
Journal of Statistical Planning and Inference 211 (2021) 326–339

c
o

h
0

e 
Contents lists available at ScienceDirect

Journal of Statistical Planning and Inference

journal homepage: www.elsevier.com/locate/jspi

Projection pursuit based tests of normalitywith functional
data✩

Adam Kolkiewicz, Gregory Rice, Yijun Xie ∗

University of Waterloo Department of Statistics and Actuarial Science, Mathematics 3 (M3) University of Waterloo 200 University
Avenue West Waterloo, ON, Canada N2L 3G1

a r t i c l e i n f o

Article history:
Received 10 April 2019
Received in revised form 30 June 2020
Accepted 2 July 2020
Available online 11 July 2020

Keywords:
Functional data analysis
Projection pursuit
Goodness-of-fit

a b s t r a c t

Methods for validating the assumption of normality of functional data have been only
lightly developed to date, with existing methods based primarily on summarizing the
data by their projections into random or principal component subspaces, and applying
multivariate normality tests to the vectors of scores defining these projections. While
this is effective in some cases, we show with both real and synthetic data examples
some pitfalls of this approach, including their sensitivity to the basis used to smooth the
raw data. We propose a new normality test for functional data based on a projection
pursuit that overcomes some of these challenges. Asymptotic theory is developed for
the proposed statistics, and we develop several new computational tools needed to
implement the high-dimensional projection pursuit. As a by-product of evaluating the
test statistic, our method furnishes a way of decomposing functional data into its
approximately Gaussian and non-Gaussian components, which is useful for the purpose
of data visualization and subsequent analyses. A simulation study and analysis of three
data sets demonstrate the complimentary advantages of the proposed test to those
currently available in the literature.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Statistical methods based on the assumption of normality of the observations and/or model errors are ubiquitous in
lassical statistics, and are also widely used in more modern settings when the data to be analyzed are high-dimensional
r functional in nature. To give some recent examples, Panaretos et al. (2010) and Cuevas et al. (2004) assume normality

in order to perform two sample and analysis of variance tests with functional data, and in Kowal et al. (2017) and Kowal
et al. (2019) normality of the data is used in performing Bayesian inference with complex functional data. We refer the
reader to the text books Horváth and Kokoszka (2012) and Ramsay and Silverman (2002) for introductions to functional
data analysis, and some further applications of normality in this setting can be found in Gromenko et al. (2017), Yao et al.
(2005), and Constantinou et al. (2017), although this list is far from exhaustive. Given the usefulness of these procedures,
it is important to have ways of measuring the validity of the assumption of normality for a given sample of functional
data. At the least such a validation would lend further credibility to the conclusions of procedures in which normality is
assumed, but evidence for normality of functional data may also be of independent interest.

The much related problem of testing for normality in multivariate data enjoys an enormous literature dating back
at least to the 1960s. A myriad of techniques are now available, and, crudely, they can be categorized into four groups
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based on two characteristics. The first is how departures from normality in the data are measured, in which typically
either moment based measures are used, such as the sample skewness and kurtosis, or goodness-of-fit tests involving
the empirical distribution or characteristic function are employed. The second is how information is aggregated across
the coordinates of the data, which usually amounts to either pooling/averaging the information across coordinates, or
searching for linear combinations of the coordinates that maximize a given measure of non-Gaussianity. Approaches
following the later paradigm are often termed ‘‘projection pursuit’’ methods, since finding such a linear combination can
be framed as a classical projection pursuit problem as put forward in Kruskal (1972), and Friedman and Tukey (1974).
Canonical test statistics based on moment methods of each type are Mardia’s multivariate skewness (Mardia et al., 1979),
which aggregates the skewness across coordinates, and the skewness measure of Malkovich and Afifi (1973), which is
the maximal sample skewness among all linear combinations of the coordinates. One test is expected to be preferable to
the other depending on how ‘‘sparse’’ the non-Gaussianity is in the data: data for which all linear combinations of the
coordinates are non-Gaussian should be more apparently non-Gaussian by considering aggregation based methods, while
non-Gaussianity that can be explained by only a few linear combination of the coordinates would typically be more easily
detected using projection pursuit methods. Some examples of multivariate projection pursuit based normality tests can
be found in Liang et al. (2000), Henze and Wagner (1997), Baringhaus and Henze (1991), Zhu et al. (1995a), Zhu et al.
(1995b), and general reviews of tests for multivariate normality are given in Mecklin and Mundfrom (2004), Henze (2002),
and Szekely and Rizzo (2005).

In contrast, testing for normality of functional data objects has received considerably less attention. Methods based on
random projections and subsequent Carmér–von Mises and Kolmogorov–Smirnov type goodness-of-fit tests are proposed
and reviewed in Cuesta-Albertos et al. (2006), Cuesta-Albertos et al. (2007), Bugni et al. (2009), and Cuevas (2014). To
date and to the knowledge of the authors, the only test available for this purpose based on moment methods was put
forward in Górecki et al. (2018), henceforth referred to as the GHHK test. Their approach involves projecting the functional
data onto the span of the first several functional principal components estimated from the data, and then applying a test
based on combining Mardia’s skewness and kurtosis to the vectors of coefficients defining these projections, i.e. applying
a multivariate Jarque–Bera test (Jarque and Bera, 1980) to the projection scores. They also extend their method to serially
correlated functional data. While this method proves to be effective in many cases, it evidently might be improved upon
in several others. One is if the non-Gaussian components of the data are sparse among the leading principal components,
analogously to the multivariate setting, but another is if the non-Gaussian components of the data are orthogonal to the
leading principal components, in which case the GHHK test would not be expected to have more than trivial power. As we
see below, this latter situation might occur more often than one might think, as it can arise from simply misspecifying the
basis used to smooth/generate functional data objects from raw data and/or estimate the functional principal components.
Although one may argue that this situation could be avoided by including more principal components, as later shown in
a data example in Section 4.3, increasing the number of principal components incorporated into the GHHK test may not
solve the problem.

