(t)X0(s) − Ĉ(t, s, 1))
)
×
(

Xj+𝓁(u)Yj+𝓁(v) − EX0(u)Y0(v) − X̄(u)Yj+𝓁(v)

+ X̄(u)Ȳ(v) − Xj+𝓁(u)Ȳ(v) + (EX0(u)X0(v) − Ĉ(u, v, 1))
)

= �̃�(t, s, u, v) +
24∑

p=1

Rp,𝓁(t, s, u, v),

where the terms Rp,𝓁 represent the remaining 24 terms in the definition of �̂�𝓁 obtained by completing the multi-
plication that results in 25 terms, the first of which corresponds to �̃�𝓁 . We now aim to show that for all p and 𝓁,
E‖Rp,𝓁‖4 = O(T−1∕2). For R1,𝓁 , we have by the triangle inequality, a couple of applications of the Cauchy-Schwarz
inequality, and the assumed stationarity that

E‖R1,𝓁‖4 =
1
T

E
‖‖‖‖‖

T−𝓁∑
j=1

(Xj(t)Yj(s) − EX0(t)Y0(s))X̄(u)Yj+𝓁(v)
‖‖‖‖‖4

(A8)

≤ 1
T

T−𝓁∑
j=1

E‖(Xj(t)Yj(s) − EX0(t)Y0(s))X̄(u)Yj+𝓁(v)‖4

= 1
T

T−𝓁∑
j=1

E‖(Xj(t)Yj(s) − EX0(t)Y0(s))‖2‖X̄‖1‖Yj+𝓁‖1

≤ 1
T

T−𝓁∑
j=1

(
E‖(Xj(t)Yj(s) − EX0(t)Y0(s))‖2

2

)1∕2(
E(‖X̄‖1‖Yj+𝓁‖1)2

)1∕2

≤ 1
T

T−𝓁∑
j=1

(
E‖(Xj(t)Yj(s) − EX0(t)Y0(s))‖2

2

)1∕2(
E‖X̄‖4

1

)1∕4(
E‖Yj+𝓁‖4

1

)1∕4

= T − 𝓁
T

(
E‖(X0(t)Y0(s) − EX0(t)Y0(s))‖2

2

)1∕2(
E‖X̄‖4

1

)1∕4(
E‖Y0‖4

1

)1∕4
.

wileyonlinelibrary.com/journal/jtsa © 2019 John Wiley & Sons Ltd J. Time Ser. Anal. 40: 665–692 (2019)
DOI: 10.1111/jtsa.12447
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INFERENCE FOR LAGGED CROSS-COVARIANCE OPERATOR 689

It follows from Proposition 3.1 of Torgovitski (2016) that under Assumption 2.1, (E‖X̄‖4
1)

1∕4 = O(T−1∕2), and
also according to Assumption 2.1, (E‖Y0‖4

1)
1∕4 = O(1) and (E‖(X0(t)Y0(s) − EX0(t)Y0(s))‖2

2)
1∕2 = O(1). This

implies with (A8) that E‖R1,𝓁‖4 = O(T−1∕2). Similar arguments using the fact that (E‖Ȳ‖4
1)

1∕4 = O(T−1∕2) and‖EX0(t)Y0(s) − ĈXY (t, s, 1)‖2 = O(T−1∕2) can be applied to get that E‖Rp,𝓁‖ = O(T−1∕2), 2 ≤ p ≤ 24. This implies
via the triangle inequality and (A7) that

E‖�̂�𝓁 − �̃�𝓁‖4 = O(T−1∕2),

from which it follows that

E
‖‖‖‖‖

∞∑
𝓁=1

Wb

(
𝓁
B

)
(�̂�𝓁 − �̃�𝓁)

‖‖‖‖‖4

≤
∞∑
𝓁=1

Wb

(
𝓁
B

)
E‖(�̂�𝓁 − �̃�𝓁)‖4 = O(hT−1∕2) = o(1), (A9)

by (4.2) and the fact that Wb has bounded support. A parallel argument may be used to show that for 𝓁 < 0, that
E‖�̂�𝓁 − �̃�𝓁‖4 = O(T−1∕2), from which we obtain that