In this paper, we propose and study an alternative normality test for functional data based on projection pursuit
that overcomes some of these challenges. We consider as test statistics the maximal sample skewness and sample
kurtosis among all scalar projections of the data onto a user selected compact subset of the unit ball, and hence the
proposed test can be thought of as a functional generalization of the tests of Malkovich and Afifi (1973) and Baringhaus
and Henze (1991). We show that the compact subset selected can be taken to be relatively high dimensional, and can
also be generated by the functional principal components, which gives the test complimentary strengths to the GHHK
test. A complete asymptotic theory is developed for the proposed statistics, and computational tools are introduced to
conduct the required high-dimensional projection pursuit. These computational tools may be of independent interest
since they may be used for more general projection pursuit problems with functional data. In addition to providing a test
for Gaussianity, this projection pursuit method also furnishes a way to decompose functional data into a direct sum of
approximately Gaussian and non-Gaussian components useful for data visualization or subsequent analyses, which we
demonstrate. This latter application builds upon some recent efforts to develop projection pursuit methods for functional
data; see for example Bali et al. (2011). We study the proposed methods and compare them to the GHHK method in a
simulation study, as well as in three applications to real data sets, which show the complimentary strengths of the two
tests.

The rest of the paper is organized as follows: In Section 2, we define our projection pursuit-based test statistics, and
present their asymptotic properties. In Section 3, we detail several computational methods useful for calculating the
proposed statistics and their critical values, and also describe and present the results of a simulation study. The results of
the data analyses are presented in Section 4. The proofs of all technical results are contained in the online supplementary
material.

Below we use the following notation: We let L2([0, 1],R) denote the space of real valued functions defined on the
unit interval with finite squared integral, which is a Hilbert space when equipped with the inner product defined for
x, y ∈ L2([0, 1],R) by ⟨x, y⟩ =

∫ 1
0 x(t)y(t)dt . The corresponding norm is defined by ∥ · ∥

2
= ⟨·, ·⟩.

2. Problem statement, definition of test statistics, and their asymptotic properties

Suppose that X1(t), . . . , Xn(t), t ∈ [0, 1], is a simple random sample of size n of functional data sharing the same

distribution as X . We assume throughout that each functional observation is then an independent stochastic process,
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whose sample path is in L2([0, 1],R). Since typically functional data are only observed at some discrete collection of
oints, here we assume that the sample of curves under consideration have been obtained after a pre-processsing step,
uch as basis smoothing or principal analysis by conditional expectation as described in Ramsay and Silverman (2002) or
n Yao et al. (2005). More generally, we could consider a simple random sample of elements from a general, separable,
ilbert space, but because of the type of data applications we present in this paper we consider the space L2([0, 1],R)

for clarity of presentation. Given this data, we are interested in testing the null hypothesis

H0 : X is a Gaussian process in L2([0, 1],R).

y definition, H0 can be equivalently stated as

H0 : For each nonzero v ∈ L2([0, 1],R), the scalar random variable ⟨X, v⟩ is Gaussian.

As discussed in the multivariate setting in Malkovich and Afifi (1973), the latter formulation motivates developing test
statistics aiming to find the ‘‘least Gaussian’’ projection of X . Indeed, if the distribution of such a projection does not
significantly deviate from normality, then the same apparently holds for the entire process. In order to evaluate the
normality of the projection of the data onto the direction v, a natural measure is the squared skewness and/or the absolute
kurtosis:

Sn(v) =
1

n2σ̂ 6(v)

[
n∑

i=1

(⟨Xi, v⟩ − ⟨X̄, v⟩)3
]2

,

nd

Kn(v) =

⏐⏐⏐⏐⏐ 1
nσ̂ 4(v)

n∑
i=1

(⟨Xi, v⟩ − ⟨X̄, v⟩)4 − 3

⏐⏐⏐⏐⏐ .
bove we use X̄(t) = (1/n)

∑n
i=1 Xi(t) to denote the sample mean function and σ̂ 2(v) to denote the sample variance of the

scalar observations ⟨X1, v⟩, . . . , ⟨Xn, v⟩. Though here we consider ‘‘Jarque–Bera’’ moment based evaluations of normality,
one could also consider projection pursuit methods based on other measures, for instance those surveyed in Thadewald
and Büning (2007). Some benefits of using such moment based measures in this setting stem from their affine invariance
and asymptotic properties, which, as we shall see below, are crucial in deriving feasible computational techniques to carry
out a projection pursuit test in high dimensions.

Letting U∞
= {u ∈ L2([0, 1],R) : ∥u∥ = 1} denote the unit sphere in L2([0, 1],R), the least Gaussian projection may

be calculated by evaluating the test statistics

Sn = sup
v∈U∞

Sn(v), and Kn = sup
v∈U∞

Kn(v).

An issue that presents itself here, in contrast with the multivariate setting, is that these statistics are not necessarily
well defined (finite), owing to the fact that the unit sphere in L2([0, 1],R) is not compact. An obvious way to fix this
is to restrict the search for projections of the data to compact subsets of U∞, which, as a result of Riesz’s lemma (see
e.g., Riesz and Sz.-Nagy (1990)), must be finite dimensional. Such a finite dimensional subset must be spanned by a finite
collection of orthonormal basis functions, and hence a natural way to explore compact subsets of U∞ is to consider those
that intersect a k dimensional linear subspace of the form Lk = span(φ1, . . . , φk), for some orthonormal basis elements
φ1, . . . , φk chosen by the practitioner. For a chosen subspace Lk, we then instead consider the statistics

SLkn = sup
v∈U∞∩Lk

Sn(v), and K Lk
n = sup

v∈U∞∩Lk
Kn(v). (2.1)

hese statistics are well defined if the functions Sn(v) and Kn(v) are at least continuous (almost surely) over U∞
∩Lk, which

olds under quite mild conditions in addition to H0, basically entailing that Lk is not orthogonal to the data. Effectively,
hese statistics are measuring for multivariate normality in the subspace Lk based on the third and fourth order moments.

One might choose the subspace Lk and its dimension based on a number of considerations. If the observed functional
ata have been obtained by smoothing over a particular basis, such as the Fourier basis or a spline basis, then that basis,
ith the dimension used for smoothing, is a natural choice for the subspace Lk. If departures from normality are sought
r expected in a particular way, then this information can also be used to select the basis. For instance, if it is believed
hat the functional data exhibits non-normality on a subset of its domain, then a Haar basis could be used.

In the case when one would like a parsimonious finite dimensional representation of the observed functional data,
unctional principal component analysis is often employed. In order to introduce the principal component basis, we
ssume for the moment that E∥Xi∥

2 < ∞, and we let C(t, s) = cov(Xi(t), Xi(s)). The covariance function C defines a
ilbert–Schmidt integral operator of the form

c(f )(t) =

∫ 1

C(t, s)f (s)ds.

0
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Let vi be the orthonormal eigenfunctions of c with the corresponding eigenvalues λi satisfying

c(vi)(t) = λivi(t), λ1 ≥ λ2 ≥ · · · . (2.2)

he subspace Pk = span(v1, . . . , vk) is well known to be optimal in terms of representing the curves Xi in a k dimensional
pace, at least when the error is measured in the mean squared sense. These basis elements are generally unknown in
ractice but can be estimated via estimates of C . The natural estimator of C is

Ĉ(t, s) =
1
n

n∑
i=1

(Xi(t) − X̄(t))(Xi(s) − X̄(s)),

which gives an estimator of c

ĉ(f )(t) =

∫ 1

0
Ĉ(t, s)f (s)ds,

and subsequently estimators v̂i and λ̂i of vi and λi satisfying

ĉ(v̂i)(t) = λ̂iv̂i(t), i = 1, . . . , n. (2.3)

With this notation, we note that the test statistic proposed in Górecki et al. (2018) is of the form

GHHKk =

k∑
i=1

[Sn(v̂i) + K 2
n (v̂i)],

which, under the condition that the first k eigenvalues in (2.2) are bounded away from zero and with suitable normaliza-
tion, converges in distribution to a χ2-random variable under H0. Letting P̂k = span(v̂1, . . . , v̂k), one might alternatively
test for normality in the principal component subspace by considering the statistics

S P̂,k
n = sup

v∈U∞∩P̂k

Sn(v), and K P̂,k
n = sup

v∈U∞∩P̂k

Kn(v), (2.4)

or

M P̂,k
n = max

1≤i≤k

n
6

(
Sn(v̂i) +

1
4
K 2
n (v̂i)

)
, (2.5)

in which the maximal sum of the skewness and kurtosis is evaluated only over the first k principal component directions.

2.1. Large sample properties

The asymptotic properties of each of these statistics under H0 are detailed by the following two results.

heorem 2.1. Suppose X1, . . . , Xn are independent and identically distributed elements of L2([0, 1],R) such that

1. H0 holds, and
2. infv∈U∞∩Lk E⟨Xi, v⟩

2 > 0.

Then, with SLkn and K Lk
n defined in (2.1),

(nSLkn ,
√
nK Lk

n )⊤
D
→ ( sup

v∈U∞∩Lk
Z2
1 (v), sup

v∈U∞∩Lk
|Z2(v)|)⊤,

here Z1 and Z2 are independent mean zero Gaussian processes defined on U∞
∩ Lk, whose covariance functions, defined in

the supplementary material, depend only on k.

This result may be proven in a similar fashion to the main theorem of Baringhaus and Henze (1991). We also note here
that an asymptotic result of this type can easily be established under the more general condition that the projections of X
onto Lk are elliptically symmetric, but we do not pursue that here. The asymptotic distribution presented in Theorem 2.1
can be used to estimate valid critical values for each test statistic under H0 using simulation. Furthermore, the form of
his distribution shows that the tests based on SLkn and K Lk

n are asymptotically independent, which is useful in calculating
a p value for H0 using both statistics jointly.

In order to derive similar results when the subspace used to define the test statistics is random and generated from
the principal component basis, we make the following assumption.

Assumption 2.1. The eigenvalues λi defined in (2.2) satisfy λ1 > · · · > λk > λk+1 ≥ 0.

Assumption 2.1 implies that the principal component subspaces are asymptotically one dimensional, and in particular
it implies that the estimated principal components are consistent up to a sign. This assumption could likely be relaxed to
the one that only requires λk > λk+1 at the expense of some simplicity in the proof.
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Theorem 2.2. Suppose Assumption 2.1 holds, and that X1, . . . , Xn satisfy H0 and are independent and identically distributed.
Then with S P̂,k

n and K P̂,k
n defined in (2.4),

(nS P̂,k
n ,

√
nK P̂,k

n )⊤
D
→ ( sup

v∈U∞∩Pk
Z2
1 (v), sup

v∈U∞∩Pk
|Z2(v)|)⊤,

here Z1 and Z2 are independent mean zero Gaussian processes defined on U∞
∩ Pk. Their covariance functions are defined in

he supplementary material. Furthermore,

M P̂,k
n

D
→ max

1≤i≤k
χ2
i (2),

where χ2
i (2), i = 1, . . . , k, denote independent and identically distributed χ2 random variables with two degrees of freedom.

Theorem 2.2 shows that at least when the principal component subspaces are fixed and one dimensional, the
istribution of the maximal skewness and kurtosis is not asymptotically affected by the error in estimating the principal
omponents. This comes basically as a result of the continuity of the functions Sn(v) and Kn(v). This result also shows that
test of asymptotic size α is obtained by rejecting H0 when M P̂,k

n exceeds χ2([1 − α]
1/k, 2), where χ2(β, 2) is the β th

uantile of the χ2 distribution with two degrees of freedom.

. Implementation and a simulation study

Practical evaluation of the estimates of the test statistics ŜLkn and K̂ Lk
n defined in (2.1) requires maximizing the objective

unctions Sn(v) and Kn(v) over a potentially high-dimensional unit sphere, which presents a difficult optimization problem.
n previous projection pursuit based tests for normality with multivariate data, this is often handled using number
heoretic optimization tools that effectively aim to maximize Sn(v) and Kn(v) by evaluating each function at a dense
ollection of points on the unit sphere; see for example Zhu et al. (1995a). Due to the potentially high dimension of the
nit sphere that may arise in the present application, traditional methods for generating dense collections of points have
roven ineffective. One reason for the poor performance of such methods is the fact that the selected points may not
over the search area evenly. The method that we propose here to address this issue borrows from recent advances in
he generation of low discrepancy sequences developed in the context of quasi Monte Carlo integration.