E
‖‖‖‖‖

−1∑
𝓁=−∞

Wb

(
𝓁
B

)
(�̂�𝓁 − �̃�𝓁)

‖‖‖‖‖4

= O(hT−1∕2) = o(1). (A10)

(A9) and (A10) together with the triangle inequality imply that

E‖D̂ − D̃‖4 ≤ E
‖‖‖‖‖

∞∑
𝓁=1

Wb

(
𝓁
B

)
(�̂�𝓁 − �̃�𝓁)

‖‖‖‖‖4

+E
‖‖‖‖‖

−1∑
𝓁=−∞

Wb

(
𝓁
B

)
(�̂�𝓁 − �̃�𝓁)

‖‖‖‖‖4

= o(1),

and this implies the result with Markov’s inequality.

Lemma A.4. Under Assumption 2.1, ‖D̃ − D‖4 = oP(1).

Proof. To show this, we use Theorem 2.2 of Horváth et al. (2012). Noting that �̃�𝓁 is the autocovariance estimator
based on a sample of size T at lag 𝓁 of the mean zero random functions {𝜉i(t, s), i ∈ ℤ}, where, recalling from
above, 𝜉i(t, s) = Xi(t)Yi(s) − EX0(t)Y0(s). With 𝜉i,m(t, s) = Xi,m(t)Yi,m(s) − EX0(t)Y0(s), Theorem 2.2 of Horváth et
al. (2012) states that Lemma A.4 holds if both,

1. limm→∞ m(E‖𝜉i − 𝜉i,m‖2
2)

1∕2 = 0, and
2.

∞∑
m=1

(
E‖𝜉i − 𝜉i,m‖2

2

)1∕2
< ∞.

These conditions both follow from Lemma A.2 and Lyapounovs inequality.

Proof of Theorem 4.1. The Theorem follows directly from Lemmas A.3 and A.4.

A.3. Consistency of ZT and ZT ,p

To show that the tests based on ZT and ZT ,p are consistent, we require that the series before and after the change
are stationary and are of the form outlined in Assumption (2.1).

J. Time Ser. Anal. 40: 665–692 (2019) © 2019 John Wiley & Sons Ltd wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12447
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690 G. RICE AND M. SHUM

Assumption A.1. Under HA,2, we assume that there exist measurable functions g(1)
XY ∶ S∞ → L2[0, 1] × L2[0, 1]

and g(2)
XY ∶ S∞ → L2[0, 1]×L2[0, 1], where S is a measurable space, and a sequence of i.i.d. innovations {𝜖i, ∶ i ∈ ℤ}

taking values in S such that (Xi,Yi) = g(1)
XY (𝜖i, 𝜖i−1,…) for i ≤ k∗, and (Xi,Yi) = g(2)

XY (𝜖i, 𝜖i−1,…) for i > k∗, such
that, for each i, (Xi,Yi) satisfies Assumption 2.1 (b), and HA,2 holds.

Assumption A.1 holds under a number of conceivable models for observations (Xi,Yi) following HA,2. For
instance, if

Xi(t) = 𝛼i𝜀c,i(t) + (1 − 𝛼i)𝜀x,i(t), Yi(t) = 𝛼i𝜀c,i(t) + (1 − 𝛼i)𝜀y,i(t),

where the 𝜀′⋅,is are i.i.d. functional innovations (or themselves approximable Bernoulli shifts), and 𝛼1 = · · · =
𝛼k∗ ≠ 𝛼k∗+1 = · · · = 𝛼T∗+1, then Assumption A.1 holds. Interestingly, as mentioned in Section 3, no orthogonality
condition is needed in order for the test statistic ZT ,p to diverge since, under HA,2, the estimates for 𝜑i in (4.4)

converge into the direction of C1 − C2 due to a diverging in magnitude rank one perturbation of the operator �̂�
under HA,2.

Theorem A.1. Under HA,2 and Assumption A.1 holds, then

ZT

P
−→ ∞.