To explain the main idea behind these sequences, consider a p-dimensional unit hybercube [0, 1)p. Let Z = {xj ∈

0, 1)p, j = 0, 1, 2, . . .} be a sequence of points in the cube, [a, b) = {x ∈ [0, 1)p : ai ≤ xi < bi, i = 1, . . . , p} denote a
ub-rectangular prism, and A([a, b),N) be the number of the first N points from Z that lie in [a, b).
A desirable property of the sequence Z is that

lim
N→∞

A([a, b),N)
N

= λp([a, b))

for any selection of the rectangle [a, b), where λp denotes the p-dimensional Lebesgue measure. In order to quantify the
rate at which the fraction A([a, b),N)/N converges to the limit, different measures of discrepancy have been proposed in
the literature. Among them, the following star discrepancy has received perhaps the most attention to date:

D∗

N (S) = sup
b∈[0,1]p

⏐⏐⏐⏐A([0, b),N)
N

− λp([0, b))
⏐⏐⏐⏐ .

In the context of numerical integration methods, the importance of star discrepancy stems from the Koksma–Hlawka
inequality, which provides an upper bound for the error estimate for quasi Monte Carlo integration rules (see, for
example, Niederreiter (1992) or Leobacher and Pillichshammer (2014)). This bound depends on the underlying integration
nodes only through the star discrepancy, and this explains why sequences with low discrepancy are desirable.

As demonstrated by numerous authors, sequences with low discrepancy can also improve efficiency of some global
optimization methods (for example, Kimura and Matsumura (2007), Pant et al. (2008), Georgieva and Jordanov (2009),
and Monica et al. (2011)). In our problem, the goal is to generate a low discrepancy sequence on the unit sphere that could
be used to efficiently explore U∞

∩ Lk. The recent work by Brauchart et al. (2015) provides an algorithm for generating
such a sequence, which we use to propose a two-step optimization method to estimate the test statistics. In the rest of
this sub-section we describe how we evaluate only ŜLkn , since K̂ Lk

n can be evaluated similarly.
First, we generate a low discrepancy sequence of length J on U∞

∩ Lk as described in Brauchart et al. (2015). Denote
these points by ξj = (ξj,1, . . . , ξj,k) for j = 1, 2, . . . , J . For each ξj, and selected basis functions φi(t), i = 1, . . . , k, spanning
k, we construct functions of the form uj(t) =

∑K
k=1 ξj,kφk(t). Then we calculate the skewness of the projection of our data

nto uj(t) as

Skj = Sn(uj), j = 1, . . . , J.

he Skj’s may then be ranked, and we denote the largest M of them as Sk(1) ≥ · · · ≥ Sk(M). We denote the low-discrepancy

points that produce Sk(m) by ξ(m), where m = 1, . . . ,M .
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p

In a second step, to maximize Sn(v) we apply M times a local optimization procedure where as initial points we
use ξ(m), m = 1, . . . ,M . In our implementation of the method we have used the L-BFGS-B algorithm proposed by Byrd
et al. (1995), which allows the user to specify constraints on the domain over which the objective function is optimized.
We also tried other optimization techniques, such as particle swarm optimization (Clerc, 2010) and conjugate gradient
descendant (Fletcher and Reeves, 1964), but the results were almost identical. Therefore, we only report results from
L-BFGS-B method, since it is slightly faster. Let ξ̃(m) denote the point at which Sn is optimized starting from the function
on the unit sphere corresponding to the initial point ξ(m),m = 1, . . . ,M . Then our final estimated vector of coefficients ξ̂
is determined as

ξ̂ = {ξ̃(m) : Sk(ξ̃(m)) = max
m=1,...,M

Sk(ξ̃(m))}.

For

û(t) =

K∑
k=1

ξ̂kv̂k(t), (3.1)

our estimated test statistic is then given by

ŜLkn = Sn(û). (3.2)

This procedure is similar to the coarse-to-fine optimization schemes popular in the machine learning community (see,
for example, Pedersoli et al. (2015) and Charniak and Johnson (2005) for two applications in computer vision and natural
language processing). Our algorithm is summarized in Algorithm 3.1:

Algorithm 3.1: Two-Step Approximation Algorithm for ŜLkn
1 Input: x1(t), · · · , xn(t), φ1(t), · · · , φk(t)
2 Result: ŜLkn
3 generate ξ1, · · · , ξJ ;
4 for j = 1 to J do
5 generate uj(t) =

∑k
l=1 ξjlφl(t);

6 calculate Skj = Sn(uj) where the requisite integration is approximated using a Riemann integral;
7 end
8 rank Sk1, · · · , SkJ in decreasing order as Sk(1), · · · , Sk(J);
9 for m = 1 to M do

10 find ξ(m) corresponding to Sk(m);
11 find the spherical coordinate {1, θ(m),1, · · · , θ(m),k−1} of ξ(m);
12 fix the (k − 1)-dimension hypercube [θ(m),1 − 0.2π, θ(m),1 + 0.2π ] × · · · × [θ(m),k−1 − 0.2π, θ(m),k−1 + 0.2π ];
13 find optimized ξ̃(m) in this hypercube with the objective function equal to negative value of skewness;
14 end
15 let ξ̂ = {ξ̃(m) : Sk(ξ̃(m)) = maxm=1,···,M Sk(ξ̃(m))};
16 construct û(t) =

∑k
l=1 ξ̂lφl(t);

17 calculate ŜLkn = Sn(û).

This procedure necessitates the selection of two tuning parameters: the length of the low discrepancy sequence J
and the number of initial points M . Our recommended procedure is to start from some initial values, like those we
propose below, and stop as soon as we observe that the hypothesis testing decision and/or p-values are not sensitive
to increasing values of these parameters. This is equivalent to checking that the statistic calculated and null quantiles
estimated achieve stability as M and J increase. We have conducted a number of simulations to investigate what choices
for these parameters are appropriate in practice. The results of some of these experiments are discussed and shown in
Figure 2.1 in the supplementary material. In terms of stability in estimating the quantiles of the test statistics defined in
Section 2.1, we have found that reasonable choices of these parameters in a dimension of 21 or less are J = 3 × 104 and
M = 5. We also illustrate here how one might choose the dimension of the subspace k in practice, with an additional
discussion presented in the supplementary material. A natural idea is to perform the test for a range of values of k in
order to further understand how any non-Gaussianity is manifested in the data, or if k should potentially be increased.
For Gaussian data, one expects that, as a function of k, the p-values of the test applied for different choices of k will
fluctuate as dependent uniform random variables on [0, 1], while for non-Gaussian data the p-values as a function of k
should at some point become small.

In order to estimate the null distributions of SLkn and K Lk
n , we utilize the fact that their limiting distributions are

ivotal under H and estimate their critical values by simulation. In particular, letting qS and qK denote the α quantiles
0 α α
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of SLkn and K Lk
n respectively, these are approximated by generating n k-dimensional multivariate normally distributed

andom vectors, y i = (yi,1, . . . , yi,k)⊤, i = 1, . . . , n, with mean zero and identity covariance matrix. A functional sample
i(t) =

∑k
j=1 yi,jφj(t) can be constructed from these vectors, to which we apply Algorithm 3.1 to calculate the statistics

Lk
n,1 and K Lk

n,1. By repeating this simulation B times we obtain a sample from statistics SLkn,j and K Lk
n,j, j = 1, . . . , B, and then

we take qSα and qKα to be the α empirical quantiles of these respective samples. Below we take B = 2000 for estimating
ritical values. We found that this number is suitable for estimating the 1% and 5% critical values, although we recommend
hat it be increased if one wishes to consider values even further in the tail of the distribution.

We can estimate a p-value for the test based on these statistics as follows. With ŜLkn and K̂ Lk
n denoting the test statistics

stimated from the data, we take

p = P(SLkn > ŜLkn ∪ K Lk
n > K̂ Lk

n ) = 1 − P(SLkn ≤ ŜLkn ∩ K Lk
n ≤ K̂ Lk

n ) ≈ 1 − P(SLkn ≤ ŜLkn )P(uLk
n ≤ K̂ Lk

n ),

here the last approximation is justified by the asymptotic independence of SLkn and K Lk
n . The probabilities P(SLkn ≤ ŜLkn )

nd P(K Lk
n ≤ K̂ Lk

n ) can be estimated from the empirical CDF estimated from the simulation described above.

.1. Simulation study

In order to evaluate the performance of the tests and the numerical methods proposed above, we conducted a
imulation study, the results of which we now present. The synthetic data that we considered was generated from the
asic model

Xi(t) =

D∑
j=1

ϵi,jfj(t), (3.3)

here D = 101, and f1, . . . , f101 are the first 101 Fourier basis functions defined as f1 = 1, fj(t) =
√
2 sin( j−1

2 π t)
for j = 3, 5, . . . , 101, and fj(t) =

√
2 cos( j

2π t) for j = 2, 4, . . . , 100. We also studied the case in which the basis
elements fj were non-smooth Haar basis elements. Our results, which for completeness are presented in Section 4 of
the supplementary material, suggested that the performances of the tests were very similar to those in the smooth case.

We produced raw discrete data from the model (3.3) by evaluating Xi(t) at 100 equally spaced points in the unit
interval. To simulate data following H0, we generated the coefficient vectors ϵi = (ϵi,1, . . . , ϵi,D)⊤ from a multivariate
normal distribution with mean zero and covariance matrix Σ = ΣD×D. We considered three different types of the
covariance structure. In two cases, Σ was diagonal,

Σ = diag(σ 2
1 , σ 2

2 , . . . , σ 2
D ),

where we either took the diagonal elements to decay quickly, so that

σ 2
w =

1
w2 , w = 1, . . . ,D,

and the resulting covariance matrix was labeled Σfast , or more slowly, in which case we took

σ 2
w =

⎧⎨⎩
1

√
w

for w = 1, 2, 3

2.4065
w2 for w ≥ 4,

nd then the resulting covariance matrix was labeled Σslow . The normalizing constant 2.4065 was computed so that for
oth covariance matrices∑7

i=1 σ 2
i

tr(Σ)
≈ 0.9,

hich is a common threshold when using the total variance explained (TVE) in principal component analysis to select
he number of components to retain. We should note that the TVE level could be arbitrary, for example in Górecki et al.
2018) the authors use 85%. In the rest of this paper, we use 90% as the threshold for TVE.

For these diagonal covariance matrices the first d population level principal components of the observations Xi, i =

1, . . . , n, are the functions f1,.., fd. Since initial Fourier basis elements do not fluctuate too much, the first d principal
components can be estimated quite accurately using most standard initial smoothing methods, like those based on B-
splines. In order to investigate the situation in which the estimation of the principal components might be sensitive to
the choice of the basis used to smooth the raw data, we also considered generating data having a randomly constructed
covariance matrix Σran in the following way: we represent Σ = PΛP−1, where P is a D × D matrix whose columns are
orthonormal to each other, and Λ is a diagonal matrix. We generate P by applying a QR decomposition to a D×D matrix
filled by independent and identically distributed normal random variables with zero mean and unit variance, and we take
Λ = diag(101, 100, . . . , 1). In this case the leading principal components of Xi in (3.3) are equally likely to be any of the
functions f , . . . , f , or linear combinations of them, and the eigenvalues of the covariance matrix decay quite slowly.
1 D
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In order to generate data under HA, we consider three alternatives, which we label as L1, L3, and M10. For the
lternative L1, we assume that the leading error term ϵi,1 in (3.3) follows a scaled t-distribution with 5 degrees of freedom,
ean zero, and variance equal to Σ(1, 1). In L3, the first three leading coefficients ϵi,1, ϵi,2, ϵi,3 follow independently a

scaled t-distribution with 5 degrees of freedom and variances Σ(1, 1), Σ(2, 2), and Σ(3, 3), respectively. In the last case
M10, we assume ϵi,10 follows the scaled t-distribution with 5 degrees of freedom and variance equal to Σ(10, 10). In
both of the cases L1 and L3, the non-Gaussianity of the observations is contained in the leading principal components,
and hence the methods based on PCA are expected to perform well. In contrast, for the alternative M10 the non-Gaussian
component is orthogonal to the PCA subspaces of dimensions nine or less.