If in addition the estimates �̂�i and �̂�i are defined according to (4.4), then

ZT ,p

P
−→ ∞.

We provide here a shortened version of the proof, since the notation is quite tedious to develop in full detail,
and some similar calculations are given in the proof of A.3.

Outline of proof. It follows from Assumption A.1 and the conditions on the bandwidth B in (4.2) that‖‖‖‖‖ 1
k∗

k∗∑
i=1

(Xi(t) − 𝜇X(t))(Yi(s) − 𝜇Y (s)) − C1(t, s)
‖‖‖‖‖2

= oP(h∕
√

T),

and ‖‖‖‖‖ 1
T − k∗

T∑
i=k∗+1

(Xi(t) − 𝜇X(t))(Yi(s) − 𝜇Y (s)) − C2(t, s)
‖‖‖‖‖2

= oP(h∕
√

T).

From this it is straightforward to establish the first part of Theorem A.1, and so we instead focus on the second
part, which is more tedious. First we must show that, as T → ∞, �̂�1 asymptotically tends to go into the direction
of C1 − C2. Recalling that under HA,2, k∗ = ⌊T𝜃⌋, we may obtain from the above two bounds along the lines of
the proof of Lemma A.3 that if

𝛾∗𝓁(t, s, u, v) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1

T

∑T−𝓁
j=1

(
Xj(t)Yj(s) − (𝜃C1(t, s) + (1 − 𝜃)C2(t, s))

)
×
(

Xj+𝓁(u)Yj+𝓁(v) − (𝜃C1(u, v) + (1 − 𝜃)C2(u, v))
)
, 𝓁 ≥ 0

1

T

∑T
j=1−𝓁

(
Xj(t)Yj(s) − (𝜃C1(t, s) + (1 − 𝜃)C2(t, s)

)
×
(

Xj+𝓁(u)Yj+𝓁(v) − (𝜃C1(u, v) + (1 − 𝜃)C2(u, v))
)
, 𝓁 < 0.

wileyonlinelibrary.com/journal/jtsa © 2019 John Wiley & Sons Ltd J. Time Ser. Anal. 40: 665–692 (2019)
DOI: 10.1111/jtsa.12447
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and

D∗
T (t, s, u, v) =

∞∑
𝓁=−∞

Wb

(
𝓁
B

)
𝛾∗𝓁(t, s, u, v), (A11)

then ‖D̂ − D∗‖ = oP(1). Suppose 𝓁 ≥ 0. We may then write

𝛾∗𝓁(t, s, u, v) =
3∑

i=1

U(i)
𝓁,T (t, s, u, v),

where

U(1)
𝓁,T (t, s, u, v) =

1
T

k∗−𝓁∑
j=1

(
Xj(t)Yj(s) − (𝜃C1(t, s) + (1 − 𝜃)C2(t, s))

)
×
(

Xj+𝓁(u)Yj+𝓁(v) − (𝜃C1(u, v) + (1 − 𝜃)C2(u, v))
)
,

U(2)
𝓁,T (t, s, u, v) =

1
T

k∗∑
j=k∗−𝓁+1

(
Xj(t)Yj(s) − (𝜃C1(t, s) + (1 − 𝜃)C2(t, s))

)
×
(

Xj+𝓁(u)Yj+𝓁(v) − (𝜃C1(u, v) + (1 − 𝜃)C2(u, v))
)
,

U(3)
𝓁,T (t, s, u, v) =

1
T

T−𝓁∑
j=k∗

(
Xj(t)Yj(s) − (𝜃C1(t, s) + (1 − 𝜃)C2(t, s))

)
×
(

Xj+𝓁(u)Yj+𝓁(v) − (𝜃C1(u, v) + (1 − 𝜃)C2(u, v))
)
.