To conduct the simulations, for each setting we generated 1000 samples of lengths n = 150, 450 and 900. For each
sample of curves, to estimate the test statistics SL,21n and K L,21

n we applied the approximation method described in the above
algorithm. For linear spaces L21, we considered F21 = span(f1, . . . , f21), where fi are the Fourier basis elements described
above, and B21 = span(b1, . . . , b21), where bi are ortho-normalized B-splines constructed from 75 equally spaced knots
of order 4.

We considered the following tests:

1. PP-F-21: Projection pursuit test with the subspace spanned by F21.
2. PP-B-21: Projection pursuit test with the subspace spanned by B21.
3. PP-PF-7: Projection pursuit test with the subspace spanned by the first 7 functional principal components estimated

by initially smoothing the raw data using the Fourier basis.
4. PP-PB-7: Projection pursuit test with the subspace spanned by the first 7 functional principal components estimated

by initially smoothing the raw data using the B-spline basis.
5. GHHK-F: GHHK test where we smooth the data using the first 75 Fourier basis functions and then estimate

the principal components from the coefficients. We use the 90% TVE criterion to select the number of principal
components included.

6. GHHK-B: GHHK test where we smooth the data using 75 B-spline basis functions and then estimate the principal
components from the coefficients. We use the 90% TVE criterion to select the number of principal components
included.

7. MAX-F: MAX test defined in (2.5) with data smoothed by Fourier basis. We use the 90% TVE criterion to select the
number of principal components included.

8. MAX-B: MAX test defined in (2.5) with data smoothed by B-spline basis. We use the 90% TVE criterion to select
the number of principal components included.

The percentage of rejections from the 1000 simulations at levels 5% and 1% are presented in Tables 3.1–3.3 for each
covariance structure. The numbers in the Null column show the test sizes for different methods, while the numbers in
L1, L3, and M10 columns show the power of each test under these three scenarios. The results can be summarized as
follows:

• Each test exhibited reasonable size. The GHHK test and the MAX type tests were a bit oversized for large n, while
the projection pursuit based tests tended to be a bit undersized.

• For the covariance structures Σfast and Σslow and the alternatives L1 and L3, the GHHK and MAX type tests performed
superiorly and worked well regardless of the basis used to smooth the data. The projection pursuit based tests
exhibited good power and consistency in these cases. By comparing the results for PP-PF-7 and PP-F-21, one can
get a sense of the sacrifice in power that is made by increasing the dimension of the search space, which can be
quite severe: when the dimension increased from 7 to 21, the power was roughly halved at the significance levels
of 5% and 1%.

• As expected, in the case M10 the GHHK test, the MAX type test, and the projection pursuit tests based on functional
principal components have no more than trivial power, while the power of the other projection pursuit tests is very
similar to what was observed under the alternative L1.

• When the covariance matrix used to generate the data was Σran, then the performance of the GHHK test was strongly
affected by the choice of basis used to smooth the raw data. When the Fourier basis was used, the GHHK test still
exhibited strong, although somewhat diminished, power. On the other hand, when orthogonal B-splines were used
to smooth the data, then the power was strongly diminished. This can be explained by the fact that the non-Gaussian
signal in these cases often ends up in the Fourier basis elements that cannot be well represented by the first seven
principal components calculated after initially smoothing the raw data using the orthogonal B-splines. In this case,
the projection pursuit type tests are essentially unaffected by the choice of the basis, since even when the non-
Gaussian component of the data is not well represented in the early principal components, it remains present in
some linear combinations of the coordinates of the full data and can be essentially recovered without loss by the
projection pursuit optimization.
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Table 3.1
Percentage of rejections under the fast decaying covariance matrix Σfast .

Level Method α = 5% α = 1%

Null L1 L3 M10 Null L1 L3 M10

n = 150

PP-F-21 5.3 13.7 29.9 15.1 1.6 8.7 22.2 9.4
PP-B-21 2.9 15.0 34.4 15.8 1.0 9.8 24.5 9.3
PP-PF-7 3.1 34.5 65.1 3.8 0.8 23.6 48.9 1.5
PP-PB-7 3.7 33.0 65.7 11.0 0.8 20.4 50.2 6.6
GHHK-F 4.7 69.1 97.4 4. 9 1.5 59.4 95.8 1.4
GHHK-B 4.0 66.0 96.9 5.9 1.6 57.7 94.3 3.2
MAX-F 7.2 74.0 97.1 7.1 2.7 66.4 95.3 2.8
MAX-B 7.7 73.7 96.9 9.1 3.3 65.8 95.0 4.9

n = 450

PP-F-21 4.9 34.1 70.8 35.5 1.1 25.4 60.9 26.0
PP-B-21 3.9 38.3 75.6 38.6 0.7 28.7 64.5 29.0
PP-PF-7 3.3 79.1 99.1 3.7 0.3 65.2 95.1 0.4
PP-PB-7 4.4 80.4 99.5 10.5 0.5 66.1 95.8 6.2
GHHK-F 5.5 98.3 100 5.5 2.0 96.3 100 2.0
GHHK-B 6.0 97.6 100 6.9 2.4 95.7 100 2.5
MAX-F 6.4 99.0 100 6.4 2.8 97.5 100 4.2
MAX-B 8.1 98.8 100 8.9 3.9 96.9 100 3.2

n = 900

PP-F-21 4.4 65.0 94.7 66.4 0.7 50.2 85.7 50.7
PP-B-21 4.7 72.5 97.6 71.8 0.6 56.1 89.3 55.1
PP-PF-7 4.2 98.6 99.9 4.6 0.7 96.9 99.9 0.8
PP-PB-7 4.4 98.5 100 7.9 0.9 97.2 99.9 4.0
GHHK-F 6.8 100 100 6.8 1.5 100 100 1.5
GHHK-B 6.3 100 100 7.5 1.7 99.9 100 2.2
MAX-F 7.9 100 100 8.0 3.2 100 100 3.2
MAX-B 8.1 100 100 8.8 3.5 100 100 4.4

Table 3.2
Percentage of rejections under the slow decaying covariance matrix Σslow .
Level Method α = 5% α = 1%

Null L1 L3 M10 Null L1 L3 M10

n = 150

PP-F-21 6.4 15.0 31.6 17.2 1.4 9.7 22.7 9.2
PP-B-21 2.8 15.0 34.4 16.5 1.0 9.8 24.8 9.4
PP-PF-7 3.0 32.7 65.2 3.9 0.5 20.6 49.7 1.2
PP-PB-7 3.3 32.8 66.3 4.2 0.7 21.5 51.3 1.5
GHHK-F 4.4 66.4 92.6 4.8 2.0 57.9 88.9 2.1
GHHK-B 4.8 64.1 91.6 10.6 2.0 55.6 87.3 6.8
MAX-F 7.3 73.5 92.8 7.3 3.5 65.3 88.9 3.5
MAX-B 8.1 72.5 92.4 14.8 4.1 64.4 88.6 10.2

n = 450

PP-F-21 5.5 37.6 71.6 35.0 1.5 29.0 61.0 28.1
PP-B-21 4.1 38.3 76.3 38.5 0.8 28.7 64.6 29.0
PP-PF-7 4.1 79.6 99.4 6.8 0.4 65.1 96.6 3.1
PP-PB-7 4.5 80.3 99.5 7.6 0.4 65.6 97.0 3.4
GHHK-F 6.4 98.1 100 6.9 2.3 95.5 100 2.4
GHHK-B 5.9 97.0 100 12.9 2.6 94.6 100 8.1
MAX-F 6.7 98.7 100 6.8 3.5 96.6 100 3.4
MAX-B 8.8 98.6 100 15.6 4.3 96.6 100 10.8

n = 900

PP-F-21 4.7 67.7 95.1 67.4 1.1 52.3 85.6 51.2
PP-B-21 4.6 72.5 98.0 70.6 0.5 56.1 89.6 54.9
PP-PF-7 4.0 98.5 100 6.7 1.2 97.3 100 3.8
PP-PB-7 4.6 98.5 100 7.2 1.5 97.4 100 4.0
GHHK-F 6.6 100 100 6.2 1.5 99.9 100 1.3
GHHK-B 7.1 100 100 10.7 1.7 99.9 100 5.0
MAX-F 7.3 100 100 7.2 2.8 100 100 2.9
MAX-B 8.4 100 100 12.9 3.3 100 100 7.3

4. Data analysis

In this section, we apply our proposed normality test to several real data sets, with the main objective of comparing its
erformance with that of some of the existing methods. While for some data sets all tests give similar results, in one case
he proposed test leads to different conclusions than those implied by the existing methods. In addition, we also explain
ow the proposed projection pursuit method can be used for identifying and visualizing the non-Gaussian components
f functional data.
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Table 3.3
Percentage of rejections under the random covariance matrix Σran .
level Method α = 5% α = 1%

Null L1 L3 M10 Null L1 L3 M10

n = 150

PP-F-21 3.8 13.4 30.7 14.4 0.7 7.8 21.4 8.3
PP-B-21 4.9 15.9 36.0 17.1 1.0 7.6 20.9 8.2
PP-PF-7 3.1 30.9 66.0 23.6 0.8 19.8 48.9 15.6
PP-PB-7 3.6 10.8 26.5 10.8 0.3 5.6 16.4 5.5
GHHK-F 5.5 41.0 74.1 15.7 2.5 34.2 67.1 11.1
GHHK-B 5.9 9.8 17.8 10.3 2.6 5.7 13.1 5.9
MAX-F 13.3 51.4 80.6 26.5 6.8 44.3 75.0 18.9
MAX-B 28.6 34.9 42.4 34.7 18.1 23.7 32.1 23.0

n = 450

PP-F-21 3.8 38.8 73.3 38.1 1.2 29.3 60.4 27.8
PP-B-21 6.5 42.6 78.7 39.9 0.9 31.3 64.4 29.0
PP-PF-7 3.3 77.1 99.2 56.0 0.6 63.0 95.5 44.1
PP-PB-7 5.5 30.4 59.6 28.3 0.8 21.1 47.4 18.1
GHHK-F 5.2 77.5 98.5 54.0 2.3 71.3 97.1 45.5
GHHK-B 5.2 19.3 38.6 16.6 2.0 13.1 29.3 10.5
MAX-F 12.0 89.8 99.1 52.5 4.6 86.1 98.3 24.8
MAX-B 21.7 38.4 59.7 37.3 12.8 27.4 47.9 70.8

n = 900

PP-F-21 3.7 68.8 96.5 67.5 0.6 50.5 87.1 49.4
PP-B-21 7.9 76.7 98.3 72.9 0.9 55.9 89.6 51.5
PP-PF-7 5.6 97.8 100 70.0 1.1 95.4 100 64.5
PP-PB-7 6.0 52.4 84.9 50.1 1.7 43.5 79.3 40.3
GHHK-F 5.8 98.6 100 71.5 1.7 97.9 100 62.6
GHHK-B 5.6 28.4 59.9 26.8 1.5 20.7 51.6 19.9
MAX-F 9.2 99.3 100.0 77.1 3.6 98.6 99.9 70.8
MAX-B 15.2 44.5 73.9 41.4 6.6 33.4 63.9 31.8

Fig. 4.1. Fertility rate by age in Australia from 1921 to 2006.

4.1. Fertility rate in Australia

We first consider Australian fertility rate data from 1921 to 2006 among women aged from 15 to 49. The data set has
been collected by the Australian Bureau of Statistics and is available in the R package rainbow (Shang and Hyndman,
016). In the left panel of Fig. 4.1 each curve represents the distribution of the number of births per 1000 females at each
ge. From the rainbow plot, and some further analysis, we have found that the second order differencing of the curves is
ufficient to remove the prevalent trend in the sequence of curves. The detrended curves are depicted in the right panel
f Fig. 4.1. After applying the GHHK-F test described in Section 3.1 to the detrended data, we have obtained a p-value
qual to 0.826, which suggests that these curves are reasonably Gaussian. Using the proposed PP-F-21 we have obtained
alues of the test statistics Ŝn = 114.825 and K̂n = 23.895, while the 95% level critical values are 132.915 and 32.792,
espectively. The corresponding empirical p-value is 0.325, which is in apparent agreement with the GHHK test.