In each term in the summand defining U(1)
𝓁,T , we may add and subtract C1(t, s) and C1(u, v) respectively, and then

by completing the multiplication in the summand of U(1)
𝓁,T , we get that U(1)

𝓁,T (t, s, u, v) =
∑4

i=1 V (1,i)
𝓁,T (t, s, u, v), where

V (1,1)
𝓁,T (t, s, u, v) = (1 − 𝜃)2(k∗ − 𝓁)

T
(C1(t, s) − C2(t, s))(C1(u, v) − C2(u, v)),

V (1,2)
𝓁,T (t, s, u, v) = (1 − 𝜃)(C1(t, s) − C2(t, s))

1
T

k∗−𝓁∑
j=1

(Xj+𝓁(u)Yj+𝓁(v) − C1(u, v)),

V (1,3)
𝓁,T (t, s, u, v) = (1 − 𝜃)(C1(u, v) − C2(u, v))

1
T

k∗−𝓁∑
j=1

(Xj(t)Yj(s) − C1(t, s)),

and

V (1,4)
𝓁,T (t, s, u, v) = 1

T

k∗−𝓁∑
j=1

(Xj(t)Yj(s) − C1(t, s))(Xj+𝓁(u)Yj+𝓁(v) − C1(u, v)).

J. Time Ser. Anal. 40: 665–692 (2019) © 2019 John Wiley & Sons Ltd wileyonlinelibrary.com/journal/jtsa
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Combining these decompositions, we have that

∞∑
𝓁=−∞

Wb

(
𝓁
B

)
U(1)

𝓁,T (t, s, u, v) =
4∑

i=1

∞∑
𝓁=−∞

Wb

(
𝓁
B

)
V (1,i)
𝓁,T (t, s, u, v), (A12)

and for the first term,

∞∑
𝓁=−∞

Wb

(
𝓁
B

)
V (1,1)
𝓁,T (t, s, u, v) = (1 − 𝜃)2(C1(t, s) − C2(t, s))(C1(u, v) − C2(u, v))

∞∑
𝓁=−∞

(k∗ − 𝓁)
T

Wb

(
𝓁
B

)
.

According to the definitions of k∗, Wb and B,
∑∞

𝓁=−∞((k
∗ − 𝓁)∕T)Wb(𝓁∕B) = O(h), and so

‖‖‖‖‖(1 − 𝜃)2(C1(t, s) − C2(t, s))(C1(u, v) − C2(u, v))
∞∑

𝓁=−∞

(k∗ − 𝓁)
T

Wb

(
𝓁
B

)‖‖‖‖‖4

= O(h).

One can show using Assumption A.1 that the remaining terms in (A12) are of lower asymptotic order in norm.
Similarly with U(3)

𝓁,T in place of U(1)
𝓁,T in (A12), and following a similar decomposition, we get that the leading order

term is of the form (C1(t, s)−C2(t, s))(C1(u, v)−C2(u, v)) multiplied by a term on the order of B. The corresponding
term with U(2)

𝓁,T is asymptotically negligible. Since �̂�1 must maximize the quadratic form as a function of v:

∫∫ ∫∫ D̂T (t, s, u, v)v(t, s)v(u, v)dtdsdudv,

it follows that

‖�̂�1 − s1(C1 − C2)∕‖C1 − C2‖2‖2 = oP(1),

where s1 is 1 or −1, and �̂�1 = O(h). Therefore, again using Assumption A.1

ZT ,p = T sup
0≤x≤1

p∑
i=1

⟨ĈXY (⋅, ⋅, x) − xĈXY (⋅, ⋅, 1), �̂�i⟩22
�̂�i

≥ T
p∑

i=1

⟨ĈXY (⋅, ⋅, 𝜃) − 𝜃ĈXY (⋅, ⋅, 1), �̂�i⟩22
�̂�i

≥ T
⟨ĈXY (⋅, ⋅, 𝜃) − 𝜃ĈXY (⋅, ⋅, 1), �̂�1⟩22

�̂�1

= T
⟨𝜃(1 − 𝜃)(C1 − C2), (C1 − C2)⟩22

�̂�1

+ o

(
T
B

)
P
→ ∞,

giving the result.

wileyonlinelibrary.com/journal/jtsa © 2019 John Wiley & Sons Ltd J. Time Ser. Anal. 40: 665–692 (2019)
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