.2. Conditional intra-day stock prices

In modern finance, Brownian bridges arise naturally as conditioned Brownian motions in the context of the Black–
choles model for option pricing. But there are numerous other applications of Brownian bridges, and more generally
onditioned diffusion processes. For example, in applications that involve modeling of the flow of information in the
arket, like in Brody et al. (2008), a Brownian bridge represents the noise in the information about a future market
vent. In Cartea et al. (2016) the authors utilize a randomized Brownian bridge to model the mid-price of an asset with a
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Fig. 4.2. Daily curves of the transformed IBM prices from 06/15/2006 to 04/02/2007.

random end-point that follows a distribution that is not necessary Gaussian. Such models can be justified, to some extent,
by the fact that Brownian motion is not the only diffusion process that produces a Brownian bridge when conditioned on
its terminal value (Benjamini and Lee, 1997).

In this example we test whether a conditioned log-price of a traded security follows a Gaussian process, which is a less
stringent requirement than the assumption that the price follows a geometric Brownian motion. To this end, we utilize the
intra-day stock prices of IBM from 06/15/2006 to 04/02/2007, which are available in the R package fChange (Sonmez et al.,
2018). The closing prices of one share of IBM stock were recorded from 9 a.m. to 4:30 p.m. at a one-minute resolution, and
hence there are 390 observations each day. By analogy to the well-known construction for the Brownian bridge (e.g., Karlin
and Taylor (1981)), we have transformed the observed prices to conditioned prices in the following way. Suppose the
observed intra-day prices on a given day i are denoted Xi(t1), . . . , Xi(tn), and yi,j = log Xi(tj), j = 1, . . . , 390. We denote the
straight line connecting yi,1 and yi,390 as Li(t). Then the bridged log prices are defined as Yi(t1) = (yi,1−Li(t1)), . . . , Yi(t390) =

yi,390 − Li(t390)). The widely used Black–Scholes model assumes that log-prices follow a Brownian motion, and hence
hese transformed price curves should follow a Brownian bridge, which is a Gaussian process. The daily curves of the
ransformed prices are shown in Fig. 4.2. The p-value calculated from GHHK-F test is 3.78 × 10−8, which suggests that
these curves are non-Gaussian. Our PP-F-21 test generates test statistics Ŝn = 180.965 and K̂n = 42.401, while the 95%
level critical values are 101.635 and 29.381 respectively. The corresponding empirical p-value is 0, and hence it is in
agreement with the GHHK test.

4.3. Yearly lower temperature profiles in Australia

In this final example we consider data comprised of the daily lowest temperature recorded in the Gayndah Post
Office from 1893 to 2009, which is available both from the Australian Government Bureau of Meteorology and the R
package fChange (Sonmez et al., 2018). Gayndah is a small town in Queensland, Australia, which is approximately 200km
northwest of Brisbane. The settlement was established in 1849, and the Post Office was established at Gayndah in 1850. We
analyze temperature records from 1894 to 2008, as the records prior to 1894 are not complete. In this case each functional
observation Xi(t) is defined to be the daily lowest temperature recorded in the Post Office for day t = 1, 2, . . . , 365, in
year i = 1894, . . . , 2008. For leap years a 366th data point is added. Since these yearly records have different lengths, we
scale the data to the unit interval and smooth the curves using 21 Fourier basis. We than evaluate these curves on 365
equally spaced points in the unit interval. Fig. 4.3 shows a rainbow plot of the data.

The p-value of the GHHK test applied to this data is 0.928, which suggests that these temperature curves are plausibly
realizations of a Gaussian process. However, in this case our projection pursuit based method suggests that these curves
have components that are both skewed and heavy-tailed. The estimated test statistics for our PP-F-21 test are ŜLkn = 185.49
and K̂ Lk

n = 47.32, which both exceed the corresponding estimated 95% critical values (130.59 and 33.97 respectively). The
empirical p-value has been estimated as 0.002.

Letting p1(t) denote the function that maximizes the skewness (or kurtosis) defined in (3.1), we can estimate the
skewed (or leptokurtic) direction of each curve Xi(t) as

gi1(t) = ⟨Xi, p1⟩p1(t).

One can further remove this non-Gaussian component by point-wise subtraction to obtain the residual

Xnew(t) = X (t) − g (t).
i i i1
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Fig. 4.3. Daily lowest temperature at Gayndah Australia from 1894 to 2008.

Fig. 4.4. The left panel shows the non-Gaussian components we found when running the projection pursuit based test. The right panel are the
esiduals of the daily low temperature profile after removing these non-Gaussian components.

ubsequent tests for Gaussianity may be applied to the sample Xnew
1 (t), . . . , Xnew

n (t) to find further directions p2(t), p3(t),
. . . that will maximize the kurtosis or skewness. Suppose after m steps we are no longer able to reject the null hypothesis
that the residuals are Gaussian processes. Then the curve Xi(t) can be decomposed into two parts: an approximate
non-Gaussian component gi(t) = gi1(t) + · · · + gim(t), and an approximate Gaussian component ri(t) = Xi(t) − gi(t).

These two components for the Gayndah temperature curves are presented in Fig. 4.4, where we find 2 directions with
excessive kurtosis and 1 direction with excessive skewness. We notice that most variants of the direction tend to vary
more prominently at either end of the function, which corresponds to the summer in Australia.

We ran the GHHK-F test again on both the estimated non-Gaussian components and the residuals. The p-values were
0.000 and 0.678, respectively. The total variance explained (TVE) of the non-Gaussian components was around 3%, which
is quite small relative to the usual TVE thresholds used to select the number of FPCs. While one could in general try to
increase the TVE used to select the number of components in the GHHK test with the aim of discovering such a sparse non-
Gaussian component, we point out that intuitively the GHHK method is a joint Jarque–Bera test applied to the projections
onto FPCs. Therefore, increasing the number of FPCs will typically lead to a loss of overall testing power. A case in point
is this example, in which after increasing the TVE threshold to 99% for the GHHK test, the test still fails to reject the
Gaussianity of the curves at the 0.05% level with a p-value equals to 0.723.

P-values of the test applied to the temperature data as a function of k are displayed in Fig. 4.5, and show that strong
non-Gaussianity is evident in the data after projecting onto the first 3 Fourier basis elements, and then becomes essentially
zero for k greater than 7.
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Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jspi.2020.07.001. Online
upplementary materials include proofs of our theorem and futher discussion about tuning parameters.
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